Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO Mol Med ; 15(9): e17376, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37534622

RESUMO

SARS-CoV-2 acute respiratory distress syndrome (ARDS) induces uncontrolled lung inflammation and coagulopathy with high mortality. Anti-viral drugs and monoclonal antibodies reduce early COVID-19 severity, but treatments for late-stage immuno-thrombotic syndromes and long COVID are limited. Serine protease inhibitors (SERPINS) regulate activated proteases. The myxoma virus-derived Serp-1 protein is a secreted immunomodulatory serpin that targets activated thrombotic, thrombolytic, and complement proteases as a self-defense strategy to combat clearance. Serp-1 is effective in multiple animal models of inflammatory lung disease and vasculitis. Here, we describe systemic treatment with purified PEGylated Serp-1 as a therapy for immuno-coagulopathic complications during ARDS. Treatment with PEGSerp-1 in two mouse-adapted SARS-CoV-2 models in C57Bl/6 and BALB/c mice reduced lung and heart inflammation, with improved outcomes. PEGSerp-1 significantly reduced M1 macrophages in the lung and heart by modifying urokinase-type plasminogen activator receptor (uPAR), thrombotic proteases, and complement membrane attack complex (MAC). Sequential changes in gene expression for uPAR and serpins (complement and plasminogen inhibitors) were observed. PEGSerp-1 is a highly effective immune-modulator with therapeutic potential for severe viral ARDS, immuno-coagulopathic responses, and Long COVID.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Serpinas , Camundongos , Animais , Humanos , Serpinas/uso terapêutico , Serpinas/metabolismo , Serpinas/farmacologia , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças , Peptídeo Hidrolases
2.
bioRxiv ; 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36824761

RESUMO

Nucleocytoplasmic transport of proteins using XPO1 (exportin 1) plays a vital role in cell proliferation and survival. Many viruses also exploit this pathway to promote infection and replication. Thus, inhibiting XPO1-mediated nuclear export with selective inhibitors activates multiple antiviral and anti-inflammatory pathways. The XPO1 inhibitor, Selinexor, is an FDA-approved anticancer drug predicted to have antiviral function against many viruses, including SARS-CoV-2. Unexpectedly, we observed that pretreatment of cultured human cells with Selinexor actually enhanced protein expression and replication of coronaviruses, including SARS-CoV-2. Knockdown of cellular XPO1 protein expression significantly enhanced the replication of coronaviruses in human cells. We further demonstrate that Selinexor treatment reduced the formation of unique cytoplasmic antiviral granules that include RNA helicase DHX9 in the virus-infected cells. These results, for the first time, show that the anti-cancer drug Selinexor enhances the replication of coronaviruses in human cells in vitro and thus should be further explored in vivo for the potential impact on the dual use for anticancer and antiviral therapy.

3.
Vaccines (Basel) ; 10(5)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35632528

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a public health crisis over the last two years. Monoclonal antibody (mAb)-based therapeutics against the spike (S) protein have been shown to be effective treatments for SARS-CoV-2 infection, especially the original viral strain. However, the current mAbs produced in mammalian cells are expensive and might be unaffordable for many. Furthermore, the emergence of variants of concern demands the development of strategies to prevent mutant escape from mAb treatment. Using a cocktail of mAbs that bind to complementary neutralizing epitopes is one such strategy. In this study, we use Nicotiana benthamiana plants in an effort to expedite the development of efficacious and affordable antibody cocktails against SARS-CoV-2. We show that two mAbs can be highly expressed in plants and are correctly assembled into IgG molecules. Moreover, they retain target epitope recognition and, more importantly, neutralize multiple SARS-CoV-2 variants. We also show that one plant-made mAb has neutralizing synergy with other mAbs that we developed in hybridomas. This is the first report of a plant-made mAb to be assessed as a potential component of a SARS-CoV-2 neutralizing cocktail. This work may offer a strategy for using plants to quickly develop mAb cocktail-based therapeutics against emerging viral diseases with high efficacy and low costs.

4.
Sci Rep ; 12(1): 5869, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393480

RESUMO

The ongoing COVID-19 global pandemic has necessitated evaluating various disinfection technologies for reducing viral transmission in public settings. Ultraviolet (UV) radiation can inactivate pathogens and viruses but more insight is needed into the performance of different UV wavelengths and their applications. We observed greater than a 3-log reduction of SARS-CoV-2 infectivity with a dose of 12.5 mJ/cm2 of 254 nm UV light when the viruses were suspended in PBS, while a dose of 25 mJ/cm2 was necessary to achieve a similar reduction when they were in an EMEM culture medium containing 2%(v/v) FBS, highlighting the critical effect of media in which the virus is suspended, given that SARS-CoV-2 is always aerosolized when airborne or deposited on a surface. It was found that SARS-CoV-2 susceptibility (a measure of the effectiveness of the UV light) in a buffer such as PBS was 4.4-fold greater than that in a cell culture medium. Furthermore, we discovered the attenuation of UVC disinfection by amino acids, vitamins, and niacinamide, highlighting the importance of determining UVC dosages under a condition close to aerosols that wrap the viruses. We developed a disinfection model to determine the effect of the environment on UVC effectiveness with three different wavelengths, 222 nm, 254 nm, and 265 nm. An inverse correlation between the liquid absorbance and the viral susceptibility was observed. We found that 222 nm light was most effective at reducing viral infectivity in low absorbing liquids such as PBS, whereas 265 nm light was most effective in high absorbing liquids such as cell culture medium. Viral susceptibility was further decreased in N95 masks with 222 nm light being the most effective. The safety of 222 nm was also studied. We detected changes to the mechanical properties of the stratum corneum of human skins when the 222 nm accumulative exposure exceeded 50 J/cm2.The findings highlight the need to evaluate each UV for a given application, as well as limiting the dose to the lowest dose necessary to avoid unnecessary exposure to the public.


Assuntos
COVID-19 , Vírus , COVID-19/prevenção & controle , Desinfecção , Humanos , SARS-CoV-2 , Raios Ultravioleta , Inativação de Vírus/efeitos da radiação
5.
Virology ; 507: 242-256, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28458036

RESUMO

Showing modest efficacy, the RV144 HIV-1 vaccine clinical trial utilized a non-replicating canarypox viral vector and a soluble gp120 protein boost. Here we built upon the RV144 strategy by developing a novel combination of a replicating, but highly-attenuated Vaccinia virus vector, NYVAC-KC, and plant-produced HIV-1 virus-like particles (VLPs). Both components contained the full-length Gag and a membrane anchored truncated gp41 presenting the membrane proximal external region with its conserved broadly neutralizing epitopes in the pre-fusion conformation. We tested different prime/boost combinations of these components in mice and showed that the group primed with NYVAC-KC and boosted with both the viral vectors and plant-produced VLPs have the most robust Gag-specific CD8 T cell responses, at 12.7% of CD8 T cells expressing IFN-γ in response to stimulation with five Gag epitopes. The same immunization group elicited the best systemic and mucosal antibody responses to Gag and dgp41 with a bias towards IgG1.


Assuntos
Vacinas contra a AIDS/administração & dosagem , Proteína gp41 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Imunização/métodos , Nicotiana/metabolismo , Vaccinia virus/fisiologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos , Feminino , Vetores Genéticos/genética , Vetores Genéticos/fisiologia , Anticorpos Anti-HIV/imunologia , Proteína gp41 do Envelope de HIV/administração & dosagem , Proteína gp41 do Envelope de HIV/genética , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , HIV-1/genética , Humanos , Imunização Secundária , Camundongos , Camundongos Endogâmicos C57BL , Nicotiana/genética , Nicotiana/virologia , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vaccinia virus/genética , Replicação Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana/administração & dosagem , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
6.
J Virol ; 91(9)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28202751

RESUMO

We compared the HIV-1-specific immune responses generated by targeting HIV-1 envelope protein (Env gp140) to either CD40 or LOX-1, two endocytic receptors on dendritic cells (DCs), in rhesus macaques primed with a poxvirus vector (NYVAC-KC) expressing Env gp140. The DC-targeting vaccines, humanized recombinant monoclonal antibodies fused to Env gp140, were administered as a boost with poly-ICLC adjuvant either alone or coadministered with the NYVAC-KC vector. All the DC-targeting vaccine administrations with poly-ICLC increased the low-level serum anti-Env IgG responses elicited by NYVAC-KC priming significantly more (up to a P value of 0.01) than in a group without poly-ICLC. The responses were robust and cross-reactive and contained antibodies specific to multiple epitopes within gp140, including the C1, C2, V1, V2, and V3, C4, C5, and gp41 immunodominant regions. The DC-targeting vaccines also elicited modest serum Env-specific IgA responses. All groups gave serum neutralization activity limited to tier 1 viruses and antibody-dependent cytotoxicity responses (ADCC) after DC-targeting boosts. Furthermore, CD4+ and CD8+ T cell responses specific to multiple Env epitopes were strongly boosted by the DC-targeting vaccines plus poly-ICLC. Together, these results indicate that prime-boost immunization via NYVAC-KC and either anti-CD40.Env gp140/poly-ICLC or anti-LOX-1.Env gp140/poly-ICLC induced balanced antibody and T cell responses against HIV-1 Env. Coadministration of NYVAC-KC with the DC-targeting vaccines increased T cell responses but had minimal effects on antibody responses except for suppressing serum IgA responses. Overall, targeting Env to CD40 gave more robust T cell and serum antibody responses with broader epitope representation and greater durability than with LOX-1.IMPORTANCE An effective vaccine to prevent HIV-1 infection does not yet exist. An approach to elicit strong protective antibody development is to direct virus protein antigens specifically to dendritic cells, which are now known to be the key cell type for controlling immunity. In this study, we have tested in nonhuman primates two prototype vaccines engineered to direct the HIV-1 coat protein Env to dendritic cells. These vaccines bind to either CD40 or LOX-1, two dendritic cell surface receptors with different functions and tissue distributions. We tested the vaccines described above in combination with attenuated virus vectors that express Env. Both vaccines, but especially that delivered via CD40, raised robust immunity against HIV-1 as measured by monitoring potentially protective antibody and T cell responses in the blood. The safety and efficacy of the CD40-targeted vaccine justify further development for future human clinical trials.


Assuntos
Vacinas contra a AIDS/imunologia , Linfócitos T CD4-Positivos/imunologia , Antígenos CD40/imunologia , Linfócitos T CD8-Positivos/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Receptores Depuradores Classe E/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/genética , Animais , Anticorpos Neutralizantes/imunologia , Células CHO , Carboximetilcelulose Sódica/análogos & derivados , Cricetulus , Células Dendríticas/imunologia , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Macaca mulatta , Masculino , Poli I-C/imunologia , Polilisina/análogos & derivados , Polilisina/imunologia , Vacinação
7.
J Virol ; 91(9)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28179536

RESUMO

The nonreplicating attenuated poxvirus vector NYVAC expressing clade C(CN54) HIV-1 Env(gp120) and Gag-Pol-Nef antigens (NYVAC-C) showed limited immunogenicity in phase I clinical trials. To enhance the capacity of the NYVAC vector to trigger broad humoral responses and a more balanced activation of CD4+ and CD8+ T cells, here we compared the HIV-1-specific immunogenicity elicited in nonhuman primates immunized with two replicating NYVAC vectors that have been modified by the insertion of the K1L and C7L vaccinia virus host range genes and express the clade C(ZM96) trimeric HIV-1 gp140 protein or a Gag(ZM96)-Pol-Nef(CN54) polyprotein as Gag-derived virus-like particles (termed NYVAC-C-KC). Additionally, one NYVAC-C-KC vector was generated by deleting the viral gene B19R, an inhibitor of the type I interferon response (NYVAC-C-KC-ΔB19R). An immunization protocol mimicking that of the RV144 phase III clinical trial was used. Two groups of macaques received two doses of the corresponding NYVAC-C-KC vectors (weeks 0 and 4) and booster doses with NYVAC-C-KC vectors plus the clade C HIV-1 gp120 protein (weeks 12 and 24). The two replicating NYVAC-C-KC vectors induced enhanced and similar HIV-1-specific CD4+ and CD8+ T cell responses, similar levels of binding IgG antibodies, low levels of IgA antibodies, and high levels of antibody-dependent cellular cytotoxicity responses and HIV-1-neutralizing antibodies. Small differences within the NYVAC-C-KC-ΔB19R group were seen in the magnitude of CD4+ and CD8+ T cells, the induction of some cytokines, and the neutralization of some HIV-1 isolates. Thus, replication-competent NYVAC-C-KC vectors acquired relevant immunological properties as vaccine candidates against HIV/AIDS, and the viral B19 molecule exerts some control of immune functions.IMPORTANCE It is of special importance to find a safe and effective HIV/AIDS vaccine that can induce strong and broad T cell and humoral immune responses correlating with HIV-1 protection. Here we developed novel replicating poxvirus NYVAC-based HIV/AIDS vaccine candidates expressing clade C HIV-1 antigens, with one of them lacking the vaccinia virus B19 protein, an inhibitor of the type I interferon response. Immunization of nonhuman primates with these novel NYVAC-C-KC vectors and the protein component gp120 elicited high levels of T cell and humoral immune responses, with the vector containing a deletion in B19R inducing a trend toward a higher magnitude of CD4+ and CD8+ T cell responses and neutralization of some HIV-1 strains. These poxvirus vectors could be considered HIV/AIDS vaccine candidates based on their activation of potential immune correlates of protection.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/sangue , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Anticorpos Anti-HIV/sangue , Proteína gp120 do Envelope de HIV/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Vacinas contra a AIDS/genética , Animais , Anticorpos Neutralizantes/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Anticorpos Anti-HIV/imunologia , Antígenos HIV/imunologia , Infecções por HIV/prevenção & controle , Interferon Tipo I/genética , Macaca mulatta , Masculino , Receptores de Interferon/genética , Receptores de Interferon/imunologia , Vacinação , Vaccinia virus/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
8.
J Virol ; 89(20): 10489-99, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26246580

RESUMO

UNLABELLED: The vaccinia virus (VACV) E3 protein has been shown to be important for blocking activation of the cellular innate immune system and allowing viral replication to occur unhindered. Mutation or deletion of E3L severely affects viral host range and pathogenesis. While the monkeypox virus (MPXV) genome encodes a homologue of the VACV E3 protein, encoded by the F3L gene, the MPXV gene is predicted to encode a protein with a truncation of 37 N-terminal amino acids. VACV with a genome encoding a similarly truncated E3L protein (VACV-E3LΔ37N) has been shown to be attenuated in mouse models, and infection with VACV-E3LΔ37N has been shown to lead to activation of the host antiviral protein kinase R pathway. In this report, we present data demonstrating that, despite containing a truncated E3 homologue, MPXV phenotypically resembles a wild-type (wt) VACV rather than VACV-E3LΔ37N. Thus, MPXV appears to contain a gene or genes that can suppress the phenotypes associated with an N-terminal truncation in E3. The suppression maps to sequences outside F3L, suggesting that the suppression is extragenic in nature. Thus, MPXV appears to have evolved mechanisms to minimize the effects of partial inactivation of its E3 homologue. IMPORTANCE: Poxviruses have evolved to have many mechanisms to evade host antiviral innate immunity; these mechanisms may allow these viruses to cause disease. Within the family of poxviruses, variola virus (which causes smallpox) is the most pathogenic, while monkeypox virus is intermediate in pathogenicity between vaccinia virus and variola virus. Understanding the mechanisms of monkeypox virus innate immune evasion will help us to understand the evolution of poxvirus innate immune evasion capabilities, providing a better understanding of how poxviruses cause disease.


Assuntos
Evasão da Resposta Imune , Imunidade Inata , Interferon Tipo I/imunologia , Monkeypox virus/genética , Proteínas de Ligação a RNA/genética , Vaccinia virus/genética , Proteínas Virais/genética , Sequência de Aminoácidos , Animais , Evolução Biológica , Linhagem Celular , Chlorocebus aethiops , Cricetulus , Células Epiteliais/imunologia , Células Epiteliais/virologia , Expressão Gênica , Células HeLa , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno , Humanos , Interferon Tipo I/genética , Dados de Sequência Molecular , Monkeypox virus/imunologia , Monkeypox virus/patogenicidade , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/imunologia , Coelhos , Alinhamento de Sequência , Transdução de Sinais , Vaccinia virus/imunologia , Vaccinia virus/patogenicidade , Células Vero , Proteínas Virais/química , Proteínas Virais/imunologia , Replicação Viral
9.
J Virol ; 89(16): 8525-39, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26041302

RESUMO

UNLABELLED: We compared the HIV-1-specific cellular and humoral immune responses elicited in rhesus macaques immunized with two poxvirus vectors (NYVAC and ALVAC) expressing the same HIV-1 antigens from clade C, Env gp140 as a trimeric cell-released protein and a Gag-Pol-Nef polyprotein as Gag-induced virus-like particles (VLPs) (referred to as NYVAC-C and ALVAC-C). The immunization protocol consisted of two doses of the corresponding poxvirus vector plus two doses of a combination of the poxvirus vector and a purified HIV-1 gp120 protein from clade C. This immunogenicity profile was also compared to that elicited by vaccine regimens consisting of two doses of the ALVAC vector expressing HIV-1 antigens from clades B/E (ALVAC-vCP1521) plus two doses of a combination of ALVAC-vCP1521 and HIV-1 gp120 protein from clades B/E (similar to the RV144 trial regimen) or clade C. The results showed that immunization of macaques with NYVAC-C stimulated at different times more potent HIV-1-specific CD4(+) T-cell responses and induced a trend toward higher-magnitude HIV-1-specific CD8(+) T-cell immune responses than did ALVAC-C. Furthermore, NYVAC-C induced a trend toward higher levels of binding IgG antibodies against clade C HIV-1 gp140, gp120, or murine leukemia virus (MuLV) gp70-scaffolded V1/V2 and toward best cross-clade-binding IgG responses against HIV-1 gp140 from clades A, B, and group M consensus, than did ALVAC-C. Of the linear binding IgG responses, most were directed against the V3 loop in all immunization groups. Additionally, NYVAC-C and ALVAC-C also induced similar levels of HIV-1-neutralizing antibodies and antibody-dependent cellular cytotoxicity (ADCC) responses. Interestingly, binding IgA antibody levels against HIV-1 gp120 or MuLV gp70-scaffolded V1/V2 were absent or very low in all immunization groups. Overall, these results provide a comprehensive survey of the immunogenicity of NYVAC versus ALVAC expressing HIV-1 antigens in nonhuman primates and indicate that NYVAC may represent an alternative candidate to ALVAC in the development of a future HIV-1 vaccine. IMPORTANCE: The finding of a safe and effective HIV/AIDS vaccine immunogen is one of the main research priorities. Here, we generated two poxvirus-based HIV vaccine candidates (NYVAC and ALVAC vectors) expressing the same clade C HIV-1 antigens in separate vectors, and we analyzed in nonhuman primates their immunogenicity profiles. The results showed that immunization with NYVAC-C induced a trend toward higher HIV-1-specific cellular and humoral immune responses than did ALVAC-C, indicating that this new NYVAC vector could be a novel optimized HIV/AIDS vaccine candidate for human clinical trials.


Assuntos
Vacinas contra a AIDS/imunologia , Produtos do Gene env/metabolismo , Vetores Genéticos/imunologia , Infecções por HIV/prevenção & controle , Vacinas Sintéticas/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes , Embrião de Galinha , Anticorpos Anti-HIV , Antígenos HIV/metabolismo , Macaca mulatta , Poxviridae/genética , Regiões Promotoras Genéticas/genética , Ensaio de Placa Viral
10.
J Biomed Opt ; 14(6): 064042, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20059280

RESUMO

We report a photonic approach for selective inactivation of viruses with a near-infrared subpicosecond laser. We demonstrate that this method can selectively inactivate viral particles ranging from nonpathogenic viruses such as the M13 bacteriophage and the tobacco mosaic virus to pathogenic viruses such as the human papillomavirus and the human immunodeficiency virus (HIV). At the same time, sensitive materials such as human Jurkat T cells, human red blood cells, and mouse dendritic cells remain unharmed. The laser technology targets the global mechanical properties of the viral protein shell, making it relatively insensitive to the local genetic mutation in the target viruses. As a result, the approach can inactivate both the wild and mutated strains of viruses. This intriguing advantage is particularly important in the treatment of diseases involving rapidly mutating viral species such as HIV. Our photonic approach could be used for the disinfection of viral pathogens in blood products and for the treatment of blood-borne viral diseases in the clinic.


Assuntos
Lasers , Óptica e Fotônica/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Inativação de Vírus/efeitos da radiação , Vírus/efeitos da radiação , Alphapapillomavirus/fisiologia , Alphapapillomavirus/efeitos da radiação , Animais , Bacteriófago M13/fisiologia , Bacteriófago M13/efeitos da radiação , Células Cultivadas , Células Dendríticas/efeitos da radiação , Eritrócitos/efeitos da radiação , HIV/fisiologia , HIV/efeitos da radiação , Humanos , Células Jurkat/efeitos da radiação , Camundongos , Microscopia de Força Atômica , Vírus do Mosaico do Tabaco/fisiologia , Vírus do Mosaico do Tabaco/efeitos da radiação
12.
J Biol Chem ; 279(47): 49055-63, 2004 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-15371436

RESUMO

Correct endoproteolytic maturation of gp160 is essential for the infectivity of human immunodeficiency virus type 1. This processing of human immunodeficiency virus-1 envelope protein, gp160, into gp120 and gp41 has been attributed to the activity of the cellular subtilisin-like proprotein convertase furin. The prototypic furin recognition cleavage site is Arg-X-Arg/Lys-Arg. Arg-Arg-Arg-Arg-Arg-Arg or longer iterations of polyarginine have been shown to be competitive inhibitors of substrate cleavage by furin. Here, we tested polyarginine for inhibition of productive human immunodeficiency virus-1-infection in T-cell lines, primary peripheral blood mononuclear cells, and macrophages. We found that polyarginine inhibited significantly human immunodeficiency virus-1 replication at concentrations that were benign to cell cultures ex vivo and mice in vivo. Using a fluorogenic assay, we demonstrated that polyarginine potently inhibited substrate-specific proteolytic cleavage by furin. Moreover, we verified that authentic processing of human immunodeficiency virus-1 gp160 synthesized in human cells from an infectious human immunodeficiency virus-1 (HIV-1) molecular clone was effectively blocked by polyarginine. Taken together, our data support that inhibitors of proteolytic processing of gp160 may be useful for combating human immunodeficiency virus-1 and that polyarginine represents a lead example of such inhibitors.


Assuntos
Furina/metabolismo , Proteína gp160 do Envelope de HIV/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Animais , Sítios de Ligação , Western Blotting , Células CHO , Cricetinae , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Corantes Fluorescentes/farmacologia , Células HeLa , Humanos , Hidrólise , Immunoblotting , Células Jurkat , Leucócitos Mononucleares/virologia , Macrófagos/metabolismo , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos BALB C , Plasmídeos/metabolismo , Rodaminas/farmacologia , Linfócitos T/virologia , Fatores de Tempo
13.
J Infect Dis ; 189(11): 2037-46, 2004 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15143471

RESUMO

BACKGROUND: The dynamics of hepatitis C virus (HCV) quasi species in the E2 region may correlate with the course of infection after orthotopic liver transplantation (OLT). METHODS: Thirty-four patients who underwent transplantation for HCV-related cirrhosis were studied. Serum and liver samples were available before OLT and at 1 week, 4 months, and 1 year after OLT. Patients were divided into group 1 (Knodell/Ishak fibrosis stage [FS] at 1 year, <2) and group 2 (FS at 1 year, > or =2). Complexity was estimated by the number of bands in a single-strand conformational polymorphism assay, whereas diversity was measured by Shannon entropy (SE) and median mobility shift (MMS) values derived from the heteroduplex mobility assay. Diversity dynamics were measured at transmission (before OLT vs. 1 week after OLT) and after OLT (1 week after OLT vs. 1 year after OLT). RESULTS: Complexity was higher in group 1 patients than in group 2 patients before OLT (P<.02) and at 1 week after OLT (P<.04). Diversity decreased in group 1 at transmission, as measured by either SE (P<.01) or MMS (P<.04). However, diversity increased in this group after OLT, as measured by SE (P<.03) or MMS (P<.02). FS at 1 year after OLT correlated with transmission changes, as measured by SE (r=0.642, P<.0001) and MMS (r=0.443, P<.04), and with post-OLT changes (for SE: r=-0.583, P<.01; for MMS: r=-0.536, P<.01). CONCLUSIONS: HCV complexity and diversity in the E2 region correlated with the severity of recurrence of HCV infection after OLT. Increased diversity of quasi species at transmission correlated with a higher FS at 1 year. However, increased diversity of quasi species in the post-OLT period correlated with a lower FS at 1 year. The dynamics of HCV quasi species in patients who undergo transplantation are predictive of outcome.


Assuntos
Hepacivirus/fisiologia , Hepatite C Crônica/virologia , Cirrose Hepática/virologia , Transplante de Fígado , Regiões 5' não Traduzidas/química , Regiões 5' não Traduzidas/genética , Progressão da Doença , Eletroforese em Gel de Poliacrilamida , Feminino , Variação Genética , Hepacivirus/genética , Hepacivirus/imunologia , Hepatite C Crônica/imunologia , Hepatite C Crônica/cirurgia , Humanos , Cirrose Hepática/imunologia , Masculino , Pessoa de Meia-Idade , Filogenia , Polimorfismo Conformacional de Fita Simples , RNA Viral/química , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
14.
Blood ; 103(10): 3854-9, 2004 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-14739225

RESUMO

Hepatitis C virus (HCV) was found to replicate in monocytes/macrophages particularly in patients with human immunodeficiency virus type 1 (HIV-1) infection. This study was undertaken to determine whether HIV facilitates HCV infection of native human macrophages in vitro. Monocytes/macrophages were collected from healthy donors, infected with HIV M-tropic molecular clone, and then exposed to HCV-positive sera. Presence of positive and negative HCV RNA strands was determined with a novel strand-specific quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR). Preceding as well as near-simultaneous infection with HIV made the macrophages more susceptible to infection with HCV; in particular, an HCV RNA-negative strand was detectable almost exclusively in the setting of concomitant HIV infection. Furthermore, HCV RNA load correlated with HIV replication level in the early stage of infection. The ratio of positive to negative strand in macrophages was lower than in control liver samples. HIV infection was also found to facilitate HCV replication in a Daudi B-cell line with engineered CD4 expression. It seems that HIV infection can facilitate replication of HCV in monocytes/macrophages either by rendering cells more susceptible to HCV infection or by increasing HCV replication. This could explain the presence of extrahepatic HCV replication in HIV-coinfected individuals.


Assuntos
HIV-1/fisiologia , Hepacivirus/fisiologia , Hepatite C/virologia , Macrófagos/virologia , Replicação Viral , Células Cultivadas , Infecções por HIV/complicações , Infecções por HIV/virologia , HIV-1/genética , Hepacivirus/genética , Hepatite C/etiologia , Humanos , Fígado/virologia , RNA Viral/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Oncogene ; 22(55): 8912-23, 2003 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-14654787

RESUMO

Nuclear factor-kappaB essential modulator (NEMO), also called IKKgamma, has been proposed as a 'universal' adaptor of the I-kappaB kinase (IKK) complex for stimuli such as proinflammatory cytokines, microbes, and the HTLV-I Tax oncoprotein. Currently, it remains unclear whether the many signals that activate NF-kappaB through NEMO converge identically or differently. We have adopted two approaches to answer this question. First, we generated and targeted intracellularly three NEMO-specific monoclonal antibodies (mAbs). These mAbs produced two distinct intracellular NF-kappaB inhibition profiles segregating TNFalpha from Tax activation. Second, using NEMO knockout mouse fibroblasts and 10 NEMO mutants, we found that different regions function in trans either to complement or to inhibit dominantly TNFalpha, IL-1beta, or Tax activation of NF-kappaB. For instance, NEMO (1-245 amino acids) supported Tax-mediated NF-kappaB activation, but did not serve TNFalpha- or IL-1beta signaling. Altogether, our findings indicate that while NEMO 'universally' adapts numerous NF-kappaB activators, it may do so through separable domains. We provide the first evidence that selective targeting of NEMO can abrogate oncogenic Tax signaling without affecting signals used for normal cellular metabolism.


Assuntos
Produtos do Gene tax/metabolismo , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Humanos , Quinase I-kappa B , Camundongos , Dados de Sequência Molecular , Proteínas Serina-Treonina Quinases/imunologia , Alinhamento de Sequência
16.
Biochem Biophys Res Commun ; 300(2): 609-13, 2003 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-12504126

RESUMO

Full-length soluble HIV-1 Tat protein has been shown to bind the CXCR4 receptor. Occupancy of CXCR4 by Tat inhibits infection of cells by T-tropic HIV-1. To understand if fragments of the Tat protein may have similar anti-HIV activity, we synthesized Tat peptides and tested their activity in tissue culture. Here, we report a sequence-specific contribution of Tat residues 31-35 to anti-HIV-1 activity.


Assuntos
Fármacos Anti-HIV/farmacologia , Produtos do Gene tat/farmacologia , HIV-1/efeitos dos fármacos , Linfócitos T/virologia , Replicação Viral/efeitos dos fármacos , Sequência de Aminoácidos , Linhagem Celular , Desenho de Fármacos , Produtos do Gene tat/química , HIV-1/crescimento & desenvolvimento , Cinética , Dados de Sequência Molecular , Peptídeos/síntese química , Peptídeos/química , Peptídeos/farmacologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana
17.
J Biol Chem ; 277(34): 31005-13, 2002 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-12042300

RESUMO

In eukaryotes, the mitotic spindle assembly checkpoint provides a monitor for the fidelity of chromosomal segregation. In this context, the mitotic arrest deficiency protein 2 (MAD2) censors chromosomal mis-segregation by monitoring microtubule attachment/tension, a role that requires its attachment to kinetochores. Studies in yeast have shown that binding of MAD1 to MAD2 is important for the checkpoint function of the latter. The interactions between human MAD1 (hsMAD1) and human MAD2 (hsMAD2) have, however, remained poorly characterized. Here we report that two leucine zipper domains (amino acids 501-522 and 557-571) in hsMAD1 are required for its contact with hsMAD2. Interestingly, in several cancer cell lines, we noted the frequent presence of a coding single nucleotide Arg to His polymorphism at codon 558 located within the second leucine zipper of hsMAD1. We found that hsMAD1H558 is less proficient than hsMAD1R558 in binding hsMAD2 and in enforcing mitotic arrest. We also document a first example of loss-of-heterozygosity for a spindle checkpoint gene (at the hsMAD1 558 locus) in a human breast cancer. Based on our findings, it is possible that hsMAD1H558 could be an at-risk polymorphism that contributes to attenuated spindle checkpoint function in human cells.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Fosfoproteínas/química , Proteínas Repressoras/química , Fuso Acromático/fisiologia , Sequência de Aminoácidos , Aneuploidia , Sequência de Bases , Sítios de Ligação , Neoplasias da Mama/genética , Proteínas de Ciclo Celular , Códon , Neoplasias do Colo/genética , Simulação por Computador , Células HeLa , Humanos , Zíper de Leucina , Perda de Heterozigosidade , Proteínas Mad2 , Dados de Sequência Molecular , Proteínas Nucleares , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Polimorfismo de Nucleotídeo Único , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA