Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 10(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34942978

RESUMO

Natural antioxidants have received tremendous attention over the last 3 decades. At the same time, the attitude to free radicals is slowly changing, and their signalling role in adaptation to stress has recently received a lot of attention. Among many different antioxidants in the body, taurine (Tau), a sulphur-containing non-proteinogenic ß-amino acid, is shown to have a special place as an important natural modulator of the antioxidant defence networks. Indeed, Tau is synthesised in most mammals and birds, and the Tau requirement is met by both synthesis and food/feed supply. From the analysis of recent data, it could be concluded that the direct antioxidant effect of Tau due to scavenging free radicals is limited and could be expected only in a few mammalian/avian tissues (e.g., heart and eye) with comparatively high (>15-20 mM) Tau concentrations. The stabilising effects of Tau on mitochondria, a prime site of free radical formation, are characterised and deserve more attention. Tau deficiency has been shown to compromise the electron transport chain in mitochondria and significantly increase free radical production. It seems likely that by maintaining the optimal Tau status of mitochondria, it is possible to control free radical production. Tau's antioxidant protective action is of great importance in various stress conditions in human life, and is related to commercial animal and poultry production. In various in vitro and in vivo toxicological models, Tau showed AO protective effects. The membrane-stabilizing effects, inhibiting effects on ROS-producing enzymes, as well as the indirect AO effects of Tau via redox balance maintenance associated with the modulation of various transcription factors (e.g., Nrf2 and NF-κB) and vitagenes could also contribute to its protective action in stress conditions, and thus deserve more attention.

2.
Front Vet Sci ; 8: 640968, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34041289

RESUMO

Proteins are considered the most expensive nutrients in commercial modern broiler production, and their dietary inclusion at low levels is pivotal to minimize feed costs and reduce nitrogen waste. The quest for an environmentally friendly source of proteins that favor the formulation of low protein diets without compromising broiler health, welfare, and growth performance has become a hotspot in nutrition research. Due to its high protein content, the naturally growing Spirulina microalgae is considered a promising nutrient source. The purpose of the present study was, therefore, to determine the effects of Spirulina supplementation on liver bacterial translocation, hematological profile, and circulating inflammatory and redox markers in broilers fed a low-protein diet. One-day-old Ross 708 male broilers (n = 180) were randomly assigned into one of three experimental treatments: standard diet as a control, low protein diet, and low protein diet supplemented with 100 g/kg of Spirulina. Target molecular markers were measured in the peripheral blood circulation using real-time quantitative PCR. Reducing dietary proteins increased bacterial translocation and systemic inflammation as indicated by proportions of basophils among blood leukocytes. The expression levels of circulating pro-inflammatory cytokines [interleukin (IL)-3, IL-6, IL-4, IL-18, and tumor necrosis factor-α], chemokines (CCL-20), and NOD-like receptor family pyrin domain containing 3 inflammasome were significantly upregulated in birds fed the low protein diet compared with the control. The inclusion of Spirulina reversed these effects, which indicates that Spirulina reduces systemic inflammation- and bacterial translocation-induced by a low protein diet and could be a promising alternative protein source in poultry diets.

3.
Front Vet Sci ; 7: 458, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32851035

RESUMO

Woody breast (WB) myopathy is significantly impacting modern broilers and is imposing a huge economic burden on the poultry industry worldwide. Yet, its etiology is not fully defined. In a previous study, we have shown that hypoxia and the activation of its upstream mediators (AKT/PI3K/mTOR) played a key role in WB myopathy, and supplementation of quantum blue (QB) can help to reduce WB severity via modulation of hypoxia-related pathways. To gain further insights, we undertook here a metabolomics approach to identify key metabolite signatures and outline their most enriched biological functions. Ultra performance liquid chromatography coupled with high resolution mass spectrometry (UPLC-HRMS) identified a total of 108 known metabolites. Of these, mean intensity differences at P < 0.05 were found in 60 metabolites with 42 higher and 18 lower in WB-affected compared to unaffected muscles. Multivariate analysis and Partial Least Squares Discriminant analysis (PLS-DA) scores plot displayed different clusters when comparing metabolites profile from affected and unaffected tissues and from moderate (MOD) and severe (SEV) WB muscles indicating that unique metabolite profiles are present for the WB-affected and unaffected muscles. To gain biologically related molecule networks, a stringent pathway analyses was conducted using IPA knowledge-base. The top 10 canonical pathways generated, using a fold-change -1.5 and 1.5 cutoff, with the 50 differentially abundant-metabolites were purine nucleotide degradation and de novo biosynthesis, sirtuin signaling pathway, citrulline-nitric oxide cycle, salvage pathways of pyrimidine DNA, IL-1 signaling, iNOS, Angiogenesis, PI3K/AKT signaling, and oxidative phosphorylation. The top altered bio-functions in term of molecular and cellular functions in WB-affected tissues included cellular development, cellular growth and proliferation, cellular death and survival, small molecular biochemistry, inflammatory response, free radical scavenging, cell signaling and cell-to-cell interaction, cell cycles, and lipid, carbohydrate, amino acid, and nucleic acid metabolisms. The top disorder functions identified were organismal injury and abnormalities, cancer, skeletal and muscular disorders, connective tissue disorders, and inflammatory diseases. Breast tissues from birds fed with high dose (2,000 FTU) of QB phytase exhibited 22 metabolites with significantly different levels compared to the control group with a clear cluster using PLS-DA analysis. Of these 22 metabolites, 9 were differentially abundant between WB-affected and unaffected muscles. Taken together, this study determined many metabolic signatures and disordered pathways, which could be regarded as new routes for discovering potential mechanisms of WB myopathy.

4.
J Anim Sci ; 98(3)2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32047923

RESUMO

Heat stress (HS) is a financial and physiological burden on the poultry industry and the mitigation of the adverse effects of HS is vital to poultry production sustainability. The purpose of this study was, therefore, to determine the effects of an amino acid-chelated trace mineral supplement on growth performance, stress and inflammatory markers, and meat quality in heat-stressed broilers. One day-old Cobb 500 male broilers (n = 480) were allocated into 12 environmental chambers (24 floor pens) and divided into two groups: one group supplemented with amino acid-chelated trace mineral in drinking water and one control group. On day 28, birds were subjected to chronic heat stress (HS, 2 wk, 35 °C and 20% to 30% RH) or maintained at thermoneutral condition (TN, 24 °C) in a 2 × 2 factorial design. Feed intake (FI), water consumption, and body weight were recorded. At day 42, serum fluorescein isothiocyanate dextran (FITC-D) levels, blood gas, electrolyte, and stress markers were measured. Jejunum samples were collected to measure gene expression of stress, inflammation, and tight junction proteins. The rest of the birds were processed to evaluate carcass traits. HS resulted in an increase in core body temperature, which increased water intake and decreased FI, body weight, and feed efficiency (P < 0.05). HS reduced carcass yield and the weight of all parts (P < 0.05). HS significantly increased levels of circulating corticosterone (CORT), heat shock protein 70 (HSP70), interleukin 18 (IL-18), tumor necrosis factor alpha, C-reactive protein, and nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing 3 expression. HS significantly increased serum FITC-D levels and the expression of HSP70 and IL-18 in the jejunum. Although it did not affect the growth performance, amino acid-chelated trace mineral supplementation reversed the effect of HS by reducing CORT and FITC-D levels and the expression of stress and proinflammatory cytokines in the circulation and the jejunum. However, it upregulated these parameters in birds maintained under TN conditions. Together, these data indicate that the amino acid-chelated trace mineral might alleviate stress and inflammation and improve gut integrity in heat-stressed but not thermoneutral broilers.


Assuntos
Galinhas , Citocinas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Transtornos de Estresse por Calor/veterinária , Doenças das Aves Domésticas/prevenção & controle , Oligoelementos/farmacologia , Aminoácidos/farmacologia , Animais , Quelantes/farmacologia , Citocinas/genética , Suplementos Nutricionais , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/genética , Temperatura Alta , Jejuno/metabolismo , Masculino , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA