Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Clin Microbiol Rev ; : e0021521, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158301

RESUMO

SUMMARYThis guidance presents recommendations for clinical microbiology laboratories for processing respiratory samples from people with cystic fibrosis (pwCF). Appropriate processing of respiratory samples is crucial to detect bacterial and fungal pathogens, guide treatment, monitor the epidemiology of cystic fibrosis (CF) pathogens, and assess therapeutic interventions. Thanks to CF transmembrane conductance regulator modulator therapy, the health of pwCF has improved, but as a result, fewer pwCF spontaneously expectorate sputum. Thus, the collection of sputum samples has decreased, while the collection of other types of respiratory samples such as oropharyngeal and bronchoalveolar lavage samples has increased. To optimize the detection of microorganisms, including Pseudomonas aeruginosa, Staphylococcus aureus, Haemophilus influenzae, and Burkholderia cepacia complex; other less common non-lactose fermenting Gram-negative bacilli, e.g., Stenotrophomonas maltophilia, Inquilinus, Achromobacter, Ralstonia, and Pandoraea species; and yeasts and filamentous fungi, non-selective and selective culture media are recommended for all types of respiratory samples, including samples obtained from pwCF after lung transplantation. There are no consensus recommendations for laboratory practices to detect, characterize, and report small colony variants (SCVs) of S. aureus, although studies are ongoing to address the potential clinical impact of SCVs. Accurate identification of less common Gram-negative bacilli, e.g., S. maltophilia, Inquilinus, Achromobacter, Ralstonia, and Pandoraea species, as well as yeasts and filamentous fungi, is recommended to understand their epidemiology and clinical importance in pwCF. However, conventional biochemical tests and automated platforms may not accurately identify CF pathogens. MALDI-TOF MS provides excellent genus-level identification, but databases may lack representation of CF pathogens to the species-level. Thus, DNA sequence analysis should be routinely available to laboratories for selected clinical circumstances. Antimicrobial susceptibility testing (AST) is not recommended for every routine surveillance culture obtained from pwCF, although selective AST may be helpful, e.g., for unusual pathogens or exacerbations unresponsive to initial therapy. While this guidance reflects current care paradigms for pwCF, recommendations will continue to evolve as CF research expands the evidence base for laboratory practices.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36294279

RESUMO

Pseudomonas aeruginosa (Pa) is the predominant bacterial pathogen in people with cystic fibrosis (CF) and can be transmitted by airborne droplet nuclei. Little is known about the ability of ultraviolet band C (UV-C) irradiation to inactivate Pa at doses and conditions relevant to implementation in indoor clinical settings. We assessed the effectiveness of UV-C (265 nm) at up to seven doses on the decay of nebulized Pa aerosols (clonal Pa strain) under a range of experimental conditions. Experiments were done in a 400 L rotating sampling drum. A six-stage Andersen cascade impactor was used to collect aerosols inside the drum and the particle size distribution was characterized by an optical particle counter. UV-C effectiveness was characterized relative to control tests (no UV-C) of the natural decay of Pa. We performed 112 tests in total across all experimental conditions. The addition of UV-C significantly increased the inactivation of Pa compared with natural decay alone at all but one of the UV-C doses assessed. UV-C doses from 246-1968 µW s/cm2 had an estimated effectiveness of approximately 50-90% for airborne Pa. The effectiveness of doses ≥984 µW s/cm2 were not significantly different from each other (p-values: 0.365 to ~1), consistent with a flattening of effectiveness at higher doses. Modelling showed that delivering the highest dose associated with significant improvement in effectiveness (984 µW s/cm2) to the upper air of three clinical rooms would lead to lower room doses from 37-49% of the 8 h occupational limit. Our results suggest that UV-C can expedite the inactivation of nebulized airborne Pa under controlled conditions, at levels that can be delivered safely in occupied settings. These findings need corroboration, but UV-C may have potential applications in locations where people with CF congregate, coupled with other indoor and administrative infection control measures.


Assuntos
Fibrose Cística , Pseudomonas aeruginosa , Humanos , Desinfecção/métodos , Aerossóis e Gotículas Respiratórios , Raios Ultravioleta , Fibrose Cística/microbiologia
3.
J Cyst Fibros ; 21(1): e35-e43, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33775602

RESUMO

BACKGROUND: Antimicrobial resistance in cystic fibrosis (CF) Pseudomonas aeruginosa airway infection is complex and often attributed to chromosomal mutations. How these mutations emerge in specific strains or whether particular gene mutations are clinically informative is unclear. This study focused on oprD, which encodes an outer membrane porin associated with carbapenem resistance when it is downregulated or inactivated. AIM: Determine how mutations in oprD emerge in two prevalent Australian shared CF strains of P. aeruginosa and their clinical relevance. METHODS: The two most common shared CF strains in Queensland were investigated using whole genome sequencing and their oprD sequences and antimicrobial resistance phenotypes were established. P. aeruginosa mutants with the most common oprD variants were constructed and characterised. Clinical variables were compared between people with or without evidence of infection with strains harbouring these variants. RESULTS: Frequently found nonsense mutations arising from a 1-base pair substitution in oprD evolved independently in three sub-lineages, and are likely major contributors to the reduced carbapenem susceptibility observed in the clinical isolates. Lower baseline FEV1 %predicted was identified as a risk factor for infection with a sub-lineage (odds ratio=0.97; 95% confidence interval 0.96-0.99; p<0.001). However, acquiring these sub-lineage strains did not confer an accelerated decline in FEV1 nor increase the risk of death/lung transplantation. CONCLUSIONS: Sub-lineages harbouring specific mutations in oprD have emerged and persisted in the shared strain populations. Infection with the sub-lineages was more likely in people with lower lung function, but this was not predictive of a worse clinical trajectory.


Assuntos
Carbapenêmicos/uso terapêutico , Fibrose Cística/microbiologia , Porinas/genética , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/genética , Adolescente , Adulto , Austrália , Farmacorresistência Bacteriana/genética , Feminino , Humanos , Masculino , Mutação , Pseudomonas aeruginosa , Sequenciamento Completo do Genoma , Adulto Jovem
4.
Front Microbiol ; 11: 556706, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101229

RESUMO

Bacteriophages are important in bacterial ecology and evolution. Pseudomonas aeruginosa is the most prevalent bacterial pathogen in chronic bronchopulmonary infection in cystic fibrosis (CF). In this study, we used bioinformatics, microbiological and microscopy techniques to analyze the bacteriophages present in 24 P. aeruginosa isolates belonging to the international CF clone (ST274-CC274). Interestingly, we detected the presence of five members of the Inoviridae family of prophages (Pf1, Pf4, Pf5, Pf6, Pf7), which have previously been observed in P. aeruginosa. In addition, we identified a new filamentous prophage, designated Pf8, in the P. aeruginosa AUS411.500 isolate belonging to the international CF clone. We detected only one prophage, never previously described, from the family Siphoviridiae (with 66 proteins and displaying homology with PHAGE_Pseudo_phi297_NC_016762). This prophage was isolated from the P. aeruginosa AUS531 isolate carrying a new gene which is implicated in the phage infection ability, named Bacteriophage Control Infection (bci). We characterized the role of the Bci protein in bacteriophage infection and in regulating the host Quorum Sensing (QS) system, motility and biofilm and pyocyanin production in the P. aeruginosa isogenic mutant AUS531Δbci isolate. The findings may be relevant for the identification of targets in the development of new strategies to control P. aeruginosa infections, particularly in CF patients.

5.
Antimicrob Agents Chemother ; 64(11)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32816734

RESUMO

Achromobacter is a genus of nonfermenting Gram-negative bacteria under order Burkholderiales Although primarily isolated from respiratory tract of people with cystic fibrosis, Achromobacter spp. can cause a broad range of infections in hosts with other underlying conditions. Their rare occurrence and ever-changing taxonomy hinder defining their clinical features, risk factors for acquisition and adverse outcomes, and optimal treatment. Achromobacter spp. are intrinsically resistant to several antibiotics (e.g., most cephalosporins, aztreonam, and aminoglycosides), and are increasingly acquiring resistance to carbapenems. Carbapenem resistance is mainly caused by multidrug efflux pumps and metallo-ß-lactamases, which are not expected to be overcome by new ß-lactamase inhibitors. Among the other new antibiotics, cefiderocol, and eravacycline were used as salvage therapy for a limited number of patients with Achromobacter infections. In this article, we aim to give an overview of the antimicrobial resistance in Achromobacter species, highlighting the possible place of new antibiotics in their treatment.


Assuntos
Achromobacter , Infecções por Bactérias Gram-Negativas , Achromobacter/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Humanos
6.
Microb Genom ; 6(7)2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32667877

RESUMO

Several members of the Gram-negative environmental bacterial genus Achromobacter are associated with serious infections, with Achromobacter xylosoxidans being the most common. Despite their pathogenic potential, little is understood about these intrinsically drug-resistant bacteria and their role in disease, leading to suboptimal diagnosis and management. Here, we performed comparative genomics for 158 Achromobacter spp. genomes to robustly identify species boundaries, reassign several incorrectly speciated taxa and identify genetic sequences specific for the genus Achromobacter and for A. xylosoxidans. Next, we developed a Black Hole Quencher probe-based duplex real-time PCR assay, Ac-Ax, for the rapid and simultaneous detection of Achromobacter spp. and A. xylosoxidans from both purified colonies and polymicrobial clinical specimens. Ac-Ax was tested on 119 isolates identified as Achromobacter spp. using phenotypic or genotypic methods. In comparison to these routine diagnostic methods, the duplex assay showed superior identification of Achromobacter spp. and A. xylosoxidans, with five Achromobacter isolates failing to amplify with Ac-Ax confirmed to be different genera according to 16S rRNA gene sequencing. Ac-Ax quantified both Achromobacter spp. and A. xylosoxidans down to ~110 genome equivalents and detected down to ~12 and ~1 genome equivalent(s), respectively. Extensive in silico analysis, and laboratory testing of 34 non-Achromobacter isolates and 38 adult cystic fibrosis sputa, confirmed duplex assay specificity and sensitivity. We demonstrate that the Ac-Ax duplex assay provides a robust, sensitive and cost-effective method for the simultaneous detection of all Achromobacter spp. and A. xylosoxidans and will facilitate the rapid and accurate diagnosis of this important group of pathogens.


Assuntos
Achromobacter/classificação , Fibrose Cística/microbiologia , Genômica/métodos , Infecções por Bactérias Gram-Negativas/diagnóstico , Achromobacter/genética , Achromobacter/isolamento & purificação , Achromobacter denitrificans/classificação , Achromobacter denitrificans/genética , Achromobacter denitrificans/isolamento & purificação , Diagnóstico Precoce , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Tipagem de Sequências Multilocus , Fenótipo , Filogenia , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Escarro
7.
Microb Genom ; 5(10)2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31617838

RESUMO

Stenotrophomonas maltophilia is emerging as an important cause of disease in nosocomial and community-acquired settings, including bloodstream, wound and catheter-associated infections. Cystic fibrosis (CF) airways also provide optimal growth conditions for various opportunistic pathogens with high antibiotic tolerance, including S. maltophilia. Currently, there is no rapid, cost-effective and accurate molecular method for detecting this potentially life-threatening pathogen, particularly in polymicrobial specimens, suggesting that its true prevalence is underestimated. Here, we used large-scale comparative genomics to identify a specific genetic target for S. maltophilia, with subsequent development and validation of a real-time PCR assay for its detection. Analysis of 167 Stenotrophomonas spp. genomes identified a conserved 4 kb region in S. maltophilia, which was targeted for Black Hole Quencher assay design. Our assay yielded the positive detection of 89 of 89 (100%) clinical S. maltophilia strains, and no amplification of 23 non-S. maltophilia clinical isolates. S. maltophilia was detected in 10 of 16 CF sputa, demonstrating the assay's utility for direct detection in respiratory specimens. The assay demonstrated good sensitivity, with limits of detection and quantitation on pure culture of ~10 and ~100 genome equivalents, respectively. Our assay provides a highly specific, sensitive and cost-effective method for the accurate identification of S. maltophilia, and will improve the diagnosis and treatment of this under-recognized pathogen by enabling its accurate and rapid detection from polymicrobial clinical and environmental samples.


Assuntos
Infecção Hospitalar/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Bactérias Gram-Negativas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Stenotrophomonas maltophilia , Humanos , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/isolamento & purificação
8.
Clin Infect Dis ; 69(10): 1812-1816, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31056660

RESUMO

Median cystic fibrosis (CF) survival has increased dramatically over time due to several factors, including greater availability and use of antimicrobial therapies. During the progression of CF lung disease, however, the emergence of multidrug antimicrobial resistance can limit treatment effectiveness, threatening patient longevity. Current planktonic-based antimicrobial susceptibility testing lacks the ability to predict clinical response to antimicrobial treatment of chronic CF lung infections. There are numerous reasons for these limitations including bacterial phenotypic and genotypic diversity, polymicrobial interactions, and impaired antibiotic efficacy within the CF lung environment. The parallels to other chronic diseases such as non-CF bronchiectasis are discussed as well as research priorities for moving forward.


Assuntos
Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fibrose Cística/tratamento farmacológico , Infecções por Pseudomonas/tratamento farmacológico , Doença Crônica/tratamento farmacológico , Fibrose Cística/microbiologia , Humanos , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/microbiologia , Escarro/microbiologia
9.
Respirology ; 24(10): 980-987, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30919511

RESUMO

BACKGROUND AND OBJECTIVE: Aerosol transmission of Pseudomonas aeruginosa has been suggested as a possible mode of respiratory infection spread in patients with cystic fibrosis (CF); however, whether this occurs in other suppurative lung diseases is unknown. Therefore, we aimed to determine if (i) patients with bronchiectasis (unrelated to CF) or chronic obstructive pulmonary disease (COPD) can aerosolize P. aeruginosa during coughing and (ii) if genetically indistinguishable (shared) P. aeruginosa strains are present in these disease cohorts. METHODS: People with bronchiectasis or COPD and P. aeruginosa respiratory infection were recruited for two studies. Aerosol study: Participants (n = 20) underwent cough testing using validated cough rigs to determine the survival of P. aeruginosa aerosols in the air over distance and duration. Genotyping study: P. aeruginosa sputum isolates (n = 95) were genotyped using the iPLEX20SNP platform, with a subset subjected to the enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) assay to ascertain their genetic relatedness. RESULTS: Aerosol study: Overall, 7 of 20 (35%) participants released P. aeruginosa cough aerosols during at least one of the cough aerosol tests. These cough aerosols remained viable for 4 m from the source and for 15 min after coughing. The mean total aerosol count of P. aeruginosa at 2 m was two colony-forming units. Typing study: No shared P. aeruginosa strains were identified. CONCLUSION: Low viable count of P. aeruginosa cough aerosols and a lack of shared P. aeruginosa strains observed suggest that aerosol transmission of P. aeruginosa is an unlikely mode of respiratory infection spread in patients with bronchiectasis and COPD.


Assuntos
Aerossóis , Bronquiectasia/complicações , Tosse/microbiologia , Infecções por Pseudomonas/complicações , Pseudomonas aeruginosa , Doença Pulmonar Obstrutiva Crônica/complicações , Idoso , Contagem de Colônia Microbiana , Tosse/etiologia , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Escarro/microbiologia
12.
Thorax ; 74(1): 87-90, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29627800

RESUMO

The airborne route is a potential pathway in the person-to-person transmission of bacterial strains among cystic fibrosis (CF) populations. In this cross-sectional study, we investigate the physical properties and survival of common non-Pseudomonas aeruginosa CF pathogens generated during coughing. We conclude that Gram-negative bacteria and Staphylococcus aureus are aerosolised during coughing, can travel up to 4 m and remain viable within droplet nuclei for up to 45 min. These results suggest that airborne person-to-person transmission is plausible for the CF pathogens we measured.


Assuntos
Fibrose Cística/microbiologia , Infecções por Bactérias Gram-Negativas/transmissão , Infecções Estafilocócicas/transmissão , Staphylococcus aureus/crescimento & desenvolvimento , Achromobacter/isolamento & purificação , Adulto , Aerossóis , Burkholderia/isolamento & purificação , Contagem de Colônia Microbiana , Tosse/microbiologia , Estudos Transversais , Feminino , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Masculino , Infecções por Pseudomonas/transmissão , Pseudomonas aeruginosa/crescimento & desenvolvimento , Escarro/microbiologia , Staphylococcus aureus/isolamento & purificação , Stenotrophomonas maltophilia/isolamento & purificação , Fatores de Tempo , Adulto Jovem
13.
Artigo em Inglês | MEDLINE | ID: mdl-30201819

RESUMO

The lungs of individuals with cystic fibrosis (CF) become chronically infected with Pseudomonas aeruginosa that is difficult to eradicate by antibiotic treatment. Two key P. aeruginosa antibiotic resistance mechanisms are the AmpC ß-lactamase that degrades ß-lactam antibiotics and MexXYOprM, a three-protein efflux pump that expels aminoglycoside antibiotics from the bacterial cells. Levels of antibiotic resistance gene expression are likely to be a key factor in antibiotic resistance but have not been determined during infection. The aims of this research were to investigate the expression of the ampC and mexX genes during infection in patients with CF and in bacteria isolated from the same patients and grown under laboratory conditions. P. aeruginosa isolates from 36 CF patients were grown in laboratory culture and gene expression measured by reverse transcription-quantitative PCR (RT-qPCR). The expression of ampC varied over 20,000-fold and that of mexX over 2,000-fold between isolates. The median expression levels of both genes were increased by the presence of subinhibitory concentrations of antibiotics. To measure P. aeruginosa gene expression during infection, we carried out RT-qPCR using RNA extracted from fresh sputum samples obtained from 31 patients. The expression of ampC varied over 4,000-fold, while mexX expression varied over 100-fold, between patients. Despite these wide variations, median levels of expression of ampC in bacteria in sputum were similar to those in laboratory-grown bacteria. The expression of mexX was higher in sputum than in laboratory-grown bacteria. Overall, our data demonstrate that genes that contribute to antibiotic resistance can be highly expressed in patients, but there is extensive isolate-to-isolate and patient-to-patient variation.


Assuntos
Fibrose Cística/microbiologia , Resistência Microbiana a Medicamentos/genética , Pseudomonas aeruginosa/genética , Adolescente , Adulto , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Criança , Fibrose Cística/tratamento farmacológico , Feminino , Humanos , Masculino , Testes de Sensibilidade Microbiana/métodos , Pessoa de Meia-Idade , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Escarro/microbiologia , Adulto Jovem , beta-Lactamases/genética
14.
J Cyst Fibros ; 17(6): 696-704, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30266518

RESUMO

Antimicrobial resistance (AMR) can present significant challenges in the treatment of cystic fibrosis (CF) lung infections. In CF and other chronic diseases, AMR has a different profile and clinical consequences compared to acute infections and this requires different diagnostic and treatment approaches. This review defines AMR, explains how it occurs, describes the methods used to measure AMR as well as their limitations, and concludes with future directions for research and development in the area of AMR in CF.


Assuntos
Antibacterianos/farmacologia , Fibrose Cística , Farmacorresistência Bacteriana , Fibrose Cística/microbiologia , Fibrose Cística/terapia , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/fisiologia , Humanos , Técnicas Microbiológicas/métodos
15.
BMC Genomics ; 19(1): 644, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30165811

RESUMO

BACKGROUND: Chronic lung infections caused by Pseudomonas aeruginosa are a significant cause of morbidity and mortality in people with cystic fibrosis (CF). Shared P. aeruginosa strains, that can be transmitted between patients, are of concern and in Australia the AUST-02 shared strain is predominant in individuals attending CF centres in Queensland and Western Australia. M3L7 is a multidrug resistant sub-type of AUST-02 that was recently identified in a Queensland CF centre and was shown to be associated with poorer clinical outcomes. The main aim of this study was to resolve the relationship of the emergent M3L7 sub-type within the AUST-02 group of strains using whole genome sequencing. RESULTS: A whole genome core phylogeny of 63 isolates indicated that M3L7 is a monophyletic sub-lineage within the context of the broader AUST-02 group. Relatively short branch lengths connected all of the M3L7 isolates. A phylogeny based on nucleotide polymorphisms present across the genome showed that the chronological estimation of the most recent common ancestor was around 2001 (± 3 years). SNP differences between sequential non-hypermutator M3L7 isolates collected 3-4 years apart from five patients suggested both continuous infection of the same strain and cross-infection of some M3L7 variants between patients. The majority of polymorphisms that were characteristic of M3L7 (i.e. acquired after divergence from all other AUST-02 isolates sequenced) were found to produce non-synonymous mutations in virulence and antibiotic resistance genes. CONCLUSIONS: M3L7 has recently diverged from a common ancestor, indicating descent from a single carrier at a CF treatment centre in Australia. Both adaptation to the lung and transmission of M3L7 between adults attending this centre may have contributed to its rapid dissemination. Further genomic investigations are required on multiple intra-sample isolates of this sub-type to decipher potential mechanisms which facilitates its epidemiological success.


Assuntos
Fibrose Cística/complicações , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/transmissão , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/isolamento & purificação , Adulto , Fibrose Cística/microbiologia , Variação Genética , Genótipo , Humanos , Filogenia , Pseudomonas aeruginosa/genética , Sequenciamento Completo do Genoma
16.
Microb Genom ; 4(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29989529

RESUMO

The melioidosis bacterium, Burkholderia pseudomallei, is increasingly being recognised as a pathogen in patients with cystic fibrosis (CF). We have recently catalogued genome-wide variation of paired, isogenic B. pseudomallei isolates from seven Australasian CF cases, which were collected between 4 and 55 months apart. Here, we extend this investigation by documenting the transcriptomic changes in B. pseudomallei in five cases. Following growth in an artificial CF sputum medium, four of the five paired isolates exhibited significant differential gene expression (DE) that affected between 32 and 792 genes. The greatest number of DE events was observed between the strains from patient CF9, consistent with the hypermutator status of the latter strain, which is deficient in the DNA mismatch repair protein MutS. Two patient isolates harboured duplications that concomitantly increased expression of the ß-lactamase-encoding gene penA, and a 35 kb deletion in another abolished expression of 29 genes. Convergent expression profiles in the chronically-adapted isolates identified two significantly downregulated and 17 significantly upregulated loci, including the resistance-nodulation-division (RND) efflux pump BpeEF-OprC, the quorum-sensing hhqABCDE operon, and a cyanide- and pyocyanin-insensitive cytochrome bd quinol oxidase. These convergent pathoadaptations lead to increased expression of pathways that may suppress competing bacterial and fungal pathogens, and that enhance survival in oxygen-restricted environments, the latter of which may render conventional antibiotics less effective in vivo. Treating chronically adapted B. pseudomallei infections with antibiotics designed to target anaerobic infections, such as the nitroimidazole class of antibiotics, may significantly improve pathogen eradication attempts by exploiting this Achilles heel.


Assuntos
Proteínas de Bactérias/biossíntese , Burkholderia pseudomallei/metabolismo , Fibrose Cística/microbiologia , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/isolamento & purificação , Humanos , Masculino , Melioidose/microbiologia
18.
J Clin Microbiol ; 56(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29875191

RESUMO

Infection is a common complication of cystic fibrosis (CF) airway disease. Current treatment approaches include early intervention with the intent to eradicate pathogens in the hope of delaying the development of chronic infection and the chronic use of aerosolized antibiotics to suppress infection. The use of molecules that help restore CFTR (cystic fibrosis transmembrane conductance regulator) function, modulate pulmonary inflammation, or improve pulmonary clearance may also influence the microbial communities in the airways. As the pipeline of these new entities continues to expand, it is important to define when key pathogens are eradicated from the lungs of CF patients and, equally important, when new pathogens might emerge as a result of these novel therapies.


Assuntos
Antibacterianos/uso terapêutico , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Antibacterianos/farmacologia , Bactérias/crescimento & desenvolvimento , Doença Crônica/prevenção & controle , Fibrose Cística/complicações , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Humanos , Pulmão/microbiologia , Pulmão/patologia , Infecções Respiratórias/complicações , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/microbiologia
19.
Am J Respir Crit Care Med ; 197(3): 348-355, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28930641

RESUMO

RATIONALE: People with cystic fibrosis (CF) generate Pseudomonas aeruginosa in droplet nuclei during coughing. The use of surgical masks has been recommended in healthcare settings to minimize pathogen transmission between patients with CF. OBJECTIVES: To determine if face masks and cough etiquette reduce viable P. aeruginosa aerosolized during coughing. METHODS: Twenty-five adults with CF and chronic P. aeruginosa infection were recruited. Participants performed six talking and coughing maneuvers, with or without face masks (surgical and N95) and hand covering the mouth when coughing (cough etiquette) in an aerosol-sampling device. An Andersen Cascade Impactor was used to sample the aerosol at 2 meters from each participant. Quantitative sputum and aerosol bacterial cultures were performed, and participants rated the mask comfort levels during the cough maneuvers. MEASUREMENTS AND MAIN RESULTS: During uncovered coughing (reference maneuver), 19 of 25 (76%) participants produced aerosols containing P. aeruginosa, with a positive correlation found between sputum P. aeruginosa concentration (measured as cfu/ml) and aerosol P. aeruginosa colony-forming units. There was a reduction in aerosol P. aeruginosa load during coughing with a surgical mask, coughing with an N95 mask, and cough etiquette compared with uncovered coughing (P < 0.001). A similar reduction in total colony-forming units was observed for both masks during coughing; yet, participants rated the surgical masks as more comfortable (P = 0.013). Cough etiquette provided approximately half the reduction of viable aerosols of the mask interventions during voluntary coughing. Talking was a low viable aerosol-producing activity. CONCLUSIONS: Face masks reduce cough-generated P. aeruginosa aerosols, with the surgical mask providing enhanced comfort. Cough etiquette was less effective at reducing viable aerosols.


Assuntos
Tosse/microbiologia , Fibrose Cística/microbiologia , Exposição por Inalação/prevenção & controle , Máscaras , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa/isolamento & purificação , Adulto , Austrália , Estudos de Coortes , Transmissão de Doença Infecciosa/prevenção & controle , Feminino , Humanos , Masculino , Infecções por Pseudomonas/transmissão , Valores de Referência
20.
BMC Pulm Med ; 17(1): 138, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29096618

RESUMO

BACKGROUND: Pulmonary exacerbations in cystic fibrosis (CF) remain poorly understood and treatment is usually targeted at Pseudomonas aeruginosa. Within Australia a predominant shared P. aeruginosa strain (AUST-02) is associated with greater treatment needs. This single centre study assessed temporal shared strain population dynamics during and after antibiotic treatment of exacerbations. METHODS: Sputum was collected from 12 adult patients with a history of chronic AUST-02 infection at four time-points during and after treatment of an exacerbation. Forty-eight P. aeruginosa isolates within each sample underwent AUST-02 allele-specific PCR and SNP-based strain genotyping. RESULTS: Various commonly shared Australian strains (AUST-01, 0.1%; AUST-02, 54.3%; AUST-06, 36.6%; AUST-07, 4.6%; AUST-11, 4.3%) and two unique strains (0.1%) were identified from 45 sputum samples (2160 isolates). Based on within-patient relative abundance of strains, a "single-strain infection" (n = 7) or "mixed-strain infection" (n = 5) was assigned to each patient. A significant temporal variation in the P. aeruginosa population composition was found for those with mixed-strain infection (P < 0.001). Patients with mixed-strain infections had more long-term treatment requirements than those with single-strain infection. Moreover, despite both groups having similar lung function at study entry, patients with single-strain infection had greater improvement in FEV1% predicted following their exacerbation treatment (P = 0.02). CONCLUSION: Pulmonary exacerbations may reveal multiple, unrelated P. aeruginosa strains whose relative abundance with one another may change rapidly, in a sustained and unpredictable manner.


Assuntos
Antibacterianos/uso terapêutico , Fibrose Cística/complicações , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/microbiologia , Adulto , Progressão da Doença , Feminino , Volume Expiratório Forçado , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Dinâmica Populacional , Infecções por Pseudomonas/fisiopatologia , Pseudomonas aeruginosa/isolamento & purificação , Infecções Respiratórias/fisiopatologia , Escarro/microbiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA