Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Nano Mater ; 6(9): 7668-7678, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37304254

RESUMO

The enzymatic production of hydrogen sulfide (H2S) from cysteine in various metabolic processes has been exploited as an intrinsically "green" and sustainable mode for the aqueous biomineralization of functional metal sulfide quantum dots (QDs). Yet, the reliance on proteinaceous enzymes tends to limit the efficacy of the synthesis to physiological temperature and pH, with implications for QD functionality, stability, and tunability (i.e., particle size and composition). Inspired by a secondary non-enzymatic biochemical cycle that is responsible for basal H2S production in mammalian systems, we establish how iron(III)- and vitamin B6 (pyridoxal phosphate, PLP)-catalyzed decomposition of cysteine can be harnessed for the aqueous synthesis of size-tunable QDs, demonstrated here for CdS, within an expanded temperature, pH, and compositional space. Rates of H2S production by this non-enzymatic biochemical process are sufficient for the nucleation and growth of CdS QDs within buffered solutions of cadmium acetate. Ultimately, the simplicity, demonstrated robustness, and tunability of the previously unexploited H2S-producing biochemical cycle help establish its promise as a versatile platform for the benign, sustainable synthesis of an even wider range of functional metal sulfide nanomaterials for optoelectronic applications.

2.
JCI Insight ; 7(21)2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36173679

RESUMO

Immune-related adverse events represent a major hurdle to the success of immunotherapy. The immunological mechanisms underlying their development and relation to antitumor responses are poorly understood. By examining both systemic and tissue-specific immune changes induced by combination anti-CTLA-4 and anti-PD-1 immunotherapy, we found distinct repertoire changes in patients who developed moderate-severe colitis, irrespective of their antitumor response to therapy. The proportion of circulating monocytes were significantly increased at baseline in patients who subsequently developed colitis compared with patients who did not develop colitis, and biopsies from patients with colitis showed monocytic infiltration of both endoscopically and histopathologically normal and inflamed regions of colon. The magnitude of systemic expansion of T cells following commencement of immunotherapy was also greater in patients who developed colitis. Importantly, we show expansion of specific T cell subsets within inflamed regions of the colon, including tissue-resident memory CD8+ T cells and Th1 CD4+ T cells in patients who developed colitis. Our data also suggest that CD8+ T cell expansion was locally induced, while Th1 cell expansion was systemic. Together, our data show that exaggerated innate and T cell responses to combination immunotherapy synergize to propel colitis in susceptible patients.


Assuntos
Colite , Receptor de Morte Celular Programada 1 , Humanos , Linfócitos T CD8-Positivos , Imunoterapia/efeitos adversos , Colite/induzido quimicamente , Colite/terapia , Fatores Imunológicos , Imunidade Inata
3.
J Immunother Cancer ; 8(2)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33234603

RESUMO

BACKGROUND: Colitis is one of the common immune-related adverse events that leads to morbidity and treatment discontinuation of immunotherapy. The clinical presentation, endoscopic and histopathological features and best management of this toxicity are not well defined. PATIENTS AND METHODS: Patients with metastatic melanoma who received immunotherapy (programmed cell death protein 1 (PD1) antibodies, alone or in combination with a cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) antibody (PD1 +CTLA-4)) and who developed clinically significant colitis (requiring systemic corticosteroids) were identified retrospectively from two academic centers. Clinical data were collected for all patients; endoscopic and histopathological data were examined in a subset. RESULTS: From May 2013 to May 2019, 118/1507 (7.8%) patients developed significant colitis; 80/553 (14.5%) after PD1+CTLA-4, 35/1000 (3.5%) PD1 alone, and three patients after Ipilimumab (IPI) alone. Combination therapy-induced colitis was more frequent (14.5% vs 3.5% in PD1 alone, p=<0.0001), had an earlier onset (6.3 weeks vs 25.7 weeks, p=<0.001), was more severe (grade 3/4 69% vs 31%, p=<0.001), and are more likely to require higher doses of steroids (91% vs 74%, p=0.01) than PD1 colitis. Among all patients treated with steroids (N=114), 54 (47%) responded and required no further therapy (steroid sensitive), 47 patients (41%) responded to infliximab (infliximab sensitive), and 13 (11%) were infliximab refractory and needed further immunosuppressive drugs. Infliximab-refractory patients all had onset within 4 weeks of immunotherapy commencement and were more likely to have an underlying autoimmune disease, have higher grade colitis, and require longer immunosuppression, yet had similar response and survival than other patients with colitis. Of 43 (37%) patients re-resumed treatment with PD1 monotherapy after colitis resolution, 16 (37%) of whom developed recurrent colitis. Endoscopic and histopathologic data were available for 64 patients. Most had left-sided colitis, with an increase in chronic inflammatory cells and neutrophils within the lamina propria, an increase in neutrophils in the surface epithelium, without increased lymphocytes or increased eosinophils. Infliximab-refractory colitis had a trend towards more confluent pancolitis with edema, erythema, ulceration, and absent vascularity with neutrophilic infiltration and erosion. CONCLUSION: Clinically significant colitis varies in presentation, response to immunosuppression, and endoscopic/histologic features depending on the immunotherapy type. Infliximab-refractory colitis occurs early, is often high grade, and has adverse endoscopic and histopathologic features.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Colite/tratamento farmacológico , Imunoterapia/métodos , Ipilimumab/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos Imunológicos/farmacologia , Feminino , Humanos , Ipilimumab/farmacologia , Masculino , Pessoa de Meia-Idade
4.
ACS Appl Mater Interfaces ; 12(38): 42773-42780, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32865390

RESUMO

Nanocomposite photocatalysts offer a promising route to efficient and clean hydrogen production. However, the multistep, high-temperature, solvent-based syntheses typically utilized to prepare these photocatalysts can limit their scalability and sustainability. Biosynthetic routes to produce functional nanomaterials occur at room temperature and in aqueous conditions, but typically do not produce high-performance materials. We have developed a method to produce a highly efficient hydrogen evolution photocatalyst consisting of CdS quantum dots (QDs) supported on reduced graphene oxide (rGO) via enzyme-based syntheses combined with tuned ligand exchange-mediated self-assembly. All preparation steps are carried out in an aqueous environment at ambient temperature. Size-controlled CdS QDs and rGO are prepared through enzyme-mediated turnover of l-cysteine to HS- in aqueous solutions of Cd-acetate and graphene oxide, respectively. Exchange of cysteamine for the native l-cysteine ligand capping the CdS QDs drives self-assembly of the now positively charged cysteamine-capped CdS (CdS/CA) onto negatively charged rGO. The use of this short linker molecule additionally enables efficient charge transfer from CdS to rGO, increasing exciton lifetime and, subsequently, photocatalytic activity. The visible-light hydrogen evolution rate of the resulting CdS/CA/rGO photocatalyst is 3300 µmol h-1 g-1. This represents, to our knowledge, one of the highest reported rates for a CdS/rGO nanocomposite photocatalyst, irrespective of the synthesis method.

5.
ACS Appl Mater Interfaces ; 11(49): 45656-45664, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31730749

RESUMO

CuZnSnS (CZTS) quantum dots (QDs) have potential application in quantum dot sensitized solar cells (QDSSCs); however, traditional synthesis approaches typically require elevated temperatures, expensive precursors, and organic solvents that can hinder large-scale application. Herein we develop and utilize an enzymatic, aqueous-phase, ambient temperature route to prepare CZTS nanocrystals with good compositional control. Nanoparticle synthesis occurs in a minimal buffered solution containing only the enzyme, metal chloride and acetate salts, and l-cysteine as a capping agent and sulfur source. Beyond isolated nanocrystal synthesis, we further demonstrate biomineralization of these particles within a preformed mesoporous TiO2 anode template where the formed nanocrystals bind to the TiO2 surface. This in situ biomineralization approach facilitates enhanced distribution of the nanocrystals in the anode and, through this, enhanced QDSSC performance.

6.
Nanoscale ; 10(44): 20785-20795, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30402624

RESUMO

Traditional quantum dot synthesis techniques rely on the separation of nucleation and growth to control nanocrystal size. However, the same goal can be achieved through slow and continuous introduction of reactive precursors to keep the growth mechanism in the size focusing regime throughout synthesis. In this work, we demonstrate the efficacy of this approach within the framework of functional material biomineralization where, despite simultaneous nucleation and growth of particles, this growth mechanism enables size-controlled nanocrystal synthesis. Herein, the single enzyme cystathionine γ-lyase (CSE) is utilized to biomineralize CdS nanocrystals via the slow, but continuous turnover of the amino acid l-cysteine to produce H2S. Nanocrystal nucleation and growth theories confirm that consistent addition of monomers will result in a high supersaturation term, driving the nanocrystal growth mechanism into the size focusing regime. We further confirm this theory by mimicking biomineralization via chemical routes and demonstrate the influence of varying supersaturation, to further control the average nanocrystal size. Finally, altering the chelation strength of the capping agent l-cysteine is found to play a key role in balancing nanocrystal growth in solution and long-term stability.

7.
Gut Pathog ; 10: 44, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30337963

RESUMO

BACKGROUND: Reduced intestinal microbial diversity and bacterial imbalance (dysbiosis) are seen in studies of Crohn's disease. As it is difficult to obtain biopsy samples before disease presentation, the earliest mucosal lesions in Crohn's disease, aphthous ulcers, present the best chance at assessing microbial communities at the onset of disease or a new flare. The aim of our study was to compare the microbial communities of aphthous ulcers and adjacent normal mucosa from patients with Crohn's disease with normal mucosa from controls. RESULTS: We did not observe bacterial imbalance or reduced alpha diversity in Crohn's disease aphthous ulcers and adjacent mucosa, relative to control biopsies. Bacteroides were common to all Crohn's disease and control samples, and there were no bacterial taxa unique to aphthous ulcers. The relative abundance of Faecalibacterium was not reduced in aphthous ulcers relative to control mucosa, and was not more likely to be detected in control samples. CONCLUSIONS: In contrast to well-documented changes seen in late-stage Crohn's disease, microbial communities of aphthous ulcers do not display evidence of bacterial imbalance or reduced diversity. Our data suggest that dysbiosis occurs during active disease, and improves when patients are in remission.

8.
Angew Chem Int Ed Engl ; 56(50): 16037-16041, 2017 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-29034566

RESUMO

Gold (Au) on ceria-zirconia is one of the most active catalysts for the low-temperature water-gas shift reaction (LTS), a key stage of upgrading H2 reformate streams for fuel cells. However, this catalyst rapidly deactivates on-stream and the deactivation mechanism remains unclear. Using stop-start scanning transmission electron microscopy to follow the exact same area of the sample at different stages of the LTS reaction, as well as complementary X-ray photoelectron spectroscopy, we observed the activation and deactivation of the catalyst at various stages. During the heating of the catalyst to reaction temperature, we observed the formation of small Au nanoparticles (NPs; 1-2 nm) from subnanometer Au species. These NPs were then seen to agglomerate further over 48 h on-stream, and most rapidly in the first 5 h when the highest rate of deactivation was observed. These findings suggest that the primary deactivation process consists of the loss of active sites through the agglomeration and possible dewetting of Au NPs.

9.
Chem Commun (Camb) ; 53(70): 9761-9764, 2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28813041

RESUMO

The addition of Re to Ni on TiO2 yields efficient catalysts for the hydrogenation of acids and esters to alcohols under mild conditions. Rhenium promotes the formation of atomically dispersed and sub-nanometre-sized bimetallic species interacting strongly with the oxide support.

10.
Nanoscale ; 9(27): 9340-9351, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28661538

RESUMO

This work demonstrates a bioenabled fully aqueous phase and room temperature route to the synthesis of CuInS2/ZnS core/shell quantum confined nanocrystals conjugated to IgG antibodies and used for fluorescent tagging of THP-1 leukemia cells. This elegant, straightforward and green approach avoids the use of solvents, high temperatures and the necessity to phase transfer the nanocrystals prior to application. Non-toxic CuInS2, (CuInZn)S2, and CuInS2/ZnS core/shell quantum confined nanocrystals are synthesized via a biomineralization process based on a single recombinant cystathionine γ-lyase (CSE) enzyme. First, soluble In-S complexes are formed from indium acetate and H2S generated by CSE, which are then stabilized by l-cysteine in solution. The subsequent addition of copper, or both copper and zinc, precursors then results in the immediate formation of CuInS2 or (CuInZn)S2 quantum dots. Shell growth is realized through subsequent introduction of Zn acetate to the preformed core nanocrystals. The size and optical properties of the nanocrystals are tuned by adjusting the indium precursor concentration and initial incubation period. CuInS2/ZnS core/shell particles are conjugated to IgG antibodies using EDC/NHS cross-linkers and then applied in the bioimaging of THP-1 cells. Cytotoxicity tests confirm that CuInS2/ZnS core/shell quantum dots do not cause cell death during bioimaging. Thus, this biomineralization enabled approach provides a facile, low temperature route for the fully aqueous synthesis of non-toxic CuInS2/ZnS quantum dots, which are ideal for use in bioimaging applications.


Assuntos
Materiais Biocompatíveis/química , Nanopartículas/química , Imagem Óptica , Pontos Quânticos , Sulfetos/química , Compostos de Zinco/química , Humanos , Imunoglobulina G/química , Índio , Células THP-1
11.
Science ; 357(6349): 389-393, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28642235

RESUMO

The water-gas shift (WGS) reaction (where carbon monoxide plus water yields dihydrogen and carbon dioxide) is an essential process for hydrogen generation and carbon monoxide removal in various energy-related chemical operations. This equilibrium-limited reaction is favored at a low working temperature. Potential application in fuel cells also requires a WGS catalyst to be highly active, stable, and energy-efficient and to match the working temperature of on-site hydrogen generation and consumption units. We synthesized layered gold (Au) clusters on a molybdenum carbide (α-MoC) substrate to create an interfacial catalyst system for the ultralow-temperature WGS reaction. Water was activated over α-MoC at 303 kelvin, whereas carbon monoxide adsorbed on adjacent Au sites was apt to react with surface hydroxyl groups formed from water splitting, leading to a high WGS activity at low temperatures.

12.
ACS Appl Mater Interfaces ; 9(15): 13430-13439, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28358193

RESUMO

Biomineralization is the process by which biological systems synthesize inorganic materials. Herein, we demonstrate an engineered cystathionine γ-lyase enzyme, smCSE that is active for the direct aqueous phase biomineralization of CdSe and CdSe-CdS core-shell nanocrystals. The nanocrystals are formed in an otherwise unreactive buffered solution of Cd acetate and selenocystine through enzymatic turnover of the selenocystine to form a reactive precursor, likely H2Se. The particle size of the CdSe core nanocrystals can be tuned by varying the incubation time to generated particle sizes between 2.74 ± 0.63 nm and 4.78 ± 1.16 nm formed after 20 min and 24 h of incubation, respectively. Subsequent purification and introduction of l-cysteine as a sulfur source facilitates the biomineralization of a CdS shell onto the CdSe cores. The quantum yield of the resulting CdSe-CdS core-shell particles is up to 12% in the aqueous phase; comparable to that reported for more traditional chemical synthesis routes for core-shell particles of similar size with similar shell coverage. This single-enzyme route to functional nanocrystals synthesis reveals the powerful potential of biomineralization processes.

13.
Nat Commun ; 7: 12905, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27671143

RESUMO

The identity of active species in supported gold catalysts for low temperature carbon monoxide oxidation remains an unsettled debate. With large amounts of experimental evidence supporting theories of either gold nanoparticles or sub-nm gold species being active, it was recently proposed that a size-dependent activity hierarchy should exist. Here we study the diverging catalytic behaviours after heat treatment of Au/FeOx materials prepared via co-precipitation and deposition precipitation methods. After ruling out any support effects, the gold particle size distributions in different catalysts are quantitatively studied using aberration corrected scanning transmission electron microscopy (STEM). A counting protocol is developed to reveal the true particle size distribution from HAADF-STEM images, which reliably includes all the gold species present. Correlation of the populations of the various gold species present with catalysis results demonstrate that a size-dependent activity hierarchy must exist in the Au/FeOx catalyst.

14.
Proc Natl Acad Sci U S A ; 113(19): 5275-80, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27118834

RESUMO

Nature has evolved several unique biomineralization strategies to direct the synthesis and growth of inorganic materials. These natural systems are complex, involving the interaction of multiple biomolecules to catalyze biomineralization and template growth. Herein we describe the first report to our knowledge of a single enzyme capable of both catalyzing mineralization in otherwise unreactive solution and of templating nanocrystal growth. A recombinant putative cystathionine γ-lyase (smCSE) mineralizes CdS from an aqueous cadmium acetate solution via reactive H2S generation from l-cysteine and controls nanocrystal growth within the quantum confined size range. The role of enzymatic nanocrystal templating is demonstrated by substituting reactive Na2S as the sulfur source. Whereas bulk CdS is formed in the absence of the enzyme or other capping agents, nanocrystal formation is observed when smCSE is present to control the growth. This dual-function, single-enzyme, aerobic, and aqueous route to functional material synthesis demonstrates the powerful potential of engineered functional material biomineralization.


Assuntos
Compostos de Cádmio/sangue , Cristalização/métodos , Cistationina gama-Liase/química , Minerais/síntese química , Nanopartículas/química , Nanopartículas/ultraestrutura , Sulfetos/sangue , Produtos Biológicos/química , Catálise , Ativação Enzimática , Luz , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Refratometria , Espalhamento de Radiação , Propriedades de Superfície
15.
Chem Commun (Camb) ; 50(84): 12612-4, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25032752

RESUMO

The selectivity of photocatalytic phenol production from the direct oxidation of benzene can be enhanced by fine adjustment of the morphology and composition of Au-Pd metal nanoparticles supported on titanium dioxide thereby suppressing the decomposition of benzene and evolution of phenolic compounds.


Assuntos
Ligas/química , Benzeno/química , Nanopartículas Metálicas/química , Fenol/síntese química , Titânio/química , Catálise , Ouro/química , Radical Hidroxila/química , Oxirredução , Paládio/química , Fenol/química , Raios Ultravioleta
16.
J Am Chem Soc ; 134(1): 212-21, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22136484

RESUMO

A simple single-phase method for the preparation of ca. 2 nm gold nanoparticles capped with mercaptocarborane ligands is introduced. The resultant monolayer protected clusters (MPCs) exhibit redox-dependent solubility and readily phase transfer between water and nonpolar solvents depending on the electronic and ionic charge stored in the metal core and in the ligand shell, respectively. The particles and their properties have been characterized by high angle annular dark field imaging in a scanning transmission electron microscope, elemental analysis, centrifugal particle sizing, UV-vis and FTIR spectroscopy, and thermogravimetric analysis and by (1)H, (11)B, and (7)Li NMR spectroscopy. Cellular uptake of the MPCs by HeLa cells has been studied by TEM, and the subsequent generation of reactive oxygen species inside the cells has been evaluated by confocal fluorescence microscopy. These MPCs qualitatively showed significant toxicity and the ability to penetrate into most cell compartments with a strong tendency of finally residing inside membranes. Applications in catalysis, electrocatalysis, and biomedicine are envisaged.


Assuntos
Elétrons , Ouro/química , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas Metálicas/química , Compostos de Sulfidrila/química , Transporte Biológico , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Oxirredução , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Solubilidade , Compostos de Sulfidrila/metabolismo , Compostos de Sulfidrila/farmacologia , Água/química
17.
J Contam Hydrol ; 118(3-4): 96-104, 2010 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-20889228

RESUMO

Aspects of the core-shell model of nanoscale zero-valent iron (nZVI) and their environmental implications were examined in this work. The structure and elemental distribution of nZVI were characterized by X-ray energy-dispersive spectroscopy (XEDS) with nanometer-scale spatial resolution in an aberration-corrected scanning transmission electron microscope (STEM). The analysis provides unequivocal evidence of a layered structure of nZVI consisting of a metallic iron core encapsulated by a thin amorphous oxide shell. Three aqueous environmental contaminants, namely Hg(II), Zn(II) and hydrogen sulfide, were studied to probe the reactive properties and the surface chemistry of nZVI. High-resolution X-ray photoelectron spectroscopy (HR-XPS) analysis of the reacted particles indicated that Hg(II) was sequestrated via chemical reduction to elemental mercury. On the other hand, Zn(II) removal was achieved via sorption to the iron oxide shell followed by zinc hydroxide precipitation. Hydrogen sulfide was immobilized on the nZVI surface as disulfide (S(2)(2-)) and monosulfide (S(2-)) species. Their relative abundance in the final products suggests that the retention of hydrogen sulfide occurs via reactions with the oxide shell to form iron sulfide (FeS) and subsequent conversion to iron disulfide (FeS(2)). The results presented herein highlight the multiple reactive pathways permissible with nZVI owing to its two functional constituents. The core-shell structure imparts nZVI with manifold functional properties previously unexamined and grants the material with potentially new applications.


Assuntos
Ferro/química , Nanopartículas/química , Água/química , Sulfeto de Hidrogênio/química , Mercúrio/química , Metais Pesados/química , Zinco/química
18.
Environ Sci Technol ; 44(11): 4288-94, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20446741

RESUMO

Palladized zero-valent iron nanoparticles have been frequently employed to achieve enhanced treatment of halogenated organic compounds; however, no detailed study has been published on their structures, especially the location and distribution of palladium within the nanoparticles. In this work, the structural evolution of palladized nanoscale iron particles (Pd-nZVI, with 1.5 wt % Pd) was examined using X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), and X-ray energy dispersive spectroscopy (XEDS) techniques. The STEM-XEDS technique enables direct visualization of the nanoscale structural and compositional changes of the bimetallic particles. For a freshly made Pd-nZVI sample, the particles consist of a metallic iron core and a thin amorphous oxide shell, and Pd is observed to form 2-5 nm islands decorating the outer surface of the nanoparticles. Upon exposure to water, Pd-nZVI undergoes substantial morphological and structural changes. STEM-XEDS elemental maps show that Pd infiltrates through the oxide layer to the metallic iron interface, which is accompanied by oxidation and outward diffusion of the iron species. Within a 24 h period, Pd is completely buried underneath an extensive iron oxide matrix, and a fraction of the nanoparticles exhibits a hollowed-out morphology with no metallic iron remaining. The microstructural variations observed concur with the reactivity data, which shows that the aged bimetallic particles display an 80% decrease in dechlorination rate of trichloroethene (TCE) compared to that of the fresh particles. These findings shed new light on the function of palladium in hydrodechlorination reactions, nZVI aging and deactivation, and the longevity of Pd-nZVI nanoparticles for in situ remediation.


Assuntos
Ferro/química , Nanopartículas , Paládio/química , Microscopia Eletrônica de Transmissão e Varredura , Análise Espectral/métodos , Água , Raios X
19.
Science ; 321(5894): 1331-5, 2008 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-18772433

RESUMO

Gold nanocrystals absorbed on metal oxides have exceptional properties in oxidation catalysis, including the oxidation of carbon monoxide at ambient temperatures, but the identification of the active catalytic gold species among the many present on real catalysts is challenging. We have used aberration-corrected scanning transmission electron microscopy to analyze several iron oxide-supported catalyst samples, ranging from those with little or no activity to others with high activities. High catalytic activity for carbon monoxide oxidation is correlated with the presence of bilayer clusters that are approximately 0.5 nanometer in diameter and contain only approximately 10 gold atoms. The activity of these bilayer clusters is consistent with that demonstrated previously with the use of model catalyst systems.


Assuntos
Monóxido de Carbono/química , Compostos Férricos , Ouro , Nanopartículas Metálicas , Catálise , Microscopia Eletrônica de Varredura , Oxirredução , Temperatura
20.
Langmuir ; 24(8): 4329-34, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18303928

RESUMO

Zerovalent iron (nZVI) nanoparticles have long been used in the electronic and chemical industries due to their magnetic and catalytic properties. Increasingly, applications of nZVI have also been reported in environmental engineering because of their ability to degrade a wide variety of toxic pollutants in soil and water. It is generally assumed that nZVI has a core-shell morphology with zerovalent iron as the core and iron oxide/hydroxide in the shell. This study presents a detailed characterization of the nZVI shell thickness using three independent methods. High-resolution transmission electron microscopy analysis provides direct evidence of the core-shell structure and indicates that the shell thickness of fresh nZVI was predominantly in the range of 2-4 nm. The shell thickness was also determined from high-resolution X-ray photoelectron spectroscopy (HR-XPS) analysis through comparison of the relative integrated intensities of metallic and oxidized iron with a geometric correction applied to account for the curved overlayer. The XPS analysis yielded an average shell thickness in the range of 2.3-2.8 nm. Finally, complete oxidation reaction of the nZVI particles by Cu(II) was used as an indication of the zerovalent iron content of the particles, and these observations further correlate the chemical reactivity of the particles and their shell thicknesses. The three methods yielded remarkably similar results, providing a reliable determination of the shell thickness, which fills an essential gap in our knowledge about the nZVI structure. The methods presented in this work can also be applied to the study of the aging process of nZVI and may also prove useful for the measurement and characterization of other metallic nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA