Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4124, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433798

RESUMO

Single-cell nanopore sequencing of full-length mRNAs transforms single-cell multi-omics studies. However, challenges include high sequencing errors and dependence on short-reads and/or barcode whitelists. To address these, we develop scNanoGPS to calculate same-cell genotypes (mutations) and phenotypes (gene/isoform expressions) without short-read nor whitelist guidance. We apply scNanoGPS onto 23,587 long-read transcriptomes from 4 tumors and 2 cell-lines. Standalone, scNanoGPS deconvolutes error-prone long-reads into single-cells and single-molecules, and simultaneously accesses both phenotypes and genotypes of individual cells. Our analyses reveal that tumor and stroma/immune cells express distinct combination of isoforms (DCIs). In a kidney tumor, we identify 924 DCI genes involved in cell-type-specific functions such as PDE10A in tumor cells and CCL3 in lymphocytes. Transcriptome-wide mutation analyses identify many cell-type-specific mutations including VEGFA mutations in tumor cells and HLA-A mutations in immune cells, highlighting the critical roles of different mutant populations in tumors. Together, scNanoGPS facilitates applications of single-cell long-read sequencing technologies.


Assuntos
Carcinoma Intraductal não Infiltrante , Neoplasias Renais , Humanos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Diester Fosfórico Hidrolases
2.
J Clin Invest ; 133(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37053016

RESUMO

The deadliest anaplastic thyroid cancer (ATC) often transforms from indolent differentiated thyroid cancer (DTC); however, the complex intratumor transformation process is poorly understood. We investigated an anaplastic transformation model by dissecting both cell lineage and cell fate transitions using single-cell transcriptomic and genetic alteration data from patients with different subtypes of thyroid cancer. The resulting spectrum of ATC transformation included stress-responsive DTC cells, inflammatory ATC cells (iATCs), and mitotic-defective ATC cells and extended all the way to mesenchymal ATC cells (mATCs). Furthermore, our analysis identified 2 important milestones: (a) a diploid stage, in which iATC cells were diploids with inflammatory phenotypes and (b) an aneuploid stage, in which mATCs gained aneuploid genomes and mesenchymal phenotypes, producing excessive amounts of collagen and collagen-interacting receptors. In parallel, cancer-associated fibroblasts showed strong interactions among mesenchymal cell types, macrophages shifted from M1 to M2 states, and T cells reprogrammed from cytotoxic to exhausted states, highlighting new therapeutic opportunities for the treatment of ATC.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Transcriptoma , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Carcinoma Anaplásico da Tireoide/genética , Perfilação da Expressão Gênica , Aneuploidia , Linhagem Celular Tumoral
3.
FEBS Lett ; 597(7): 947-961, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36856012

RESUMO

Cytoplasmic capping returns a cap to specific mRNAs, thus protecting uncapped RNAs from decay. Prior to the identification of cytoplasmic capping, uncapped mRNAs were thought to be degraded. Here, we test whether long noncoding RNAs (lncRNAs) are substrates of the cytoplasmic capping enzyme (cCE). The subcellular localisation of 14 lncRNAs associated with sarcomas were examined in U2OS osteosarcoma cells. We used 5' rapid amplification of cDNA ends (RACE) to assay uncapped forms of these lncRNAs. Inhibiting cytoplasmic capping elevated uncapped forms of selected lncRNAs indicating a plausible role of cCE in targeting them. Analysis of published cap analysis of gene expression (CAGE) data shows increased prevalence of certain 5'-RACE cloned sequences, suggesting that these uncapped lncRNAs are targets of cytoplasmic capping.


Assuntos
RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Capuzes de RNA/genética , Citoplasma/metabolismo , Citosol/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
bioRxiv ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778278

RESUMO

Single-cell nanopore sequencing of full-length mRNAs (scNanoRNAseq) is transforming singlecell multi-omics studies. However, challenges include computational complexity and dependence on short-read curation. To address this, we developed a comprehensive toolkit, scNanoGPS to calculate same-cell genotypes-phenotypes without short-read guidance. We applied scNanoGPS onto 23,587 long-read transcriptomes from 4 tumors and 2 cell lines. Standalone, scNanoGPS accurately deconvoluted error-prone long-reads into single-cells and single-molecules. Further, scNanoGPS simultaneously accessed both phenotypes (expressions/isoforms) and genotypes (mutations) of individual cells. Our analyses revealed that tumor and stroma/immune cells often expressed significantly distinct combinations of isoforms (DCIs). In a kidney tumor, we identified 924 genes with DCIs involved in cell-type-specific functions such as PDE10A in tumor cells and CCL3 in lymphocytes. Moreover, transcriptome-wide mutation analyses identified many cell-type-specific mutations including VEGFA mutations in tumor cells and HLA-A mutations in immune cells, highlighting critical roles of different populations in tumors. Together, scNanoGPS facilitates applications of single-cell long-read sequencing.

5.
J Dermatol Skin Sci ; 5(1): 4-13, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38435714

RESUMO

Despite being under development for decades, RNA therapeutics have only recently emerged as viable drug platforms. The COVID-19 mRNA vaccines have demonstrated the promise and power of the platform technology. In response, novel RNA drugs are entering clinical trials at an accelerating rate. As the skin is the largest and most accessible organ, it has always been a preferred target for drug discovery. This holds true for RNA therapies as well, and multiple candidate RNA-based drugs are currently in development for an array of skin conditions. In this mini review, we catalog the RNA therapies currently in clinical trials for different dermatological diseases. We summarize the main types of RNA-related drugs and use examples of drugs currently in development to illustrate their key mechanism of action.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA