Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
1.
Nanoscale Adv ; 6(17): 4352-4359, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39170971

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) are widely used for biomedical applications, including magnetic particle imaging (MPI) and magnetic hyperthermia. The co-precipitation method is one of the most common synthetic routes to obtain SPIONs, since it is simple and does not require extreme conditions, such as high temperatures. Despite its prevalence, however, the co-precipitation synthesis presents some challenges, most notably the high batch-to-batch variability, as multiple factors can influence nanoparticle growth. In this study, we utilized a fractional factorial design of experiments to identify key factors influencing SPION growth, properties, and performance in MPI and magnetic hyperthermia, namely Fe3+ content, pH, temperature, stirring, and atmosphere. Notably, our study unveiled secondary interactions, particularly between temperature and Fe3+ content, as well as pH and Fe3+ content, for which simultaneous changes of both parameters promoted greater effects than the sum of each factor effect alone, emphasizing the impact of synergistic effects on SPION growth and performance. These findings provide a deeper understanding of the growth mechanism of SPIONs, reconcile discrepancies in the existing literature, and underscore the importance of characterizing secondary interactions to improve the performance of SPIONs for biomedical applications.

2.
J Control Release ; 371: 146-157, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777126

RESUMO

Ultrasound is widely used in the diagnosis and therapy of cancer. Tumors can be treated by thermal or mechanical tissue ablation. Furthermore, tumors can be manipulated by hyperthermia, sonodynamic therapy and sonoporation, e.g., by increasing tumor perfusion or the permeability of biological barriers to enhance drug delivery. These treatments induce various immune responses in tumors. However, conflicting data and high heterogeneity between experimental settings make it difficult to generalize the effects of ultrasound on tumor immunity. Therefore, we performed a systematic review to answer the question: "Does ultrasound alter the immune reaction of peripheral solid tumors in humans and animals compared to control conditions without ultrasound?" A systematic literature search was performed in PubMed, EMBASE, and Web of Science and 24,401 potentially relevant publications were identified. Of these, 96 publications were eligible for inclusion in the systematic review. Experiments were performed in humans, rats, and mice and focused on different tumor types, primarily breast and melanoma. We collected data on thermal and non-thermal ultrasound settings, the use of sono-sensitizers or sono-enhancers, and anti-tumor therapies. Six meta-analyses were performed to quantify the effect of ultrasound on tumor infiltration by T cells (cytotoxic, helper, and regulatory T cells) and on blood cytokines (interleukin-6, interferon-γ, tumor necrosis factor-α). We provide robust scientific evidence that ultrasound alters T cell infiltration into tumors and increases blood cytokine concentrations. Furthermore, we identified significant differences in immune cell infiltration based on tumor type, ultrasound settings, and mouse age. Stronger effects were observed using hyperthermia in combination with sono-sensitizers and in young mice. The latter may impair the translational impact of study results as most cancer patients are older. Thus, our results may help refining ultrasound parameters to enhance anti-tumor immune responses for therapeutic use and to minimize immune effects in diagnostic applications.


Assuntos
Neoplasias , Animais , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/diagnóstico por imagem , Humanos , Terapia por Ultrassom/métodos
3.
ChemMedChem ; 19(16): e202400232, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38747628

RESUMO

Cobalt complexes exhibit versatile reactivity with nitric oxide (NO), enabling their utilization in applications ranging from homogeneous catalysis to NO-based modulation of biological processes. However, the coordination geometry around the cobalt center is complex, the therapeutic window of NO is narrow, and controlled NO delivery is difficult. To better understand the complexation of cobalt with NO, we prepared four cobalt nitrato complexes and present a structure-property relationship for ultrasound-triggerable NO release. We hypothesized that modulation of the coordination geometry by ligand-modification would improve responsiveness to mechanical stimuli, like ultrasound. To enable eventual therapeutic testing, we here first demonstrate the in vitro tolerability of [Co(ethylenediamine)2(NO)(NO3)](NO3) in A431 epidermoid carcinoma cells and J774A.1 murine macrophages, and we subsequently show successful encapsulation of the complex in poly(butyl cyanoacrylate) microbubbles. These hybrid Co-NO-containing microbubbles may in the future aid in ultrasound imaging-guided treatment of NO-responsive vascular pathologies.


Assuntos
Cobalto , Complexos de Coordenação , Microbolhas , Óxido Nítrico , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Cobalto/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Camundongos , Animais , Humanos , Estrutura Molecular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Ondas Ultrassônicas , Relação Estrutura-Atividade
4.
Nanomedicine ; 58: 102751, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705222

RESUMO

Active targeting can enhance precision and efficacy of drug delivery systems (DDS) against cancers. Riboflavin (RF) is a promising ligand for active targeting due to its biocompatibility and high riboflavin-receptor expression in cancers. In this study, RF-targeted 4-arm polyethylene glycol (PEG) stars conjugated with Paclitaxel (PTX), named PEG PTX RF, were evaluated as a targeted DDS. In vitro, PEG PTX RF exhibited higher toxicity against tumor cells compared to the non-targeted counterpart (PEG PTX), while free PTX displayed the highest acute toxicity. In vivo, all treatments were similarly effective, but PEG PTX RF-treated tumors showed fewer proliferating cells, pointing to sustained therapy effects. Moreover, PTX-treated animals' body and liver weights were significantly reduced, whereas both remained stable in PEG PTX and PEG PTX RF-treated animals. Overall, our targeted and non-targeted DDS reduced PTX's adverse effects, with RF targeting promoted drug uptake in cancer cells for sustained therapeutic effect.


Assuntos
Sistemas de Liberação de Medicamentos , Paclitaxel , Polietilenoglicóis , Riboflavina , Paclitaxel/farmacologia , Paclitaxel/química , Riboflavina/farmacologia , Riboflavina/química , Animais , Humanos , Camundongos , Polietilenoglicóis/química , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Polímeros/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino
5.
Nat Biomed Eng ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589466

RESUMO

The clinical prospects of cancer nanomedicines depend on effective patient stratification. Here we report the identification of predictive biomarkers of the accumulation of nanomedicines in tumour tissue. By using supervised machine learning on data of the accumulation of nanomedicines in tumour models in mice, we identified the densities of blood vessels and of tumour-associated macrophages as key predictive features. On the basis of these two features, we derived a biomarker score correlating with the concentration of liposomal doxorubicin in tumours and validated it in three syngeneic tumour models in immunocompetent mice and in four cell-line-derived and six patient-derived tumour xenografts in mice. The score effectively discriminated tumours according to the accumulation of nanomedicines (high versus low), with an area under the receiver operating characteristic curve of 0.91. Histopathological assessment of 30 tumour specimens from patients and of 28 corresponding primary tumour biopsies confirmed the score's effectiveness in predicting the tumour accumulation of liposomal doxorubicin. Biomarkers of the tumour accumulation of nanomedicines may aid the stratification of patients in clinical trials of cancer nanomedicines.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38498080

RESUMO

Drug delivery to central nervous pathologies is compromised by the blood-brain barrier (BBB). A clinically explored strategy to promote drug delivery across the BBB is sonopermeation, which relies on the combined use of ultrasound (US) and microbubbles (MB) to induce temporally and spatially controlled opening of the BBB. We developed an advanced in vitro BBB model to study the impact of sonopermeation on the delivery of the prototypic polymeric drug carrier pHPMA as a larger molecule and the small molecule antiviral drug ribavirin. This was done under standard and under inflammatory conditions, employing both untargeted and RGD peptide-coated MB. The BBB model is based on human cerebral capillary endothelial cells and human placental pericytes, which are co-cultivated in transwell inserts and which present with proper transendothelial electrical resistance (TEER). Sonopermeation induced a significant decrease in TEER values and facilitated the trans-BBB delivery of fluorescently labeled pHPMA (Atto488-pHPMA). To study drug delivery under inflamed endothelial conditions, which are typical for e.g. tumors, neurodegenerative diseases and CNS infections, tumor necrosis factor (TNF) was employed to induce inflammation in the BBB model. RGD-coated MB bound to and permeabilized the inflamed endothelium-pericyte co-culture model, and potently improved Atto488-pHPMA and ribavirin delivery. Taken together, our work combines in vitro BBB bioengineering with MB-mediated drug delivery enhancement, thereby providing a framework for future studies on optimization of US-mediated drug delivery to the brain.

7.
Adv Sci (Weinh) ; 11(15): e2306139, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342634

RESUMO

Despite its high potential, non-viral gene therapy of cancer remains challenging due to inefficient nucleic acid delivery. Ultrasound (US) with microbubbles (MB) can open biological barriers and thus improve DNA and mRNA passage. Polymeric MB are an interesting alternative to clinically used lipid-coated MB because of their high stability, narrow size distribution, and easy functionalization. However, besides choosing the ideal MB, it remains unclear whether nanocarrier-encapsulated mRNA should be administered separately (co-administration) or conjugated to MB (co-formulation). Therefore, the impact of poly(n-butyl cyanoacrylate) MB co-administration with mRNA-DOTAP/DOPE lipoplexes or their co-formulation on the transfection of cancer cells in vitro and in vivo is analyzed. Sonotransfection improved mRNA delivery into 4T1 breast cancer cells in vitro with co-administration being more efficient than co-formulation. In vivo, the co-administration sonotransfection approach also resulted in higher transfection efficiency and reached deeper into the tumor tissue. On the contrary, co-formulation mainly promoted transfection of endothelial and perivascular cells. Furthermore, the co-formulation approach is much more dependent on the US trigger, resulting in significantly lower off-site transfection. Thus, the findings indicate that the choice of co-administration or co-formulation in sonotransfection should depend on the targeted cell population, tolerable off-site transfection, and the therapeutic purpose.


Assuntos
Embucrilato , Neoplasias , Humanos , Microbolhas , Neoplasias/terapia , Transfecção , Ultrassonografia
8.
Adv Mater ; 36(5): e2303196, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37865947

RESUMO

Advanced in vitro systems such as multicellular spheroids and lab-on-a-chip devices have been developed, but often fall short in reproducing the tissue scale and self-organization of human diseases. A bioprinted artificial tumor model is introduced with endothelial and stromal cells self-organizing into perfusable and functional vascular structures. This model uses 3D hydrogel matrices to embed multicellular tumor spheroids, allowing them to grow to mesoscopic scales and to interact with endothelial cells. It is shown that angiogenic multicellular tumor spheroids promote the growth of a vascular network, which in turn further enhances the growth of cocultivated tumor spheroids. The self-developed vascular structure infiltrates the tumor spheroids, forms functional connections with the bioprinted endothelium, and can be perfused by erythrocytes and polystyrene microspheres. Moreover, cancer cells migrate spontaneously from the tumor spheroid through the self-assembled vascular network into the fluid flow. Additionally, tumor type specific characteristics of desmoplasia, angiogenesis, and metastatic propensity are preserved between patient-derived samples and tumors derived from this same material growing in the bioreactors. Overall, this modular approach opens up new avenues for studying tumor pathophysiology and cellular interactions in vitro, providing a platform for advanced drug testing while reducing the need for in vivo experimentation.


Assuntos
Bioimpressão , Neoplasias , Humanos , Esferoides Celulares/patologia , Hidrogéis/química , Neoplasias/patologia , Células Endoteliais da Veia Umbilical Humana , Engenharia Tecidual
9.
Rofo ; 196(4): 354-362, 2024 Apr.
Artigo em Inglês, Alemão | MEDLINE | ID: mdl-37944934

RESUMO

BACKGROUND: Imaging biomarkers are quantitative parameters from imaging modalities, which are collected noninvasively, allow conclusions about physiological and pathophysiological processes, and may consist of single (monoparametric) or multiple parameters (bi- or multiparametric). METHOD: This review aims to present the state of the art for the quantification of multimodal and multiparametric imaging biomarkers. Here, the use of biomarkers using artificial intelligence will be addressed and the clinical application of imaging biomarkers in breast and prostate cancers will be explained. For the preparation of the review article, an extensive literature search was performed based on Pubmed, Web of Science and Google Scholar. The results were evaluated and discussed for consistency and generality. RESULTS AND CONCLUSION: Different imaging biomarkers (multiparametric) are quantified based on the use of complementary imaging modalities (multimodal) from radiology, nuclear medicine, or hybrid imaging. From these techniques, parameters are determined at the morphological (e. g., size), functional (e. g., vascularization or diffusion), metabolic (e. g., glucose metabolism), or molecular (e. g., expression of prostate specific membrane antigen, PSMA) level. The integration and weighting of imaging biomarkers are increasingly being performed with artificial intelligence, using machine learning algorithms. In this way, the clinical application of imaging biomarkers is increasing, as illustrated by the diagnosis of breast and prostate cancers. KEY POINTS: · Imaging biomarkers are quantitative parameters to detect physiological and pathophysiological processes.. · Imaging biomarkers from multimodality and multiparametric imaging are integrated using artificial intelligence algorithms.. · Quantitative imaging parameters are a fundamental component of diagnostics for all tumor entities, such as for mammary and prostate carcinomas.. CITATION FORMAT: · Bäuerle T, Dietzel M, Pinker K et al. Identification of impactful imaging biomarker: Clinical applications for breast and prostate carcinoma. Fortschr Röntgenstr 2024; 196: 354 - 362.


Assuntos
Carcinoma , Medicina Nuclear , Neoplasias da Próstata , Humanos , Masculino , Inteligência Artificial , Biomarcadores , Imageamento por Ressonância Magnética/métodos , Próstata/diagnóstico por imagem , Próstata/patologia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Feminino
10.
J Control Release ; 365: 358-368, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38016488

RESUMO

Blood vessel functionality is crucial for efficient tumor-targeted drug delivery. Heterogeneous distribution and perfusion of angiogenic blood vessels contribute to suboptimal accumulation of (nano-) therapeutics in tumors and metastases. To attenuate pathological angiogenesis, an L-RNA aptamer inhibiting the CC motif chemokine ligand 2 (CCL2) was administered to mice bearing orthotopic 4T1 triple-negative breast cancer tumors. The effect of CCL2 inhibition on tumor blood vessel functionality and tumor-targeted drug delivery was evaluated via multimodal and multiscale optical imaging, employing fluorophore-labeled polymeric (10 nm) and liposomal (100 nm) nanocarriers. Anti-CCL2 treatment induced a dose-dependent anti-angiogenic effect, reflected by a decreased relative blood volume, increased blood vessel maturity and functionality, and reduced macrophage infiltration, accompanied by a shift in the polarization of tumor-associated macrophages (TAM) towards a less M2-like and more M1-like phenotype. In line with this, CCL2 inhibitor treatment improved the delivery of polymers and liposomes to tumors, and enhanced the antitumor efficacy of free and liposomal doxorubicin. Together, these findings demonstrate that blocking the CCL2-CCR2 axis modulates TAM infiltration and polarization, resulting in vascular normalization and improved tumor-targeted drug delivery.


Assuntos
Quimiocina CCL2 , Neoplasias , Camundongos , Animais , Quimiocina CCL2/farmacologia , Ligantes , Nanomedicina , Neoplasias/patologia , Macrófagos , Linhagem Celular Tumoral
11.
Artigo em Inglês | MEDLINE | ID: mdl-37962836

RESUMO

Nanomedicine holds promise for potentiating drug combination therapies. Increasing (pre)clinical evidence is available exemplifying the value of co-formulating and co-delivering different drugs in modular nanocarriers. Taxanes like paclitaxel (PTX) are widely used anticancer agents, and commonly combined with corticosteroids like dexamethasone (DEX), which besides for suppressing inflammation and infusion reactions, are increasingly explored for modulating the tumor microenvironment towards enhanced nano-chemotherapy delivery and efficacy. We here set out to develop a size- and release rate-tunable polymeric micelle platform for co-delivery of taxanes and corticosteroids. We synthesized amphiphilic mPEG-b-p(HPMAm-Bz) block copolymers of various molecular weights and used them to prepare PTX and DEX single- and double-loaded micelles of different sizes. Both drugs could be efficiently co-encapsulated, and systematic comparison between single- and co-loaded formulations demonstrated comparable physicochemical properties, encapsulation efficiencies, and release profiles. Larger micelles showed slower drug release, and DEX release was always faster than PTX. The versatility of the platform was exemplified by co-encapsulating two additional taxane-corticosteroid combinations, demonstrating that drug hydrophobicity and molecular weight are key properties that strongly contribute to drug retention in micelles. Altogether, our work shows that mPEG-b-p(HPMAm-Bz) polymeric micelles serve as a tunable and versatile nanoparticle platform for controlled co-delivery of taxanes and corticosteroids, thereby paving the way for using these micelles as a modular carrier for multidrug nanomedicine.

12.
Neoplasia ; 46: 100945, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37976569

RESUMO

Obesity and associated nonalcoholic steatohepatitis (NASH) are on the rise globally. NASH became an important driver of hepatocellular carcinoma (HCC) in recent years. Activation of the central metabolic regulator mTOR (mechanistic target of rapamycin) is frequently observed in HCCs. However, mTOR inhibition failed to improve the outcome of HCC therapies, demonstrating the need for a better understanding of the molecular and functional consequences of mTOR blockade. We established a murine NASH-driven HCC model based on long-term western diet feeding combined with hepatocellular mTOR-inactivation. We evaluated tumor load and whole-body fat percentage via µCT-scans, analyzed metabolic blood parameters and tissue proteome profiles. Additionally, we used a bioinformatic model to access liver and HCC mitochondrial metabolic functions. The tumor burden was massively increased via mTOR-knockout. Several signs argue for extensive metabolic reprogramming of glucose, fatty acid, bile acid and cholesterol metabolism. Kinetic modeling revealed reduced oxygen consumption in KO-tumors. NASH-derived HCC pathogenesis is driven by metabolic disturbances and should be considered separately from those caused by other etiologies. We conclude that mTOR functions as tumor suppressor in hepatocytes especially under long-term western diet feeding. However, some of the detrimental consequences of this diet are attenuated by mTOR blockade.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Serina-Treonina Quinases TOR , Carga Tumoral
13.
Small ; 19(43): e2208042, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37376850

RESUMO

Fasting has many health benefits, including reduced chemotherapy toxicity and improved efficacy. It is unclear how fasting affects the tumor microenvironment (TME) and tumor-targeted drug delivery. Here the effects of intermittent (IF) and short-term (STF) fasting are investigated on tumor growth, TME composition, and liposome delivery in allogeneic hepatocellular carcinoma (HCC) mouse models. To this end, mice are inoculated either subcutaneously or intrahepatically with Hep-55.1C cells and subjected to IF for 24 d or to STF for 1 d. IF but not STF significantly slows down tumor growth. IF increases tumor vascularization and decreases collagen density, resulting in improved liposome delivery. In vitro, fasting furthermore promotes the tumor cell uptake of liposomes. These results demonstrate that IF shapes the TME in HCC towards enhanced drug delivery. Finally, when combining IF with liposomal doxorubicin treatment, the antitumor efficacy of nanochemotherapy is found to be increased, while systemic side effects are reduced. Altogether, these findings exemplify that the beneficial effects of fasting on anticancer therapy outcomes go beyond modulating metabolism at the molecular level.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Lipossomos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Jejum Intermitente , Nanomedicina , Microambiente Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Linhagem Celular Tumoral
14.
Front Bioinform ; 3: 977228, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122998

RESUMO

Dynamic contrast-enhanced (DCE) perfusion imaging has shown great potential to non-invasively assess cancer development and its treatment by their characteristic tissue signatures. Different tracer kinetics models are being applied to estimate tissue and tumor perfusion parameters from DCE perfusion imaging. The goal of this work is to provide an in silico model-based pipeline to evaluate how these DCE imaging parameters may relate to the true tissue parameters. As histology data provides detailed microstructural but not functional parameters, this work can also help to better interpret such data. To this aim in silico vasculatures are constructed and the spread of contrast agent in the tissue is simulated. As a proof of principle we show the evaluation procedure of two tracer kinetic models from in silico contrast-agent perfusion data after a bolus injection. Representative microvascular arterial and venous trees are constructed in silico. Blood flow is computed in the different vessels. Contrast-agent input in the feeding artery, intra-vascular transport, intra-extravascular exchange and diffusion within the interstitial space are modeled. From this spatiotemporal model, intensity maps are computed leading to in silico dynamic perfusion images. Various tumor vascularizations (architecture and function) are studied and show spatiotemporal contrast imaging dynamics characteristic of in vivo tumor morphotypes. The Brix II also called 2CXM, and extended Tofts tracer-kinetics models common in DCE imaging are then applied to recover perfusion parameters that are compared with the ground truth parameters of the in silico spatiotemporal models. The results show that tumor features can be well identified for a certain permeability range. The simulation results in this work indicate that taking into account space explicitly to estimate perfusion parameters may lead to significant improvements in the perfusion interpretation of the current tracer-kinetics models.

15.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37108226

RESUMO

Acetylsalicylic acid (ASA) is a well-established drug for heart attack and stroke prophylaxis. Furthermore, numerous studies have reported an anti-carcinogenic effect, but its exact mechanism is still unknown. Here, we applied VEGFR-2-targeted molecular ultrasound to explore a potential inhibitory effect of ASA on tumor angiogenesis in vivo. Daily ASA or placebo therapy was performed in a 4T1 tumor mouse model. During therapy, ultrasound scans were performed using nonspecific microbubbles (CEUS) to determine the relative intratumoral blood volume (rBV) and VEGFR-2-targeted microbubbles to assess angiogenesis. Finally, vessel density and VEGFR-2 expression were assessed histologically. CEUS indicated a decreasing rBV in both groups over time. VEGFR-2 expression increased in both groups up to Day 7. Towards Day 11, the binding of VEGFR-2-specific microbubbles further increased in controls, but significantly (p = 0.0015) decreased under ASA therapy (2.24 ± 0.46 au vs. 0.54 ± 0.55 au). Immunofluorescence showed a tendency towards lower vessel density under ASA and confirmed the result of molecular ultrasound. Molecular US demonstrated an inhibitory effect of ASA on VEGFR-2 expression accompanied by a tendency towards lower vessel density. Thus, this study suggests the inhibition of angiogenesis via VEGFR-2 downregulation as one of the anti-tumor effects of ASA.


Assuntos
Aspirina , Neoplasias , Camundongos , Animais , Aspirina/farmacologia , Aspirina/uso terapêutico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/tratamento farmacológico , Ultrassonografia
16.
J Control Release ; 357: 52-66, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36958399

RESUMO

Activation of immune cells is an essential process in innate and adaptive immunity. A high number of immune cell activation pathways have been discovered, which are stimulated via various intra- and extracellular receptors. Small-molecule and macromolecular agonists have been identified to target immune receptors in preclinical research and clinical practice. However, current immunostimulants are often associated with undesired side effects and/or low potency in vivo. These two issues have been addressed with multiscale biomaterials. In this review, we summarize and discuss the most explored intra/extracellular immune receptors which have been targeted with immunoactivating biomaterials. To target intracellular immune receptors, nano/microscale materials have been employed to deliver agonists into the endo/lysosomes or the cytoplasm. To target surface immune receptors, nano-to-macroscale biomaterials have been engineered to engage with them to activate immune cells. In this context, biomaterials are not only the drug carriers, but also function as part of the immunostimulants. The biomaterials-based modalities have shown clearly enhanced immunoactivation potency and decreased side effects compared to native immunostimulants. It is envisaged that nano-to-macroscale biomaterials will greatly contribute to the development of more effective strategies for immunoactivation, which have the potential to reshape future vaccination and immunotherapy.


Assuntos
Materiais Biocompatíveis , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Adjuvantes Imunológicos/uso terapêutico , Portadores de Fármacos/uso terapêutico , Imunidade Adaptativa , Imunoterapia
17.
Invest Radiol ; 58(5): 327-336, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36730911

RESUMO

OBJECTIVES: Computed tomography (CT) imaging is considered relatively safe and is often used in preclinical research to study physiological processes. However, the sum of low-dose radiation, anesthesia, and animal handling might impact animal welfare and physiological parameters. This is particularly relevant for longitudinal studies with repeated CT examinations. Therefore, we investigated the influence of repeated native and contrast-enhanced (CE) CT on animal welfare and tumor physiology in regorafenib-treated and nontreated tumor-bearing mice. MATERIAL AND METHODS: Mice bearing 4T1 breast cancer were divided into 5 groups: (1) no imaging, (2) isoflurane anesthesia only, (3) 4 mGy CT, (4) 50 mGy CT, and (5) CE-CT (iomeprol). In addition, half of each group was treated with the multikinase inhibitor regorafenib. Mice were imaged 3 times within 1 week under isoflurane anesthesia. Behavioral alterations were investigated by score sheet evaluation, rotarod test, heart rate measurements, and fecal corticosterone metabolite analysis. Tumor growth was measured daily with a caliper. Tumors were excised at the end of the experiment and histologically examined for blood vessel density, perfusion, and cell proliferation. RESULTS: According to the score sheet, animals showed a higher burden after anesthesia administration and in addition with CT imaging ( P < 0.001). Motor coordination was not affected by native CT, but significantly decreased after CE-CT in combination with the tumor therapy ( P < 0.001). Whereas tumor growth and blood vessel density were not influenced by anesthesia or imaging, CT-scanned animals had a higher tumor perfusion ( P < 0.001) and a lower tumor cell proliferation ( P < 0.001) for both radiation doses. The most significant difference was observed between the control and CE-CT groups. CONCLUSION: Repeated (CE-) CT imaging of anesthetized animals can lead to an impairment of animal motor coordination and, thus, welfare. Furthermore, these standard CT protocols seem to be capable of inducing alterations in tumor physiology when applied repetitively. These potential effects of native and CE-CT should be carefully considered in preclinical oncological research.


Assuntos
Isoflurano , Neoplasias , Camundongos , Animais , Microtomografia por Raio-X , Isoflurano/farmacologia , Compostos de Fenilureia
18.
J Labelled Comp Radiopharm ; 66(3): 116-125, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36807307

RESUMO

[18 F]FTC-146 was introduced as a very potent and selective sigma-1 receptor radioligand, which has shown promising application as an imaging agent for neuropathic pain with positron emission tomography. In line with a multi-laboratory project on animal welfare, we chose this radioligand to investigate its potential for detecting neuropathic pain and tissue damage in tumor-bearing animals. However, the radiochemical yield (RCY) of around 4-7% was not satisfactory to us, and efforts were made to improve it. Herein, we describe an improved approach for the radiosynthesis of [18 F]FTC-146 resulting in a RCY, which is sevenfold higher than that previously reported. A tosylate precursor was synthesized and radio-fluorination experiments were performed via aliphatic nucleophilic substitution reactions using either K[18 F]F-Kryptofix®222 (K2.2.2 )-carbonate system or tetra-n-butylammonium [18 F]fluoride ([18 F]TBAF). Several parameters affecting the radiolabeling reaction such as solvent, 18 F-fluorination agent with the corresponding amount of base, labeling time, and temperature were investigated. Best labeling reaction conditions were found to be [18 F]TBAF and acetonitrile as solvent at 100°C. The new protocol was then translated to an automated procedure using a FX2 N synthesis module. Finally, the radiotracer reproducibly obtained with RCYs of 41.7 ± 4.4% in high radiochemical purity (>98%) and molar activities up to 171 GBq/µmol.


Assuntos
Tomografia por Emissão de Pósitrons , Receptores sigma , Animais , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Radioisótopos de Flúor , Solventes , Receptor Sigma-1
19.
Nanomedicine ; 48: 102650, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36623712

RESUMO

Biodistribution analyses of nanocarriers are often performed with optical imaging. Though dye tags can interact with transporters, e.g., organic anion transporting polypeptides (OATPs), their influence on biodistribution was hardly studied. Therefore, this study compared tumor cell uptake and biodistribution (in A431 tumor-bearing mice) of four near-infrared fluorescent dyes (AF750, IRDye750, Cy7, DY-750) and dye-labeled poly(N-(2-hydroxypropyl)methacrylamide)-based nanocarriers (dye-pHPMAs). Tumor cell uptake of hydrophobic dyes (Cy7, DY-750) was higher than that of hydrophilic dyes (AF750, IRDye750), and was actively mediated but not related to OATPs. Free dyes' elimination depended on their hydrophobicity, and tumor uptake correlated with blood circulation times. Dye-pHPMAs circulated longer and accumulated stronger in tumors than free dyes. Dye labeling significantly influenced nanocarriers' tumor accumulation and biodistribution. Therefore, low-interference dyes and further exploration of dye tags are required to achieve the most unbiased results possible. In our assessment, AF750 and IRDye750 best qualified for labeling hydrophilic nanocarriers.


Assuntos
Portadores de Fármacos , Neoplasias , Camundongos , Animais , Portadores de Fármacos/química , Distribuição Tecidual , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Corantes Fluorescentes/química , Imagem Óptica , Viés , Linhagem Celular Tumoral
20.
Drug Deliv Transl Res ; 13(4): 915-923, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36592287

RESUMO

Despite the introduction of multiple new drugs and combination therapies, conventional dexamethasone remains a cornerstone in the treatment of multiple myeloma (MM). Its application is, however, limited by frequent adverse effects of which the increased infection rate may have the strongest clinical impact. The efficacy-safety ratio of dexamethasone in MM may be increased by encapsulation in long-circulating PEG-liposomes, thereby both enhancing drug delivery to MM lesions and reducing systemic corticosteroid exposure. We evaluated the preliminary safety and feasibility of a single intravenous (i.v.) infusion of pegylated liposomal dexamethasone phosphate (Dex-PL) in heavily pretreated relapsing or progressive symptomatic MM patients within a phase I open-label non-comparative interventional trial at two dose levels. In the 7 patients that were enrolled (prior to having to close the study prematurely due to slow recruitment), Dex-PL was found to be well tolerated and, as compared to conventional dexamethasone, no new or unexpected adverse events were detected. Pharmacokinetic analysis showed high and persisting concentrations of dexamethasone in the circulation for over a week after i.v. administration, likely caused by the long-circulation half-life of the liposomes that retain dexamethasone as the inactive phosphate prodrug form, something which could significantly limit systemic exposure to the active parent drug. Thus, despite the limitations of this small first-in-man trial, Dex-PL seems safe and well tolerated without severe side effects. Follow-up studies are needed to confirm this in a larger patient cohort and to evaluate if i.v. Dex-PL can provide a safer and more efficacious dexamethasone treatment option for MM.


Assuntos
Mieloma Múltiplo , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica , Dexametasona/efeitos adversos , Lipossomos/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/etiologia , Mieloma Múltiplo/patologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA