Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Genet Metab ; 116(3): 215-20, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26432670

RESUMO

Hypophosphatasia (HPP) is a rare inherited skeletal dysplasia due to loss of function mutations in the ALPL gene. The disease is subject to an extremely high clinical heterogeneity ranging from a perinatal lethal form to odontohypophosphatasia affecting only teeth. Up to now genetic diagnosis of HPP is performed by sequencing the ALPL gene by Sanger methodology. Osteogenesis imperfecta (OI) and campomelic dysplasia (CD) are the main differential diagnoses of severe HPP, so that in case of negative result for ALPL mutations, OI and CD genes had often to be analyzed, lengthening the time before diagnosis. We report here our 18-month experience in testing 46 patients for HPP and differential diagnosis by targeted NGS and show that this strategy is efficient and useful. We used an array including ALPL gene, genes of differential diagnosis COL1A1 and COL1A2 that represent 90% of OI cases, SOX9, responsible for CD, and 8 potentially modifier genes of HPP. Seventeen patients were found to carry a mutation in one of these genes. Among them, only 10 out of 15 cases referred for HPP carried a mutation in ALPL and 5 carried a mutation in COL1A1 or COL1A2. Interestingly, three of these patients were adults with fractures and/or low BMD. Our results indicate that HPP and OI may be easily misdiagnosed in the prenatal stage but also in adults with mild symptoms for these diseases.


Assuntos
Hipofosfatasia/diagnóstico , Hipofosfatasia/genética , Adulto , Idoso , Displasia Campomélica/diagnóstico , Pré-Escolar , Diagnóstico Diferencial , Feminino , Feto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hipofosfatasia/fisiopatologia , Lactente , Masculino , Pessoa de Meia-Idade , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Osteogênese Imperfeita/diagnóstico , Desmineralização do Dente/congênito , Desmineralização do Dente/fisiopatologia
2.
Bone ; 72: 137-47, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25433339

RESUMO

Hypophosphatasia (HPP) results from ALPL gene mutations, which lead to a deficiency of tissue-nonspecific alkaline phosphatase (TNAP), and accumulation of inorganic pyrophosphate, a potent inhibitor of mineralization that is also a natural substrate of TNAP, in the extracellular space. HPP causes mineralization disorders including soft bones (rickets or osteomalacia) and defects in teeth and periodontal tissues. Enzyme replacement therapy using mineral-targeting recombinant TNAP has proven effective in preventing skeletal and dental defects in TNAP knockout (Alpl(-/-)) mice, a model for life-threatening HPP. Here, we show that the administration of a soluble, intestinal-like chimeric alkaline phosphatase (ChimAP) improves the manifestations of HPP in Alpl(-/-) mice. Mice received daily subcutaneous injections of ChimAP at doses of 1, 8 or 16 mg/kg, from birth for up to 53 days. Lifespan and body weight of Alpl(-/-) mice were normalized, and vitamin B6-associated seizures were absent with 16 mg/kg/day of ChimAP. Radiographs, µCT and histological analyses documented improved mineralization in cortical and trabecular bone and secondary ossification centers in long bones of ChimAP16-treated mice. There was no evidence of craniosynostosis in the ChimAP16-treated mice and we did not detect ectopic calcification by radiography and histology in the aortas, stomachs, kidneys or lungs in any of the treatment groups. Molar tooth development and function improved with the highest ChimAP dose, including enamel, dentin, and tooth morphology. Cementum remained deficient and alveolar bone mineralization was reduced compared to controls, though ChimAP-treated Alpl(-/-) mice featured periodontal attachment and retained teeth. This study provides the first evidence for the pharmacological efficacy of ChimAP for use in the treatment of skeletal and dental manifestations of HPP.


Assuntos
Fosfatase Alcalina/genética , Hipofosfatasia/genética , Animais , Calcificação Fisiológica , Cemento Dentário , Esmalte Dentário/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Odontogênese/fisiologia , Osteomalacia/patologia , Fenótipo , Raquitismo/patologia , Microtomografia por Raio-X
3.
Reproduction ; 146(5): 419-32, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23929901

RESUMO

Alkaline phosphatase (AP) activity has been demonstrated in the uterus of several species, but its importance in the uterus, in general and during pregnancy, is yet to be revealed. In this study, we focused on identifying AP isozyme types and their hormonal regulation, cell type, and event-specific expression and possible functions in the hamster uterus during the cycle and early pregnancy. Our RT-PCR and in situ hybridization studies demonstrated that among the known Akp2, Akp3, Akp5, and Akp6 murine AP isozyme genes, hamster uteri express only Akp2 and Akp6; both genes are co-expressed in luminal epithelial cells. Studies in cyclic and ovariectomized hamsters established that while progesterone (P4) is the major uterine Akp2 inducer, both P4 and estrogen are strong Akp6 regulators. Studies in preimplantation uteri showed induction of both genes and the activity of their encoded isozymes in luminal epithelial cells during uterine receptivity. However, at the beginning of implantation, Akp2 showed reduced expression in luminal epithelial cells surrounding the implanted embryo. By contrast, expression of Akp6 and its isozyme was maintained in luminal epithelial cells adjacent to, but not away from, the implanted embryo. Following implantation, stromal transformation to decidua was associated with induced expressions of only Akp2 and its isozyme. We next demonstrated that uterine APs dephosphorylate and detoxify endotoxin lipopolysaccharide at their sites of production and activity. Taken together, our findings suggest that uterine APs contribute to uterine receptivity, implantation, and decidualization in addition to their role in protection of the uterus and pregnancy against bacterial infection.


Assuntos
Fosfatase Alcalina/biossíntese , Decídua/enzimologia , Implantação do Embrião , Indução Enzimática , Lipopolissacarídeos/metabolismo , Placentação , Útero/enzimologia , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Cricetinae , Decídua/citologia , Decídua/imunologia , Decídua/fisiologia , Endométrio/citologia , Endométrio/enzimologia , Endométrio/imunologia , Endométrio/fisiologia , Infecções por Escherichia coli/imunologia , Ciclo Estral , Feminino , Imunidade Inata , Isoenzimas/biossíntese , Isoenzimas/genética , Isoenzimas/metabolismo , Lipopolissacarídeos/toxicidade , Mesocricetus , Ovariectomia , Fosforilação , Gravidez , RNA Mensageiro/metabolismo , Útero/citologia , Útero/imunologia , Útero/fisiologia
4.
Bone ; 53(2): 478-86, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23337041

RESUMO

Studies on various compounds of inorganic phosphate, as well as on organic phosphate added by post-translational phosphorylation of proteins, all demonstrate a central role for phosphate in biomineralization processes. Inorganic polyphosphates are chains of orthophosphates linked by phosphoanhydride bonds that can be up to hundreds of orthophosphates in length. The role of polyphosphates in mammalian systems, where they are ubiquitous in cells, tissues and bodily fluids, and are at particularly high levels in osteoblasts, is not well understood. In cell-free systems, polyphosphates inhibit hydroxyapatite nucleation, crystal formation and growth, and solubility. In animal studies, polyphosphate injections inhibit induced ectopic calcification. While recent work has proposed an integrated view of polyphosphate function in bone, little experimental data for bone are available. Here we demonstrate in osteoblast cultures producing an abundant collagenous matrix that normally show robust mineralization, that two polyphosphates (PolyP5 and PolyP65, polyphosphates of 5 and 65 phosphate residues in length) are potent mineralization inhibitors. Twelve-day MC3T3-E1 osteoblast cultures with added ascorbic acid (for collagen matrix assembly) and ß-glycerophosphate (a source of phosphate for mineralization) were treated with either PolyP5 or PolyP65. Von Kossa staining and calcium quantification revealed that mineralization was inhibited in a dose-dependent manner by both polyphosphates, with complete mineralization inhibition at 10µM. Cell proliferation and collagen assembly were unaffected by polyphosphate treatment, indicating that polyphosphate inhibition of mineralization results not from cell and matrix effects but from direct inhibition of mineralization. This was confirmed by showing that PolyP5 and PolyP65 bound to synthetic hydroxyapatite in a concentration-dependent manner. Tissue-nonspecific alkaline phosphatase (TNAP, ALPL) efficiently hydrolyzed the two PolyPs as measured by Pi release. Importantly, at the concentrations of polyphosphates used in this study which inhibited bone cell culture mineralization, the polyphosphates competitively saturated TNAP, thus potentially interfering with its ability to hydrolyze mineralization-inhibiting pyrophosphate (PPi) and mineralizing-promoting ß-glycerophosphate (in cell culture). In the biological setting, polyphosphates may regulate mineralization by shielding the essential inhibitory substrate pyrophosphate from TNAP degradation, and in the same process, delay the release of phosphate from this source. In conclusion, the inhibition of mineralization by polyphosphates is shown to occur via direct binding to apatitic mineral and by mixed inhibition of TNAP.


Assuntos
Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Osteoblastos/metabolismo , Polifosfatos/farmacologia , Animais , Calcificação Fisiológica/efeitos dos fármacos , Linhagem Celular , Camundongos
5.
FEMS Yeast Res ; 10(6): 735-46, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20584084

RESUMO

In this work, we describe the ability of intact cells of Candida parapsilosis to hydrolyze extracellular ATP. ATP hydrolysis was stimulated by MgCl(2) in a dose-dependent manner. The ecto-ATPase activity was increased in the presence of 5 mM MgCl(2), with values of V(max) and apparent K(m) for Mg-ATP(2-) increasing to 33.80 +/- 1.2 nmol Pi h(-1) 10(-8) cells and 0.6 +/- 0.06 mM, respectively. Inhibitors of phosphatases, mitochondrial Mg(2+)-ATPases and Na(+)-ATPases had no effect on the C. parapsilosis Mg(2+)-stimulated ATPase activity, but extracellular impermeant compounds, 4,4'-diisothiocyanatostilbene-2,2'disulfonic acid and suramin, reduced enzyme activity in yeast living cells by 83.1% and 81.9%, respectively. ARL 67156 (6-N,N'-diethyl-d-beta-gamma-dibromomethylene ATP), a nucleotide analogue, also inhibited the ecto-ATPase activity in a dose-dependent manner. ATP was the best substrate for the yeast Mg(2+)-stimulated ecto-enzyme, but ADP, ITP, CTP, GTP and UTP were also hydrolyzed. A direct relationship between ecto-ATPase activity and adhesion to host cells was observed. In these assays, inhibition of enzyme activity resulted in decreased levels of yeast adhesion to epithelial cells. Based also on the differential expression of ecto-ATPase activities in the different isolates of C. parapsilosis, the possible role of this enzyme in fungal biology is discussed.


Assuntos
Adenosina/metabolismo , Antígenos CD/metabolismo , Apirase/metabolismo , Candida/enzimologia , Candida/patogenicidade , Fatores de Virulência/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Antígenos CD/química , Apirase/química , Adesão Celular , Coenzimas/metabolismo , Cricetinae , Cricetulus , Inibidores Enzimáticos/metabolismo , Células Epiteliais , Humanos , Cinética , Cloreto de Magnésio/metabolismo , Especificidade por Substrato , Virulência
6.
FEMS Yeast Res ; 7(4): 621-8, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17419773

RESUMO

This study describes the biochemical characterization of a phosphatase activity present on the cell surface of Candida parapsilosis, a common cause of candidemia. Intact yeasts hydrolyzed p-nitrophenylphosphate to p-nitrophenol at a rate of 24.30+/-2.63 nmol p-nitrophenol h(-1) 10(-7) cells. The cell wall distribution of the Ca. parapsilosis enzyme was demonstrated by transmission electron microscopy. The duration of incubation of the yeast cells with the substrate and cell density influenced enzyme activity linearly. Values of V(max) and apparent K(m) for p-nitrophenylphosphate hydrolysis were 26.80+/-1.13 nmol p-nitrophenol h(-1) 10(-7) cells and 0.47+/-0.05 mM p-nitrophenylphosphate, respectively. The ectophosphatase activity was strongly inhibited at high pH as well as by classical inhibitors of acid phosphatases, such as sodium orthovanadate, sodium molybdate, sodium fluoride, and inorganic phosphate, the final product of the reaction. Only the inhibition caused by sodium orthovanadate was irreversible. Different phophorylated amino acids were used as substrates for the Ca. parapsilosis ectoenzyme, and the highest rate of phosphate hydrolysis was achieved using phosphotyrosine. A direct relationship between ectophosphatase activity and adhesion to host cells was established. In these assays, irreversible inhibition of enzyme activity resulted in decreased levels of yeast adhesion to epithelial cells.


Assuntos
Candida/patogenicidade , Células Epiteliais/microbiologia , Proteínas Fúngicas/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Células CHO , Candida/enzimologia , Parede Celular/enzimologia , Cricetinae , Cricetulus , Nitrofenóis/metabolismo , Compostos Organofosforados/metabolismo
7.
Exp Parasitol ; 112(4): 253-62, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16442100

RESUMO

Trypanosoma rangeli is a parasite of a numerous wild and domestic animals, presenting wide geographical distribution and high immunological cross-reactivity with Trypanosoma cruzi, which may lead to misdiagnosis. T. rangeli has a complex life cycle, involving distinct morphological and functional forms in the vector. Here, we characterized the cell surface polypeptides and the phosphatase activities in short and long epimastigotes forms of T. rangeli, using intact living parasites. The surface protein profile revealed by the incubation of parasites with biotin showed a preferential expression of the 97, 70, 50, 45, 25-22, and 15 kDa biotinylated polypeptides in the long forms, in contrast to the 55 and 28 kDa biotinylated polypeptides synthesized by the short epimastigotes. Additionally, flow cytometry analysis showed that the short forms had relatively lower biotin surface binding than long ones. The involvement of phosphatases with the trypanosomatid differentiation has been proposed. In this sense, T. rangeli living parasites were able to hydrolyze the artificial substrate p-nitrophenylphosphate at a rate of 25.57+/-2.03 and 10.09+/-0.93 nmol p-NPP x h(-1) x 10(7) cells for the short and long epimastigotes, respectively. These phosphatase activities were linear with time for at least 60 min and the optimum pH lies in the acid range. Classical inhibitors of acid phosphatases, such as ammonium molybdate, sodium fluoride, and zinc chloride, showed a significant decrease in these phosphatase activities, with different patterns of inhibition. Additionally, these phosphatase activities presented different kinetic parameters (Km and Vmax) and distinct sensitivities to divalent cations. Both epimastigotes were unable to release phosphatase to the extracellular environment. Cytochemical analysis demonstrated the localization of these enzymes on the parasite surfaces (cell body and flagellum) and in intracellular vacuoles, resembling acidocalcisomes.


Assuntos
Proteínas de Membrana/biossíntese , Peptídeos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Trypanosoma/metabolismo , Animais , Western Blotting , Comunicação Celular/fisiologia , Citometria de Fluxo , Proteínas de Membrana/química , Peptídeos/química , Especificidade por Substrato , Trypanosoma/classificação , Trypanosoma/citologia , Trypanosoma/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA