Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Pharm Bull ; 45(8): 1022-1026, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35908885

RESUMO

The emu is the second largest ratite; thus, their sera and egg yolks, obtained after immunization, could provide therapeutic and diagnostically important immunoglobulins with improved production efficiency. Reliable purification tools are required to establish a pipeline for supplying practical emu-derived antibodies, the majority of which belongs to the immunoglobulin Y (IgY) class. Therefore, we generated a monoclonal secondary antibody specific to emu IgY. Initially, we immunized an emu with bovine serum albumin multiply haptenized with 2,4-dinitrophenyl (DNP) groups. Polyclonal emu anti-DNP antibodies were partially purified using conventional precipitation method and used as antigen for immunizing a BALB/c mouse. Splenocytes were fused with myeloma cells and a hybridoma clone secreting a desirable secondary antibody (mAb#2-16) was established. The secondary antibody bound specifically to emu-derived IgY, distinguishing IgYs from chicken, duck, ostrich, quail, and turkey, as well as human IgGs. Affinity columns immobilizing the mAb#2-16 antibodies enabled purification of emu IgY fractions from sera and egg yolks via simple protocols, with which we succeeded in producing IgYs specific to the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) spike protein with a practical binding ability. We expect that the presented purification method, and the secondary antibody produced in this study, will facilitate the utilization of emus as a novel source of therapeutic and diagnostic antibodies.


Assuntos
COVID-19 , Dromaiidae , Animais , Anticorpos Monoclonais , Teste para COVID-19 , Galinhas/metabolismo , Dromaiidae/metabolismo , Humanos , Imunoglobulinas , Camundongos , SARS-CoV-2
2.
Biol Pharm Bull ; 45(7): 851-855, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35786593

RESUMO

Antibodies that specifically target biomarkers are essential in clinical diagnosis. Genetic engineering has assisted in designing novel antibodies that offer greater antigen-binding affinities, thus providing more sensitive immunoassays. We have succeeded in generating a single-chain Fv fragment (scFv) targeted estradiol-17ß (E2) with more than 370-fold improved affinity, based on a strategy focusing the complementarity-determining region 3 in the VH domain (VH-CDR3). Systematic exploration of amino acid substitutions therein, using a clonal array profiling, revealed a cluster of four substitutions, containing H99P and a serial substitution E100eN-I100fA-L100gQ that lead to a 90-fold increase in E2-binding affinity. This substitution quartet in the VH-CDR3, combined with the substitution cluster I29V/L36M/S77G in the VL domain, resulted in a scFv fragment with a further increase in the affinity (Ka, 3.2 × 1010 M-1). This enabled a highly sensitive enzyme-linked immunosorbent assay capable of detecting up to 0.78 pg/assay. The current study has, thus, focused on the significance of reevaluating the potential of mutagenesis targeting the VH-CDR3, and encouraging the production and use of engineered antibodies that enable enhanced sensitivities as next-generation diagnostic tools.


Assuntos
Estradiol , Anticorpos de Cadeia Única , Afinidade de Anticorpos , Regiões Determinantes de Complementaridade/genética , Mutagênese , Anticorpos de Cadeia Única/genética
3.
J Pharm Biomed Anal ; 190: 113485, 2020 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-32866746

RESUMO

Development of rapid and reliable immunochemical methods for monitoring psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine; Pyb) and psilocin (dephosphorylated metabolite; Psi), the psychoactive compounds contained within hallucinogenic mushrooms (magic mushrooms), is desirable in order to identify these mushrooms and regulate their illicit use. Because no antibody was publicly available for this purpose, we generated two independent monoclonal antibodies (mAbs) against Pyb or Psi, and then developed enzyme-linked immunosorbent assays (ELISAs) by using them. To generate the specific antibodies, novel immunogenic conjugates were prepared by linking Pyb or Psi molecules to carrier proteins by modifying their 2-(N,N-dimethylamino)ethyl side chains. Spleen cells from mice immunized with these conjugates were fused with P3/NS1/1-Ag4-1 myeloma cells, and hybridoma clones secreting anti-Pyb and anti-Psi mAbs were established. These mAbs were characterized for their biochemical features and then applied to competitive ELISAs, which used microplates coated with Pyb or Psi linked with albumin. These ELISAs enabled the determination of Pyb or Psi with measurable ranges of ca. 0.20-20 or 0.040-2.0 µg/assay (limit of detection was 0.14 or 0.029 µg/assay), respectively. The related tryptamines were satisfactorily discriminated as exemplified by the cross-reactivity of the ELISA to determine Pyb (or Psi) with Psi (or Pyb) that were found to be 2.8 % (or <0.5 %), respectively. The Pyb and Psi contents in a dried powder of the hallucinogenic mushroom, Psilocybe cubensis, were determined to be 0.39 and 0.32 (w/w)%, respectively. The ELISAs developed using the current mAbs are promising tools for identifying illegal hallucinogenic mushrooms.


Assuntos
Agaricales , Alucinógenos , Psilocibina/análogos & derivados , Animais , Alucinógenos/análise , Camundongos , Psilocybe , Psilocibina/análise
4.
Sci Rep ; 10(1): 4807, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179767

RESUMO

"Antibody-breeding" has provided therapeutic/diagnostic antibody mutants with greater performance than native antibodies. Typically, random point mutations are introduced into the VH and VL domains of parent antibodies to generate diverse libraries of single-chain Fv fragments (scFvs), from which evolved mutants are selected. We produced an scFv against estradiol-17ß with 11 amino acid substitutions and a >100-fold improved affinity constant (Ka = 1.19 × 1010 M-1) over the parent scFv, enabling immunoassays with >30-fold higher sensitivity. We systematically analyzed contributions of these substitutions to the affinity enhancement. Comparing various partial scFv revertants based on their Kas indicated that a revertant with four substitutions (VH-L100gQ, VL-I29V, -L36M, -S77G) exhibited somewhat higher affinity (Ka = 1.46 × 1010 M-1). Finally, the VH-L100gQ substitution, occurring in VH complementarity-determining region (CDR) 3, was found to be the highest-priority for improving the affinity, and VL-I29V and/or VL-L36M cooperated significantly. These findings encouraged us to reconsider the potential of VH-CDR3-targeting mutagenesis, which has been frequently attempted. The substitution(s) wherein might enable a "high rate of return" in terms of selecting mutants with dramatically enhanced affinities. The "high risk" of generating a tremendous excess of "junk mutants" can be overcome with the efficient selection systems that we developed.


Assuntos
Afinidade de Anticorpos/genética , Estradiol/imunologia , Mutação , Anticorpos de Cadeia Única/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Humanos , Anticorpos de Cadeia Única/química
5.
Anal Chem ; 89(1): 988-995, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27983781

RESUMO

Immunoassays for cotinine, a major nicotine metabolite, in the urine are useful for monitoring the degree of tobacco smoke exposure. However, hybridoma-based anti-cotinine antibodies lack sufficient binding affinity to perform practically sensitive measurements, and thus most cotinine assays still rely on polyclonal antibodies. Here, we describe the generation of a mutant single-chain Fv fragment (scFv) that was used in an enzyme-linked immunosorbent assay (ELISA) to determine urinary cotinine levels in passive smokers. A "wild-type" scFv (scFv-wt) with a Ka value of 2.7 × 107 M-1 (at 4 °C) was prepared by linking the VH and VL domains in a mouse anti-cotinine antibody. "One-shot" random mutagenesis on the scFv-wt gene by error-prone PCR generated mutant scFv genes, which were expressed on phage particles. Repeated panning directed toward mutants with slower off-rates selected scFv clones that showed improved sensitivity in an ELISA system. One of these mutants (scFv#m1-54) with five amino acid substitutions showed more than a 40-fold enhanced Ka (1.2 × 109 M-1 at 4 °C) and, thus, was used to monitor human urinary cotinine. A limited amount of soluble scFv was reacted with urine specimens (or cotinine standards) at 4 °C for 120 min in microwells on which cotinine residues had been immobilized. The midpoint of the dose-response curves under optimized conditions (0.27 ng/assay) was more than 100-fold lower than the ELISA results obtained using scFv-wt. The limit of detection (8.4 pg/assay) corresponded to 0.17 ng/mL urinary cotinine, which was satisfactorily low for testing the threshold levels for passive smoke exposure. The assay values for volunteers correlated with the values determined using a commercial assay kit. This study evidently showed the potential of a molecular breeding approach, in which simple in vitro evolution might generate superior antibody reagents as cloned proteins, overcoming the limited molecular diversity inherent to conventional immunization-based antibodies.


Assuntos
Cotinina/urina , Reações Antígeno-Anticorpo , Criança , Cotinina/química , Cotinina/imunologia , Ensaio de Imunoadsorção Enzimática , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Anticorpos de Cadeia Única/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA