RESUMO
Currently, targeted alpha therapy (TAT) is a new therapy involving the administration of a therapeutic drug that combines a substance of α-emitting nuclides that kill cancer cells and a drug that selectively accumulates in cancer cells. It is known to be effective against cancers that are difficult to treat with existing methods, such as cancer cells that are widely spread throughout the whole body, and there are high expectations for its early clinical implementation. The nuclides for TAT, including 149Tb, 211At, 212/213Bi, 212Pb (for 212Bi), 223Ra, 225Ac, 226/227Th, and 230U, are known. However, some nuclides encounter problems with labeling methods and lack sufficient preclinical and clinical data. We labeled the compounds targeting prostate specific membrane antigen (PSMA) with 211At and 225Ac. PSMA is a molecule that has attracted attention as a theranostic target for prostate cancer, and several targeted radioligands have already shown therapeutic effects in patients. The results showed that 211At, which has a much shorter half-life, is no less cytotoxic than 225Ac. In 211At labeling, our group has also developed an original method (Shirakami Reaction). We have succeeded in obtaining a highly purified labeled product in a short timeframe using this method.
Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Radioisótopos , Humanos , Masculino , Meia-Vida , Medicina Nuclear , Neoplasias da Próstata/tratamento farmacológico , Radioisótopos/uso terapêuticoRESUMO
Activity of 225Ac was measured by the digital anti-coincidence spectroscopy technique using a 4πα-γ detector configuration, composed of a sandwich type 4π plastic scintillator and Ge detectors. Ultrathin plastic scintillators were used for selective detection of α-particles emitted from 225Ac and its progenies, and the α-counting efficiencies of a 4π plastic scintillation detector for individual nuclides in the decay chain were determined as well. A list-mode multichannel analyzer was employed to record coincidence/anti-coincidence events for off-line analyses. The time difference distribution spectra revealed α-particle emission following 213Po decay without ß-particle interference from 213Bi.