Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Food Sci ; 88(11): 4544-4559, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37812169

RESUMO

Numerous biochemical processes are involved in fruit maturation, such as ethylene production, phenolic compounds accumulation, and antioxidant enzymes production. Therefore, the aim of the present work was the evaluation of ethylene production, and the bioactive compounds change in the exocarp and mesocarp of five peach [Prunus persica (L.)] cultivars during three ripening stages, (1) early ripening (ER), (2) commercial maturation, and (3) full ripening (FR) in order to establish the best stage to harvest each peach variety. The experiment was applied to five peach cultivars growing within an arid bioclimatic environment covering the whole peach production season: two early cultivars, Flordastar and Early Maycrest; one variety of mid-season Rubirich; and two late cultivars, Sweet Cap and O'Henry. Ethylene production, phenolic compounds, and oxidative stress through antioxidant enzyme activities (catalase, peroxidases [PODs] Class III, and ascorbate-POD), malondialdehyde (MDA), and hydrogen peroxide (H2 O2 ) production were determined in the exocarp and mesocarp of peach fruits. The results showed a significant increase in ethylene production during fruit ripening. However, a parallel decrease in the level of phenolic compounds as well as in antioxidant enzyme activities was observed. The FR stage was also characterized by an important accumulation of MDA and H2 O2 . In conclusion, important changes in fruit quality associated with the production level of ethylene were observed. Fruits harvested during the ER stage would be more suitable for delivering to distant markets and more appreciated by the peach industries due to their highest phenolic acid content, best antioxidant enzyme activities, and lowest oxidative stress indicator.


Assuntos
Prunus persica , Antioxidantes/análise , Etilenos/análise , Frutas/química , Proteínas de Plantas/análise
2.
Chem Biodivers ; 20(8): e202300290, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37391386

RESUMO

Sonchus oleraceus (L.) L. (Asteraceae) is an edible wild plant, known for its uses in traditional medicine. The aim of this study is to explore the phytochemical composition of the aerial parts (AP) and roots (R) of aqueous extracts of Sonchus oleraceus L. growing in Tunisia, using liquid chromatography-tandem mass spectrometry(LC/MS/MS), and determine the content of polyphenols and antioxidant activities. Results showed that aqueous extracts of AP and R contained, respectively, 195.25±33 µg/g and 118.66±14 µg/g gallic acid equivalent (GAE), and 52.58±7 µg/g and 3.2±0.3µg/g quercetin equivalent. AP and R extracts also contained tannins, 581.78±33 µg/g and 948.44±19 µg/g GAE. The AP extract in the 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) scavenging activities, hydroxyl radical scavenging (OH-) and in cupric reducing antioxidant activity (CUPRAC) assays were respectively 0.325±0.036 mg/mL, 0.053±0.018 mg/mL, 0.696±0.031 mg/mL and 60.94±0.004 µMTE/g, while the R extract using the same assays showed, 0.209±0.052 mg/mL, 0.034±0.002 mg/mL, 0.444±0.014 mg/mL and 50.63±0.006 µM Trolox equivalent/g, respectively. A total of 68 compounds were tentatively identified by LC/MS/MS in both extracts in which quinic acid, pyrogallol, osthrutin, piperine, gentisic acid, fisetin, luteolin, caffeic acid, gingerol, were the most abundant in the LC/MS/MS spectrum. Many of these metabolites were found for the first time in Tunisian Sonchus oleraceus L. which may take account for the antioxidant activities exhibited by the plant.


Assuntos
Antioxidantes , Sonchus , Antioxidantes/farmacologia , Antioxidantes/química , Espectrometria de Massas em Tandem/métodos , Extratos Vegetais/química , Polifenóis/química , Ácido Gálico , Flavonoides/química
3.
Int Immunopharmacol ; 61: 317-324, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29913426

RESUMO

Plants and natural molecules are generally consumed not in raw state but after different processing conditions (heating, mechanical agitation or cooking). The understanding of the chemistry and biological outcome of thermal treatment is still scarce. In the current study, Eriodictyol, a natural flavanone, has undergone heat treatment, generating hence three different products ((3-(3,4-dihydroxyphenyl)-3-hydroxypropanoic acid, (3-(3,4-dihydroxyphenyl) propanal) and an unidentified component). The consequences of aforementioned treatment on the immunomodulatory behavior of resulted molecules were evaluated. The amount of nitric oxide production and the lysosomal enzyme activity were determined in vitro on mouse peritoneal macrophages. The kinetic of cellular antioxidant activity in splenocytes and macrophages was measured. The present investigation demonstrates that heat-processed eriodictyol significantly enhanced the proliferation of lymphocytes B and T compared to native eriodictyol. Indeed, this compound showed an important improvement on cytotoxic T lymphocyte (CTL) and natural killer (NK) activities. In addition, the production of nitric oxide (NO) and suppression of phagocytic activity of activated macrophages have been increasingly important after thermal processing. Furthermore, it was also revealed that heat-treated Erio in comparison with the native (non heat-treated) molecule has a highest cellular anti-oxidant activity in splenocytes and macrophages cells. These findings highlight the importance of heat-process as feasible and effective strategy to improve the immunomodulatory and the antioxidant efficiency of an known flavanone Eriodictyol.


Assuntos
Antioxidantes/uso terapêutico , Linfócitos B/efeitos dos fármacos , Produtos Biológicos/uso terapêutico , Flavanonas/uso terapêutico , Temperatura Alta/uso terapêutico , Macrófagos/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Animais , Antioxidantes/química , Linfócitos B/imunologia , Produtos Biológicos/química , Proliferação de Células , Células Cultivadas , Citotoxicidade Imunológica , Flavanonas/química , Imunomodulação , Ativação Linfocitária , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo , Linfócitos T/imunologia
4.
Tumour Biol ; 37(5): 6571-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26638168

RESUMO

Flavonoids impart a variety of biological activities, including anti-oxidant, anti-inflammatory, and anti-genotoxic effects. This study investigated the effects of flavone luteolin and apigenin on immune cell functions, including proliferation, natural killer (NK) cell activity, and cytotoxic T lymphocyte (CTL) activity of isolated murine splenocytes. We report for the first time that flavones enhance lymphocyte proliferation at 10 µM. Luteolin and apigenin significantly promote lipopolysaccharide (LPS)-stimulated splenocyte proliferation and enhance humoral immune responses. Luteolin induces a weak cell proliferation of lectin-stimulated splenic T cells, when compared to apigenin. In addition, both flavones significantly enhance NK cell and CTL activities. Furthermore, our study demonstrated that both flavones could inhibit lysosomal enzyme activity, suggesting a potential anti-inflammatory effect. The anti-inflammatory activity was concomitant with the cellular anti-oxidant effect detected in macrophages, red blood cells, and splenocytes. We conclude from this study that flavones exhibited an immunomodulatory effect which could be ascribed, in part, to its cytoprotective capacity via its anti-oxidant activity.


Assuntos
Anti-Inflamatórios/química , Antioxidantes/química , Flavonas/química , Fatores Imunológicos/química , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/imunologia , Eritrócitos/metabolismo , Flavonas/farmacologia , Fatores Imunológicos/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Linfócitos/metabolismo , Lisossomos/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Camundongos , Relação Estrutura-Atividade , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo
5.
Tumour Biol ; 37(5): 6511-7, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26637225

RESUMO

The purpose of this study was to assess the antitumor and immunomodulatory effects of the aqueous extract from Daphne gnidium in mice-bearing melanoma tumor. Balb/C mice were subcutaneously implanted with B16-F10 cells and treated intraperitoneally with the aqueous extract at 200 mg/Kg b.w for 21 days. After euthanization on day 22, the tumors were weighed; lymphocyte proliferation, cytotoxic T lymphocyte (CTL), and natural killer (NK) cell activities were evaluated using the MTT assay. Macrophage phagocytosis was studied by measuring the lysosomal activity. In addition to its potential to inhibit the growth of the transplantable tumor, the aqueous extract remarkably induced splenocyte proliferation and both NK and CTL activities in tumor-bearing mice. The aqueous extract was also seen to have promoted lysosomal activity of host macrophages.


Assuntos
Antineoplásicos/farmacologia , Daphne/química , Sistema Imunitário/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Extratos Vegetais/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Lisossomos/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo
6.
Eur J Pharmacol ; 766: 99-105, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26432689

RESUMO

Reactive oxygen species are well-known mediators of various biological responses. In this study, we examined the effect of three phenolic acids, caffeic, coumaric and ferulic acids, on superoxide anion production, adhesion and migration of human lung (A549) and colon adenocarcinoma (HT29-D4) cancer cell lines. Proliferation of both tumor cells was inhibited by phenolic acids. Caffeic, coumaric and ferulic acids also significantly inhibited superoxide production in A549 and HT29-D4 cells. Superoxide anion production decreased by 92% and 77% at the highest tested concentration (200 µM) of caffeic acid in A549 and HT29-D4 cell lines respectively. Furthermore, A549 and HT29-D4 cell adhesion was reduced by 77.9% and 79.8% respectively at the higher tested concentration of ferulic acid (200 µM). Migration assay performed towards A549 cell line, revealed that tested compounds reduced significantly cell migration. At the highest concentration tested (200 µM), the covered surface was 7.7%, 9.5% and 35% for caffeic, coumaric or ferulic acids, respectively. These results demonstrate that caffeic, coumaric and ferulic acids may participate as active ingredients in anticancer agents against lung and colon cancer development, at adhesion and migration steps of tumor progression.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Ácidos Cafeicos/farmacologia , Ácidos Cumáricos/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Superóxidos/metabolismo , Cicatrização/efeitos dos fármacos
7.
Pharm Biol ; 53(12): 1786-94, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25880139

RESUMO

CONTEXT: The leaves of Eriobotrya japonica (Thunb.) Lindl. (Rosaceae) are used in traditional medicine to treat inflammatory diseases. However, information about the antigenotoxic and antioxidant properties of its leaves remains to be elucidated. OBJECTIVE: The objective of this work was to evaluate the mutagenic/antimutagenic, genotoxic/antigenotoxic, and antioxidant potentials of aqueous and total oligomers flavonoid (TOF) extracts from E. japonica. MATERIALS AND METHODS: The mutagenic/antimutagenic and genotoxic/antigenotoxic potentials of extracts (50, 250, and 500 µg/plate) were evaluated, respectively, by the Ames test with 48 h incubation and the SOS chromotest test with 2 h incubation. The antioxidant capacity of these extracts (ranging from 50 to 700 µg/mL) was tested using xanthine/xanthine oxidase and the deoxyribose assays. RESULTS: Eriobotrya japonica extracts showed neither mutagenic nor genotoxic effect. The highest protective effect against methyl methanesulfonate and 2-aminoanthracene was obtained in the presence of aqueous extract, with IC50 values of 80 and 140 µg/plate, respectively, against S. typhimurium TA104. Moreover, this extract (500 µg/plate) was also able to reduce significantly the genotoxicity induced by nitrofurantoin and aflatoxin B1 with IC50 values of 140 and 240 µg/assay, respectively. Likewise, aqueous and TOF extracts inhibited xanthine oxidase and superoxide anion formation with IC50 values ranging from 45 to 95 and from 70 to 90 µg/mL, respectively. However, TOF extract is more efficient in inhibiting hydroxyl radical and chelating iron ion with IC50 values of 140 and 400 µg/mL, respectively, when compared with the aqueous extract. CONCLUSION: Eriobotrya japonica prevents the genotoxicity of some carcinogenic substances probably thanks to its antioxidant capacities.


Assuntos
Antimutagênicos/farmacologia , Antioxidantes/farmacologia , Dano ao DNA/efeitos dos fármacos , Eriobotrya , Extratos Vegetais/farmacologia , Folhas de Planta , Antimutagênicos/isolamento & purificação , Antioxidantes/isolamento & purificação , Dano ao DNA/fisiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Sequestradores de Radicais Livres/metabolismo , Extratos Vegetais/isolamento & purificação , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/metabolismo
8.
Drug Chem Toxicol ; 35(1): 1-10, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21777131

RESUMO

Dietary flavonoids have been shown to exert specific cytotoxicity toward some cancer cells, but the precise molecular mechanisms are still not completely understood. In this study, cytotoxic effects of flavones (apigenin and luteolin) on two different cancer cell lines, including human chronic myelogenous erythroleukaemia (K562) and bladder carcinoma (RT112), were determined, and the molecular mechanisms responsible for their cytotoxic effects were studied. The results of an MTT assay showed that luteolin and apigenin were able to induce cytotoxicity in K562 and RT112 cells in a dose- and time-dependent manner. The cytotoxic potency of luteolin was higher than that of apigenin. Flow-cytometry and DNA-fragmentation analysis indicated that the cytotoxicity induced by luteolin and apigenin was mainly due to apoptosis, with minor cell-cycle perturbations. This apoptotic response was characterized by an increase of the sub-G1 fraction of treated cells, poly(ADP-ribose) polymerase proteolysis, typical ladder of DNA fragmentation, and Annexin V-positive cells. In conclusion, luteolin and apigenin exert cytotoxic effects in different cancer cell lines in which apoptosis plays an important role. Thus, flavones could be considered as potential chemotherapeutic agents.


Assuntos
Apigenina/farmacologia , Leucemia Eritroblástica Aguda/tratamento farmacológico , Luteolina/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacologia , Apigenina/administração & dosagem , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Citometria de Fluxo , Humanos , Células K562 , Leucemia Eritroblástica Aguda/patologia , Luteolina/administração & dosagem , Fatores de Tempo , Neoplasias da Bexiga Urinária/patologia
9.
Chem Biol Interact ; 181(1): 85-94, 2009 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-19446539

RESUMO

A Total Oligomers Flavonoids (TOFs) and ethyl acetate extracts of Cyperus rotundus were analyzed, in vitro, for their antioxidant activity using several biochemical assays: the xanthine (X)/xanthine oxidase (XO), the lipid peroxidation induced by H(2)O(2) in K562 human chronic myelogenous leukemia cells and the DNA damage in pKS plasmid DNA assay induced by H(2)O(2)/UV-photolysis and for their apoptotic effect. TOF and ethyl acetate extracts were found to be efficient in inhibiting xanthine oxidase with IC(50) values of 240 and 185 microg/ml and superoxide anion with IC(50) values of 150 and 215 microg/ml, respectively. Also, all the extracts tested were effective in reducing the production of thiobarbituric acid reactive substances (TBARS) and were able to protect against H(2)O(2)/UV-photolysis induced DNA damage. The highest activity, measured as equivalents of MDA concentration, was observed in the ethyl acetate extract (MDA=2.04 nM). In addition, the data suggest that only TOF enriched extract exerts growth inhibition on K562 cells through apoptosis induction. Therefore, these extracts were subjected to further separation by chromatographic methods. Thus, three major compounds (catechin, afzelechin and galloyl quinic acid) were isolated from the TOF enriched extract and five major compounds (luteolin, ferulic acid, quercetin, 3-hydroxy, 4-methoxy-benzoic acid and 6,7-dimethoxycoumarin) from ethyl acetate extract. Their structures were determined by spectroscopic data analysis and comparison with the literature. In addition, we evaluate the biological activities of the catechin, ferulic acid and luteolin. This investigation has revealed that the luteolin was the most active in reducing the production of TBARS (MDA=1.5 nM), inhibiting significantly the proliferation of K562 cells (IC(50)=25 microg/ml) and protecting against H(2)O(2)/UV-photolysis induced DNA damage. In conclusion, the study reveals that the ability of C. rotundus to inhibit the enzyme xanthine oxidase (XO), the lipid peroxidation and to exert apoptotic effect, may explain possible mechanisms by which C. rotundus exhibits its health benefits.


Assuntos
Antioxidantes/farmacologia , Proliferação de Células/efeitos dos fármacos , Cyperus/química , Leucemia Eritroblástica Aguda/patologia , Extratos Vegetais/farmacologia , Dano ao DNA , Eletroforese em Gel de Ágar , Humanos , Peróxido de Hidrogênio/toxicidade , Células K562 , Espectroscopia de Ressonância Magnética , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA