Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 1(11): 16149, 2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-27563844

RESUMO

Fungal cells are surrounded by an extracellular cell wall. This complex matrix of proteins and polysaccharides protects against adverse stresses and determines the shape of fungal cells. The polysaccharides of the fungal wall include 1,3-ß-glucan and chitin, which are synthesized by membrane-bound synthases at the growing cell tip. A hallmark of filamentous fungi is the class V chitin synthase, which carries a myosin-motor domain. In the corn smut fungus Ustilago maydis, the myosin-chitin synthase Mcs1 moves to the plasma membrane in secretory vesicles, being delivered by kinesin-1 and myosin-5. The myosin domain of Mcs1 enhances polar secretion by tethering vesicles at the site of exocytosis. It remains elusive, however, how other cell-wall-forming enzymes are delivered and how their activity is coordinated post secretion. Here, we show that the U. maydis class VII chitin synthase and 1,3-ß-glucan synthase travel in Mcs1-containing vesicles, and that their apical secretion depends on Mcs1. Once in the plasma membrane, anchorage requires enzyme activity, which suggests co-synthesis of chitin and 1,3-ß-glucan polysaccharides at sites of exocytosis. Thus, delivery of cell-wall-forming enzymes in Mcs1 vesicles ensures local foci of fungal cell wall formation.


Assuntos
Parede Celular/enzimologia , Parede Celular/fisiologia , Vesículas Secretórias/metabolismo , Ustilago/fisiologia , Membrana Celular/química , Membrana Celular/metabolismo , Quitina/metabolismo , Quitina Sintase/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Glucosiltransferases/metabolismo , Miosinas/metabolismo , Vesículas Secretórias/química , Ustilago/enzimologia , Ustilago/crescimento & desenvolvimento , beta-Glucanas/metabolismo
2.
J Cell Biol ; 211(5): 945-54, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26620910

RESUMO

Intracellular transport is mediated by molecular motors that bind cargo to be transported along the cytoskeleton. Here, we report, for the first time, that peroxisomes (POs), lipid droplets (LDs), and the endoplasmic reticulum (ER) rely on early endosomes (EEs) for intracellular movement in a fungal model system. We show that POs undergo kinesin-3- and dynein-dependent transport along microtubules. Surprisingly, kinesin-3 does not colocalize with POs. Instead, the motor moves EEs that drag the POs through the cell. PO motility is abolished when EE motility is blocked in various mutants. Most LD and ER motility also depends on EE motility, whereas mitochondria move independently of EEs. Covisualization studies show that EE-mediated ER motility is not required for PO or LD movement, suggesting that the organelles interact with EEs independently. In the absence of EE motility, POs and LDs cluster at the growing tip, whereas ER is partially retracted to subapical regions. Collectively, our results show that moving EEs interact transiently with other organelles, thereby mediating their directed transport and distribution in the cell.


Assuntos
Citoesqueleto/metabolismo , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Gotículas Lipídicas/metabolismo , Peroxissomos/metabolismo , Dineínas/metabolismo , Proteínas de Fluorescência Verde/química , Cinesinas/metabolismo , Lipídeos/química , Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Mutação , Transporte Proteico , Saccharomyces cerevisiae , Ustilago
3.
J Cell Biol ; 198(3): 343-55, 2012 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-22851316

RESUMO

Exchange between the nucleus and the cytoplasm is controlled by nuclear pore complexes (NPCs). In animals, NPCs are anchored by the nuclear lamina, which ensures their even distribution and proper organization of chromosomes. Fungi do not possess a lamina and how they arrange their chromosomes and NPCs is unknown. Here, we show that motor-driven motility of NPCs organizes the fungal nucleus. In Ustilago maydis, Aspergillus nidulans, and Saccharomyces cerevisiae fluorescently labeled NPCs showed ATP-dependent movements at ~1.0 µm/s. In S. cerevisiae and U. maydis, NPC motility prevented NPCs from clustering. In budding yeast, NPC motility required F-actin, whereas in U. maydis, microtubules, kinesin-1, and dynein drove pore movements. In the latter, pore clustering resulted in chromatin organization defects and led to a significant reduction in both import and export of GFP reporter proteins. This suggests that fungi constantly rearrange their NPCs and corresponding chromosomes to ensure efficient nuclear transport and thereby overcome the need for a structural lamina.


Assuntos
Cromossomos/ultraestrutura , Fungos/fisiologia , Poro Nuclear/metabolismo , Actinas/metabolismo , Transporte Ativo do Núcleo Celular , Trifosfato de Adenosina/química , Aspergillus nidulans/metabolismo , Cromatina/metabolismo , Corantes Fluorescentes/farmacologia , Genes Reporter , Proteínas de Fluorescência Verde/química , Cinesinas/metabolismo , Luz , Microscopia de Fluorescência/métodos , Microtúbulos/ultraestrutura , Lâmina Nuclear/metabolismo , Fotoquímica/métodos , Plasmídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Ustilago/metabolismo
4.
EMBO J ; 31(1): 214-27, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-22027862

RESUMO

Plant infection by pathogenic fungi requires polarized secretion of enzymes, but little is known about the delivery pathways. Here, we investigate the secretion of cell wall-forming chitin synthases (CHSs) in the corn pathogen Ustilago maydis. We show that peripheral filamentous actin (F-actin) and central microtubules (MTs) form independent tracks for CHSs delivery and both cooperate in cell morphogenesis. The enzyme Mcs1, a CHS that contains a myosin-17 motor domain, is travelling along both MTs and F-actin. This transport is independent of kinesin-3, but mediated by kinesin-1 and myosin-5. Arriving vesicles pause beneath the plasma membrane, but only ~15% of them get exocytosed and the majority is returned to the cell centre by the motor dynein. Successful exocytosis at the cell tip and, to a lesser extent at the lateral parts of the cell requires the motor domain of Mcs1, which captures and tethers the vesicles prior to secretion. Consistently, Mcs1-bound vesicles transiently bind F-actin but show no motility in vitro. Thus, kinesin-1, myosin-5 and dynein mediate bi-directional motility, whereas myosin-17 introduces a symmetry break that allows polarized secretion.


Assuntos
Quitina Sintase/metabolismo , Proteínas Fúngicas/metabolismo , Cinesinas/metabolismo , Miosinas/metabolismo , Ustilago/enzimologia , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Ustilago/metabolismo
5.
Mol Biol Cell ; 22(19): 3645-57, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21832152

RESUMO

The polarity of microtubules (MTs) determines the motors for intracellular motility, with kinesins moving to plus ends and dynein to minus ends. In elongated cells of Ustilago maydis, dynein is thought to move early endosomes (EEs) toward the septum (retrograde), whereas kinesin-3 transports them to the growing cell tip (anterograde). Occasionally, EEs run up to 90 µm in one direction. The underlying MT array consists of unipolar MTs at both cell ends and antipolar bundles in the middle region of the cell. Cytoplasmic MT-organizing centers, labeled with a γ-tubulin ring complex protein, are distributed along the antipolar MTs but are absent from the unipolar regions. Dynein colocalizes with EEs for 10-20 µm after they have left the cell tip. Inactivation of temperature-sensitive dynein abolishes EE motility within the unipolar MT array, whereas long-range motility is not impaired. In contrast, kinesin-3 is continuously present, and its inactivation stops long-range EE motility. This indicates that both motors participate in EE motility, with dynein transporting the organelles through the unipolar MT array near the cell ends, and kinesin-3 taking over at the beginning of the medial antipolar MT array. The cooperation of both motors mediates EE movements over the length of the entire cell.


Assuntos
Dineínas/metabolismo , Endossomos/enzimologia , Cinesinas/metabolismo , Microtúbulos/enzimologia , Ustilago/enzimologia , Polaridade Celular , Citoplasma/enzimologia , Citoplasma/genética , Dineínas/genética , Hifas/enzimologia , Hifas/genética , Cinesinas/genética , Centro Organizador dos Microtúbulos/enzimologia , Microtúbulos/genética , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Ustilago/genética
6.
Biochimie ; 93(10): 1685-93, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21672601

RESUMO

Clitocypin and macrocypin are cysteine protease inhibitors of the mycocypin family which is unique to basidiomycetes. We have established that Clitocybe nebularis and Macrolepiota procera each contain genes for both macrocypin and clitocypin. Both are expressed in M. procera but only clitocypin in C. nebularis. Further analysis of mycocypin expression at the mRNA and protein levels in mature fruiting bodies of M. procera revealed that clitocypin is expressed evenly throughout the fruiting body, while the level of expression of macrocypins varies, and, at the protein level, is much higher in the veil fragments and the ring. The expression patterns of various mycocypins were determined in Coprinopsis cinerea, using promoters linked to a reporter gene. The expression profile of the clitocypin promoter was similar to that of the constitutive promoter gpdII from Agaricus bisporus, while that of the macrocypin 4 promoter was limited to the outer edges of the fruiting body throughout development. In addition, the activity of the macrocypin 3 promoter was different, indicating different regulation of expression for different macrocypin genes. The complex, tissue specific expression patterns for mycocypin genes suggest different biological roles for the products, either in regulation of endogenous proteases or in defense against pathogens or predators.


Assuntos
Basidiomycota/metabolismo , Inibidores de Cisteína Proteinase/metabolismo , Carpóforos/metabolismo , Proteínas Fúngicas/metabolismo , Basidiomycota/genética , Inibidores de Cisteína Proteinase/genética , Carpóforos/genética , Proteínas Fúngicas/genética , Immunoblotting , Reação em Cadeia da Polimerase
7.
EMBO J ; 30(4): 652-64, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21278707

RESUMO

Bidirectional transport of early endosomes (EEs) involves microtubules (MTs) and associated motors. In fungi, the dynein/dynactin motor complex concentrates in a comet-like accumulation at MT plus-ends to receive kinesin-3-delivered EEs for retrograde transport. Here, we analyse the loading of endosomes onto dynein by combining live imaging of photoactivated endosomes and fluorescent dynein with mathematical modelling. Using nuclear pores as an internal calibration standard, we show that the dynein comet consists of ∼55 dynein motors. About half of the motors are slowly turned over (T(1/2): ∼98 s) and they are kept at the plus-ends by an active retention mechanism involving an interaction between dynactin and EB1. The other half is more dynamic (T(1/2): ∼10 s) and mathematical modelling suggests that they concentrate at MT ends because of stochastic motor behaviour. When the active retention is impaired by inhibitory peptides, dynein numbers in the comet are reduced to half and ∼10% of the EEs fall off the MT plus-ends. Thus, a combination of stochastic accumulation and active retention forms the dynein comet to ensure capturing of arriving organelles by retrograde motors.


Assuntos
Dineínas/metabolismo , Endossomos/metabolismo , Microtúbulos/metabolismo , Multimerização Proteica/fisiologia , Sequência de Aminoácidos , Transporte Biológico/fisiologia , Dineínas/análise , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Modelos Biológicos , Modelos Teóricos , Organismos Geneticamente Modificados , Concentração Osmolar , Ligação Proteica/fisiologia , Homologia de Sequência de Aminoácidos , Processos Estocásticos , Ustilago/genética , Ustilago/metabolismo
8.
Curr Genet ; 45(1): 9-18, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14600788

RESUMO

In this study, we isolated and sequenced eight non-allelic laccase genes from Coprinopsis cinerea ( Coprinus cinereus) homokaryon AmutBmut. These eight genes represent the largest laccase gene family identified so far in a single haploid fungal genome. We analyzed the phylogenetic relationships between these genes by intron positions, amino acid sequence conservation and similarities in promoter sequences. All deduced protein products have the laccase signature sequences L1-L4, the typical conserved cysteine and the ten histidine residues which are ligands in the two laccase copper-binding centers, T1 and T2/T3. Proteins Lcc2 and Lcc3 of Coprinopsis cinerea are most similar to the acidic, membrane-associated laccase CLAC2 from Coprinellus congregatus implicated in neutralization of acidic medium. All other laccases from the saprophyte Coprinopsis cinerea, including the well described enzyme Lcc1, form a cluster separate from these three enzymes and from various laccases of wood-rotting and plant-pathogenic basidiomycetes.


Assuntos
Coprinus/enzimologia , Coprinus/genética , Lacase/genética , Sequência de Aminoácidos , Clonagem Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Íntrons/genética , Dados de Sequência Molecular , Filogenia , Regiões Promotoras Genéticas/genética , Análise de Sequência de Proteína , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA