Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Nutrients ; 15(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37111157

RESUMO

The natural amino acid asparagine (Asn) is required by cells to sustain function and proliferation. Healthy cells can synthesize Asn through asparagine synthetase (ASNS) activity, whereas specific cancer and genetically diseased cells are forced to obtain asparagine from the extracellular environment. ASNS catalyzes the ATP-dependent synthesis of Asn from aspartate by consuming glutamine as a nitrogen source. Asparagine Synthetase Deficiency (ASNSD) is a disease that results from biallelic mutations in the ASNS gene and presents with congenital microcephaly, intractable seizures, and progressive brain atrophy. ASNSD often leads to premature death. Although clinical and cellular studies have reported that Asn deprivation contributes to the disease symptoms, the global metabolic effects of Asn deprivation on ASNSD-derived cells have not been studied. We analyzed two previously characterized cell culture models, lymphoblastoids and fibroblasts, each carrying unique ASNS mutations from families with ASNSD. Metabolomics analysis demonstrated that Asn deprivation in ASNS-deficient cells led to disruptions across a wide range of metabolites. Moreover, we observed significant decrements in TCA cycle intermediates and anaplerotic substrates in ASNS-deficient cells challenged with Asn deprivation. We have identified pantothenate, phenylalanine, and aspartate as possible biomarkers of Asn deprivation in normal and ASNSD-derived cells. This work implies the possibility of a novel ASNSD diagnostic via targeted biomarker analysis of a blood draw.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Aspartato-Amônia Ligase , Deficiência Intelectual , Microcefalia , Humanos , Asparagina/genética , Aspartato-Amônia Ligase/genética , Aspartato-Amônia Ligase/química , Aspartato-Amônia Ligase/metabolismo , Ácido Aspártico , Deficiência Intelectual/genética , Atrofia
2.
J Biol Chem ; 298(9): 102385, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35985424

RESUMO

Asparagine synthetase (ASNS) catalyzes synthesis of asparagine (Asn) and Glu from Asp and Gln in an ATP-dependent reaction. Asparagine synthetase deficiency (ASNSD) results from biallelic mutations in the ASNS gene. Affected children exhibit congenital microcephaly, continued brain atrophy, seizures, and often premature mortality. However, the underlying mechanisms are unclear. This report describes a compound heterozygotic ASNSD child with two novel mutations in the ASNS gene, c.1118G>T (paternal) and c.1556G>A (maternal), that lead to G373V or R519H ASNS variants. Structural mapping suggested that neither variant participates directly in catalysis. Growth of cultured fibroblasts from either parent was unaffected in Asn-free medium, whereas growth of the child's cells was suppressed by about 50%. Analysis of Asn levels unexpectedly revealed that extracellular rather than intracellular Asn correlated with the reduced proliferation during incubation of the child's cells in Asn-free medium. Our attempts to ectopically express the G373V variant in either HEK293T or JRS cells resulted in minimal protein production, suggesting instability. Protein expression and purification from HEK293T cells revealed reduced activity for the R519H variant relative to WT ASNS. Expression of WT ASNS in ASNS-null JRS cells resulted in nearly complete rescue of growth in Asn-free medium, whereas we observed no proliferation for the cells expressing either the G373V or R519H variant. These results support the conclusion that the coexpression of the G373V and R519H ASNS variants leads to significantly reduced Asn synthesis, which negatively impacts cellular growth. These observations are consistent with the ASNSD phenotype.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Aspartato-Amônia Ligase , Deficiência Intelectual , Microcefalia , Doenças Neurodegenerativas , Trifosfato de Adenosina , Asparagina/genética , Aspartato-Amônia Ligase/química , Atrofia , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Criança , Células HEK293 , Humanos , Deficiência Intelectual/genética , Microcefalia/genética , Mutação
3.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36613999

RESUMO

Asparagine Synthetase Deficiency (ASNSD) is a disease caused by mutations in asparagine synthetase (ASNS). Newborns exhibit microcephaly, intractable epileptic-like seizures, progressive brain atrophy, and axial hypotonia. ASNSD results in global developmental delays and premature death. The present report describes a 9-year-old child who is a compound heterozygote with ASNS mutations c.1439C > T and c.239A > G leading to variants p.S480F and p.N80S, respectively. When grown in a complete culture medium, primary fibroblasts from the child contained ASNS mRNA and protein levels similar to an unrelated wild-type fibroblast cell line. When the child's fibroblasts were cultured for up to 72 h in a medium lacking asparagine, proliferation was reduced by about 50%. Purification of ASNS proteins harboring either the S480F or the N80S substitution had reduced enzymatic activity by 80% and 50%, respectively. Ectopic expression of either variant in ASNS-null Jensen rat sarcoma (JRS) cells did not support proliferation in the absence of medium-supplied asparagine, whereas expression of wild-type enzyme completely restored growth. These studies add to the list of pathogenic ASNS variants and use enzyme activity and protein expression in ASNS-null cells to expand our knowledge of the biological impact of mutations in the ASNS gene.


Assuntos
Aspartato-Amônia Ligase , Deficiência Intelectual , Microcefalia , Malformações do Sistema Nervoso , Humanos , Asparagina/genética , Aspartato-Amônia Ligase/genética , Atrofia , Deficiência Intelectual/genética , Microcefalia/genética , Convulsões/genética , Criança
4.
PLoS Genet ; 17(12): e1009934, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34914716

RESUMO

MicroRNAs (miRNA) are short non-coding RNAs widely implicated in gene regulation. Most metazoan miRNAs utilize the RNase III enzymes Drosha and Dicer for biogenesis. One notable exception is the RNA polymerase II transcription start sites (TSS) miRNAs whose biogenesis does not require Drosha. The functional importance of the TSS-miRNA biogenesis is uncertain. To better understand the function of TSS-miRNAs, we applied a modified Crosslinking, Ligation, and Sequencing of Hybrids on Argonaute (AGO-qCLASH) to identify the targets for TSS-miRNAs in HCT116 colorectal cancer cells with or without DROSHA knockout. We observed that miR-320a hybrids dominate in TSS-miRNA hybrids identified by AGO-qCLASH. Targets for miR-320a are enriched for the eIF2 signaling pathway, a downstream component of the unfolded protein response. Consistently, in miR-320a mimic- and antagomir- transfected cells, differentially expressed gene products are associated with eIF2 signaling. Within the AGO-qCLASH data, we identified the endoplasmic reticulum (ER) chaperone calnexin as a direct miR-320a down-regulated target, thus connecting miR-320a to the unfolded protein response. During ER stress, but not amino acid deprivation, miR-320a up-regulates ATF4, a critical transcription factor for resolving ER stress. In summary, our study investigates the targetome of the TSS-miRNAs in colorectal cancer cells and establishes miR-320a as a regulator of unfolded protein response.


Assuntos
Fator 4 Ativador da Transcrição/genética , Neoplasias Colorretais/genética , MicroRNAs/genética , Ribonuclease III/genética , Antagomirs/genética , Proteínas Argonautas/genética , Calnexina/genética , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/patologia , RNA Helicases DEAD-box/genética , Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/genética , Fator de Iniciação 2 em Eucariotos/genética , Técnicas de Inativação de Genes , Células HCT116 , Humanos , Transdução de Sinais/genética , Sítio de Iniciação de Transcrição
5.
Cancers (Basel) ; 12(11)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167336

RESUMO

Multiple myeloma (MM) cells consume huge amounts of glutamine and, as a consequence, the amino acid concentration is lower-than-normal in the bone marrow (BM) of MM patients. Here we show that MM-dependent glutamine depletion induces glutamine synthetase in stromal cells, as demonstrated in BM biopsies of MM patients, and reproduced in vitro by co-culturing human mesenchymal stromal cells (MSCs) with MM cells. Moreover, glutamine depletion hinders osteoblast differentiation of MSCs, which is also severely blunted by the spent, low-glutamine medium of MM cells, and rescued by glutamine restitution. Glutaminase and the concentrative glutamine transporter SNAT2 are induced during osteoblastogenesis in vivo and in vitro, and both needed for MSCs differentiation, pointing to enhanced the requirement for the amino acid. Osteoblastogenesis also triggers the induction of glutamine-dependent asparagine synthetase (ASNS), and, among non-essential amino acids, asparagine rescues differentiation of glutamine-starved MSCs, by restoring the transcriptional profiles of differentiating MSCs altered by glutamine starvation. Thus, reduced asparagine availability provides a mechanistic link between MM-dependent Gln depletion in BM and impairment of osteoblast differentiation. Inhibition of Gln metabolism in MM cells and supplementation of asparagine to stromal cells may, therefore, constitute novel approaches to prevent osteolytic lesions in MM.

6.
Pancreatology ; 20(6): 1029-1034, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32800652

RESUMO

The pancreas avidly takes up and synthesizes the amino acid asparagine (Asn), in part, to maintain an active translational machinery that requires incorporation of the amino acid. The de novo synthesis of Asn in the pancreas occurs through the enzyme asparagine synthetase (ASNS). The pancreas has the highest expression of ASNS of any organ, and it can further upregulate ASNS expression in the setting of amino acid depletion. ASNS expression is driven by an intricate feedback network within the integrated stress response (ISR), which includes the amino acid response (AAR) and the unfolded protein response (UPR). Asparaginase is a cancer chemotherapeutic drug that depletes plasma Asn. However, asparaginase-associated pancreatitis (AAP) is a major medical problem and could be related to pancreatic Asn depletion. In this review, we will provide an overview of ASNS and then describe its role in pancreatic health and in the exocrine disorders of pancreatitis and pancreatic cancer. We will offer the overarching perspective that a high abundance of ASNS expression is hardwired in the exocrine pancreas to buffer the high demands of Asn for pancreatic digestive enzyme protein synthesis, that perturbations in the ability to express or upregulate ASNS could tip the balance towards pancreatitis, and that pancreatic cancers exploit ASNS to gain a metabolic survival advantage.


Assuntos
Aspartato-Amônia Ligase/metabolismo , Nutrientes , Pancreatopatias/enzimologia , Pancreatopatias/metabolismo , Animais , Asparagina/metabolismo , Humanos , Pancreatite/enzimologia , Pancreatite/metabolismo
7.
Elife ; 92020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32175843

RESUMO

The inability of cells to adapt to increased environmental tonicity can lead to inflammatory gene expression and pathogenesis. The Rel family of transcription factors TonEBP and NF-κB p65 play critical roles in the switch from osmoadaptive homeostasis to inflammation, respectively. Here we identified PACT-mediated PKR kinase activation as a marker of the termination of adaptation and initiation of inflammation in Mus musculus embryonic fibroblasts. We found that high stress-induced PACT-PKR activation inhibits the interaction between NF-κB c-Rel and TonEBP essential for the increased expression of TonEBP-dependent osmoprotective genes. This resulted in enhanced formation of TonEBP/NF-κB p65 complexes and enhanced proinflammatory gene expression. These data demonstrate a novel role of c-Rel in the adaptive response to hyperosmotic stress, which is inhibited via a PACT/PKR-dependent dimer redistribution of the Rel family transcription factors. Our results suggest that inhibiting PACT-PKR signaling may prove a novel target for alleviating stress-induced inflammatory diseases.


Cells are sensitive to changes in their environment. For example, maintaining normal salt levels in the blood, also called tonicity, is essential for the health of individual cells and the organism as a whole. Tonicity controls the movement of water in and out of the cell: high levels of salt inside the cell draw water in, while high levels of salt outside the cell draw water out. If salt levels in the environment surrounding the cells become too high, too much water will be drawn out, causing the cells to shrink. Changes in tonicity can cause the cell to become stressed. Initially, cells adapt to this stress by switching on sets of genes that help restore fluid balance and allow the cell to regain its normal shape and size. If the increase in tonicity exceeds tolerable stress levels and harms the cell, this initiates an inflammatory response which ultimately leads to cell death. However, it remained unclear how cells switch from adapting to responding with inflammation. Now, Farabaugh et al. have used an experimental system which mimics high salt to identify the mechanism that allows cells to switch between these two responses. The experiments showed that when salt levels are too high, cells switch on a stress sensing protein called PACT, which activates another protein called PKR. When PACT was deleted from mouse cells, this led to a decrease in the activity of inflammatory genes, and prevented the cells from self-destructing. Other proteins that are involved in the adaptive and inflammatory response are the NF-κB family of proteins and TonEBP. Farabaugh et al. found that under low intensity stress, when salt levels outside the cell are slightly too high, a family member of NF-κB works with TonEBP to switch on adaptive genes. But, if salt levels continue to rise, PACT activates and turns on PKR. This blocks the interaction between NF-κB and TonEBP, allowing another family member of NF-κB to interact with TonEBP instead. This switches the adaptive response off and the inflammatory response on. There are many diseases that involve changes in tonicity, including diabetes, cancer, inflammatory bowel disease, and dry eye syndrome. Understanding the proteins involved in the adaptive and inflammatory response could lead to the development of drugs that help to protect cells from stress-induced damage.


Assuntos
Proteínas de Transporte/metabolismo , Pressão Osmótica , Proteínas de Ligação a RNA/metabolismo , eIF-2 Quinase/metabolismo , Adaptação Fisiológica , Animais , Proteínas de Transporte/genética , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-rel/genética , Proteínas Proto-Oncogênicas c-rel/metabolismo , Interferência de RNA , Proteínas de Ligação a RNA/genética , Transdução de Sinais , eIF-2 Quinase/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-31421261

RESUMO

Asparaginase (ASNase) causes pancreatitis in approximately 10% of leukemia patients, and the mechanisms underlying this painful complication are not known. ASNase primarily depletes circulating asparagine, and the endogenously expressed enzyme, asparagine synthetase (ASNS), replenishes asparagine. ASNS was suggested previously to be highly expressed in the pancreas. In this study, we determined the expression pattern of ASNS in the pancreas and the mechanism for increased pancreatic ASNS abundance. Compared with other organs, ASNS was highly expressed in both the human and mouse pancreas, and, within the pancreas, ASNS was present primarily in the acinar cells. The high baseline pancreatic ASNS was associated with higher baseline activation of protein kinase R-like endoplasmic reticulum kinase (PERK) signaling in the pancreas, and inhibition of PERK in acinar cells lessened ASNS expression. ASNase exposure, but not the common pancreatitis triggers, uniquely up-regulated ASNS expression, indicating that the increase is mediated by nutrient stress. The up-regulation of acinar ASNS with ASNase exposure was owing to increased transcriptional rather than delayed degradation. Knockdown of ASNS in the 266-6 acinar cells provoked acinar cell injury and worsened ASNase-induced injury, whereas ASNS overexpression protected against ASNase-induced injury. In summary, ASNS is highly expressed in the pancreatic acinar cells through heightened basal activation of PERK, and ASNS appears to be crucial to maintaining acinar cell integrity. The implications are that ASNS is especially hardwired in the pancreas to protect against both baseline perturbations and nutrient deprivation stressors, such as during ASNase exposure.


Assuntos
Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/metabolismo , Pâncreas/patologia , Pancreatite/patologia , eIF-2 Quinase/metabolismo , Células Acinares/patologia , Animais , Asparaginase/administração & dosagem , Asparaginase/metabolismo , Asparagina/metabolismo , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Linhagem Celular , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Pâncreas/citologia , Cultura Primária de Células , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima , eIF-2 Quinase/antagonistas & inibidores
9.
Biochim Biophys Acta Mol Cell Res ; 1866(3): 371-381, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30290239

RESUMO

Endoplasmic reticulum (ER) stress activates three principal signaling pathways, collectively known as the unfolded protein response, leading to translational and transcriptional control mechanisms that dictate the cell's response as adaptive or apoptotic. The present study illustrates that for HepG2 human hepatocellular carcinoma cells the signaling pathways triggered by ER stress extend beyond the three principal pathways to include mitogen-activated protein kinase (MAPK) signaling, leading to activation of transcription from the early growth response 1 (EGR1) gene. Analysis provided evidence for a SRC-RAS-RAF-MEK-ERK cascade mechanism that leads to enhanced phosphorylation of the transcription factor ELK1. ELK1 and serum response factor (SRF) are constitutively bound to the EGR1 promoter and are phosphorylated by nuclear localized ERK. The promoter abundance of both phospho-SRF and phopsho-ELK1 was increased by ER stress, but the SRF phosphorylation was transient. Knockdown of ELK1 had little effect on the basal EGR1 mRNA content, but completely blocked the increase in response to ER stress. Conversely, knockdown of SRF suppressed basal EGR1 mRNA content, but had only a small effect on the induction by ER stress. This research highlights the importance of MAPK signaling in response to ER stress and identifies ELK1 as a transcriptional mediator and the EGR1 gene as a target.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Carcinoma Hepatocelular/patologia , Proteínas de Ligação a DNA/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/biossíntese , Proteína 1 de Resposta de Crescimento Precoce/genética , Estresse do Retículo Endoplasmático/fisiologia , Regulação da Expressão Gênica/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Fosforilação , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteínas Elk-1 do Domínio ets/genética , Proteínas Elk-1 do Domínio ets/metabolismo
10.
Front Oncol ; 9: 1480, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998641

RESUMO

Asparagine Synthetase (ASNS) catalyzes the synthesis of the non-essential amino acid asparagine (Asn) from aspartate (Asp) and glutamine (Gln). ASNS expression is highly regulated at the transcriptional level, being induced by both the Amino Acid Response (AAR) and the Unfolded Protein Response (UPR) pathways. Lack of ASNS protein expression is a hallmark of Acute Lymphoblastic Leukemia (ALL) blasts, which, therefore, are auxotrophic for Asn. This peculiarity is the rationale for the use of bacterial L-Asparaginase (ASNase) for ALL therapy, the first example of anti-cancer treatment targeting a tumor-specific metabolic feature. Other hematological and solid cancers express low levels of ASNS and, therefore, should also be Asn auxotrophs and ASNase sensitive. Conversely, in the last few years, several reports indicate that in some cancer types ASNS is overexpressed, promoting cell proliferation, chemoresistance, and a metastatic behavior. However, enhanced ASNS activity may constitute a metabolic vulnerability in selected cancer models, suggesting a variable and tumor-specific role of the enzyme in cancer. Recent evidence indicates that, beyond its canonical role in protein synthesis, Asn may have additional regulatory functions. These observations prompt a re-appreciation of ASNS activity in the biology of normal and cancer tissues, with particular attention to the fueling of Asn exchange between cancer cells and the tumor microenvironment.

11.
Biochim Biophys Acta Gene Regul Mech ; 1861(2): 72-79, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29413899

RESUMO

Activating transcription factor 3 (ATF3) is a highly regulated protein that is implicated in a wide range of pathological conditions including inflammation and transformation. Transcription from the ATF3 gene is induced by several stress-induced signaling pathways, including amino acid limitation (amino acid response, AAR) and ER stress (unfolded protein response, UPR). Induction of ATF3 transcription by these pathways is mediated by ATF4 and cJUN recruitment to enhancer elements within the ATF3 gene. Although a canonical promoter (promoter A) has been studied by numerous laboratories, a second promoter activity (promoter A1), 43 kb upstream of the first, has been reported to respond to stress-induced signaling and to be critical for ATF3 expression in certain transformed cells. The results of the present study show that in normal human hepatocytes and HepG2 human hepatoma cells both basal as well as AAR- and UPR-induced transcription occurs almost exclusively from promoter A. This selectivity between the two promoters correlated with increased binding of ATF4, recruitment of RNA polymerase II, and the expected histone modifications in the promoter A region of the gene. Time course studies of ATF3 transcription activity revealed that the temporal kinetics for ATF3 induction differ between the AAR and UPR, with the former being more transient than the latter. Collectively, the results document that ATF3 expression in normal and transformed human liver originates from the canonical promoter A that responds to multiple stress signals.


Assuntos
Fator 3 Ativador da Transcrição/genética , Aminoácidos/metabolismo , Estresse do Retículo Endoplasmático/genética , Hepatócitos/metabolismo , Regiões Promotoras Genéticas/genética , Fator 3 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Células Cultivadas , Células Hep G2 , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Elementos de Resposta/genética , Transcrição Gênica , Resposta a Proteínas não Dobradas/genética
12.
J Biol Chem ; 292(49): 19952-19958, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29084849

RESUMO

Asparagine synthetase (ASNS) converts aspartate and glutamine to asparagine and glutamate in an ATP-dependent reaction. ASNS is present in most, if not all, mammalian organs, but varies widely in basal expression. Human ASNS activity is highly responsive to cellular stress, primarily by increased transcription from a single gene located on chromosome 7. Elevated ASNS protein expression is associated with resistance to asparaginase therapy in childhood acute lymphoblastic leukemia. There is evidence that ASNS expression levels may also be inversely correlated with asparaginase efficacy in certain solid tumors as well. Children with mutations in the ASNS gene exhibit developmental delays, intellectual disability, microcephaly, intractable seizures, and progressive brain atrophy. Thus far, 15 unique mutations in the ASNS gene have been clinically associated with asparagine synthetase deficiency (ASD). Molecular modeling using the Escherichia coli ASNS-B structure has revealed that most of the reported ASD substitutions are located near catalytic sites or within highly conserved regions of the protein. For some ASD patients, fibroblast cell culture studies have eliminated protein and mRNA synthesis or stability as the basis for decreased proliferation.


Assuntos
Aspartato-Amônia Ligase/genética , Regulação Enzimológica da Expressão Gênica , Mutação , Animais , Asparaginase/uso terapêutico , Aspartato-Amônia Ligase/química , Aspartato-Amônia Ligase/fisiologia , Resistência a Medicamentos/genética , Predisposição Genética para Doença , Humanos
13.
Trends Endocrinol Metab ; 28(11): 794-806, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28797581

RESUMO

Activating transcription factor 4 (ATF4) is a stress-induced transcription factor that is frequently upregulated in cancer cells. ATF4 controls the expression of a wide range of adaptive genes that allow cells to endure periods of stress, such as hypoxia or amino acid limitation. However, under persistent stress conditions, ATF4 promotes the induction of apoptosis. Recent advances point to a role for post-translational modifications (PTMs) and epigenetic mechanisms in balancing these pro- and anti-survival effects of ATF4. We review here how PTMs and epigenetic modifiers associated with ATF4 may be exploited by cancer cells to cope with cellular stress conditions that are intrinsically associated with tumor growth. Identification of mechanisms that modulate ATF4-mediated transcription and its effects on cellular metabolism may uncover new targets for cancer treatment.


Assuntos
Fator 4 Ativador da Transcrição/fisiologia , Adaptação Fisiológica , Apoptose/genética , Neoplasias/patologia , Estresse Fisiológico/fisiologia , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Adaptação Fisiológica/genética , Aminoácidos/deficiência , Animais , Sobrevivência Celular/genética , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Processamento de Proteína Pós-Traducional
14.
Oncotarget ; 8(17): 28971-28989, 2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28423644

RESUMO

Many breast cancer deaths result from tumors acquiring resistance to available therapies. Thus, new therapeutic agents are needed for targeting drug-resistant breast cancers. Drug-refractory breast cancers include HER2+ tumors that have acquired resistance to HER2-targeted antibodies and kinase inhibitors, and "Triple-Negative" Breast Cancers (TNBCs) that lack the therapeutic targets Estrogen Receptor, Progesterone Receptor, and HER2. A significant fraction of TNBCs overexpress the HER2 family member Epidermal Growth Factor Receptor (EGFR). Thus agents that selectively kill EGFR+ and HER2+ tumors would provide new options for breast cancer therapy. We previously identified a class of compounds we termed Disulfide bond Disrupting Agents (DDAs) that selectively kill EGFR+ and HER2+ breast cancer cells in vitro and blocked the growth of HER2+ breast tumors in an animal model. DDA-dependent cytotoxicity was found to correlate with downregulation of HER1-3 and Akt dephosphorylation. Here we demonstrate that DDAs activate the Unfolded Protein Response (UPR) and that this plays a role in their ability to kill EGFR+ and HER2+ cancer cells. The use of breast cancer cell lines ectopically expressing EGFR or HER2 and pharmacological probes of UPR revealed all three DDA responses: HER1-3 downregulation, Akt dephosphorylation, and UPR activation, contribute to DDA-mediated cytotoxicity. Significantly, EGFR overexpression potentiates each of these responses. Combination studies with DDAs suggest that they may be complementary with EGFR/HER2-specific receptor tyrosine kinase inhibitors and mTORC1 inhibitors to overcome drug resistance.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Animais , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo , Receptores ErbB/metabolismo , Feminino , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Oncotarget ; 7(3): 3128-43, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26657730

RESUMO

Cancer cells are frequently exposed to physiological stress conditions such as hypoxia and nutrient limitation. Escape from stress-induced apoptosis is one of the mechanisms used by malignant cells to survive unfavorable conditions. B-cell Translocation Gene 1 (BTG1) is a tumor suppressor that is frequently deleted in acute lymphoblastic leukemia and recurrently mutated in diffuse large B cell lymphoma. Moreover, low BTG1 expression levels have been linked to poor outcome in several solid tumors. How loss of BTG1 function contributes to tumor progression is not well understood. Here, using Btg1 knockout mice, we demonstrate that loss of Btg1 provides a survival advantage to primary mouse embryonic fibroblasts (MEFs) under stress conditions. This pro-survival effect involves regulation of Activating Transcription Factor 4 (ATF4), a key mediator of cellular stress responses. We show that BTG1 interacts with ATF4 and positively modulates its activity by recruiting the protein arginine methyl transferase PRMT1 to methylate ATF4 on arginine residue 239. We further extend these findings to B-cell progenitors, by showing that loss of Btg1 expression enhances stress adaptation of mouse bone marrow-derived B cell progenitors. In conclusion, we have identified the BTG1/PRMT1 complex as a new modifier of ATF4 mediated stress responses.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Proteínas de Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Estresse Fisiológico/fisiologia , Animais , Apoptose/fisiologia , Linfócitos B/citologia , Linhagem Celular Tumoral , Fibroblastos , Humanos , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
16.
Mol Genet Metab ; 116(3): 178-86, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26318253

RESUMO

Asparagine Synthetase Deficiency is a recently described cause of profound intellectual disability, marked progressive cerebral atrophy and variable seizure disorder. To date there has been limited functional data explaining the underlying pathophysiology. We report a new case with compound heterozygous mutations in the ASNS gene (NM_183356.3:c. [866G>C]; [1010C>T]). Both variants alter evolutionarily conserved amino acids and were predicted to be pathogenic based on in silico protein modelling that suggests disruption of the critical ATP binding site of the ASNS enzyme. In patient fibroblasts, ASNS expression as well as protein and mRNA stability are not affected by these variants. However, there is markedly reduced proliferation of patient fibroblasts when cultured in asparagine-limited growth medium, compared to parental and wild type fibroblasts. Restricting asparagine replicates the physiology within the blood-brain-barrier, with limited transfer of dietary derived asparagine, resulting in reliance of neuronal cells on intracellular asparagine synthesis by the ASNS enzyme. These functional studies offer insight into the underlying pathophysiology of the dramatic progressive cerebral atrophy associated with Asparagine Synthetase Deficiency.


Assuntos
Asparagina/metabolismo , Aspartato-Amônia Ligase/deficiência , Aspartato-Amônia Ligase/genética , Proliferação de Células , Mutação , Trifosfato de Adenosina/metabolismo , Aspartato-Amônia Ligase/química , Aspartato-Amônia Ligase/metabolismo , Sítios de Ligação , Células Cultivadas , Simulação por Computador , Meios de Cultura/química , Exoma , Feminino , Fibroblastos/patologia , Humanos , Deficiência Intelectual/etiologia , Deficiência Intelectual/genética , Masculino , Análise de Sequência de DNA
17.
Dev Cell ; 33(5): 507-21, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-26028220

RESUMO

Transcriptional mediators of cell stress pathways, including HIF1α, ATF4, and p53, are key to normal development and play critical roles in disease, including ischemia and cancer. Despite their importance, mechanisms by which pathways mediated by these transcription factors interact with one another are not fully understood. In addressing the controversial role of HIF1α in cardiomyocytes (CMs) during heart development, we discovered a mid-gestational requirement for HIF1α for proliferation of hypoxic CMs, involving metabolic switching and a complex interplay among HIF1α, ATF4, and p53. Loss of HIF1α resulted in activation of ATF4 and p53, the latter inhibiting CM proliferation. Bioinformatic and biochemical analyses revealed unexpected mechanisms by which HIF1α intersects with ATF4 and p53 pathways. Our results highlight previously undescribed roles of HIF1α and interactions among major cell stress pathways that could be targeted to enhance proliferation of CMs in ischemia and may have relevance to other diseases, including cancer.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Proliferação de Células , Embrião de Mamíferos/citologia , Feto/citologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Hipóxia/fisiopatologia , Miócitos Cardíacos/citologia , Proteína Supressora de Tumor p53/metabolismo , Fator 4 Ativador da Transcrição/genética , Animais , Biomarcadores/metabolismo , Western Blotting , Células Cultivadas , Embrião de Mamíferos/metabolismo , Feminino , Feto/metabolismo , Citometria de Fluxo , Imunofluorescência , Perfilação da Expressão Gênica , Técnicas Imunoenzimáticas , Masculino , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Proteína Supressora de Tumor p53/genética
18.
J Biol Chem ; 290(25): 15878-15891, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25931127

RESUMO

Using an unbiased systems genetics approach, we previously predicted a role for CHAC1 in the endoplasmic reticulum stress pathway, linked functionally to activating transcription factor 4 (ATF4) following treatment with oxidized phospholipids, a model for atherosclerosis. Mouse and yeast CHAC1 homologs have been shown to degrade glutathione in yeast and a cell-free system. In this report, we further defined the ATF4-CHAC1 interaction by cloning the human CHAC1 promoter upstream of a luciferase reporter system for in vitro assays in HEK293 and U2OS cells. Mutation and deletion analyses defined two major cis DNA elements necessary and sufficient for CHAC1 promoter-driven luciferase transcription under conditions of ER stress or ATF4 coexpression: the -267 ATF/cAMP response element (CRE) site and a novel -248 ATF/CRE modifier (ACM) element. We also examined the ability of the CHAC1 ATF/CRE and ACM sequences to bind ATF4 and ATF3 using immunoblot-EMSA and confirmed ATF4, ATF3, and CCAAT/enhancer-binding protein ß binding at the human CHAC1 promoter in the proximity of the ATF/CRE and ACM using ChIP. To further validate the function of CHAC1 in a human cell model, we measured glutathione levels in HEK293 cells with enhanced CHAC1 expression. Overexpression of CHAC1 led to a robust depletion of glutathione, which was alleviated in a CHAC1 catalytic mutant. These results suggest an important role for CHAC1 in oxidative stress and apoptosis with implications for human health and disease.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Glutationa/metabolismo , RNA Mensageiro/biossíntese , Elementos de Resposta/fisiologia , gama-Glutamilciclotransferase/biossíntese , Fator 3 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/genética , Animais , Sequência de Bases , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Glutationa/genética , Células HEK293 , Humanos , Camundongos , Estresse Oxidativo/fisiologia , RNA Mensageiro/genética , Deleção de Sequência , gama-Glutamilciclotransferase/genética
19.
Biochim Biophys Acta ; 1853(3): 539-48, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25523140

RESUMO

Amino acid (AA) deprivation in mammalian cells activates a collection of signaling cascades known as the AA response (AAR), which is characterized by transcriptional induction of stress-related genes, including FBJ murine osteosarcoma viral oncogene homolog (cFOS). The present study established that the signaling mechanism underlying the AA-dependent transcriptional regulation of the cFOS gene in HepG2 human hepatocellular carcinoma cells is independent of the classic GCN2-eIF2-ATF4 pathway. Instead, a RAS-RAF-MEK-ERK cascade mediates AAR signaling to the cFOS gene. Increased cFOS transcription is observed from 4-24 h after AAR-activation, exhibiting little or no overlap with the rapid and transient increase triggered by the well-known serum response. Furthermore, serum is not required for the AA-responsiveness of the cFOS gene and no phosphorylation of promoter-bound serum response factor (SRF) is observed. The ERK-phosphorylated transcription factor E-twenty six-like (p-ELK1) is increased in its association with the cFOS promoter after activation of the AAR. This research identified cFOS as a target of the AAR and further highlights the importance of AA-responsive MAPK signaling in HepG2 cells.


Assuntos
Aminoácidos/deficiência , Carcinoma Hepatocelular/genética , Genes fos/genética , Neoplasias Hepáticas/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Fator 4 Ativador da Transcrição/fisiologia , Aminoácidos/farmacologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Células Cultivadas , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Proteínas Serina-Treonina Quinases/fisiologia , Ativação Transcricional/efeitos dos fármacos
20.
J Biol Chem ; 289(35): 24665-79, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25028509

RESUMO

Amino acid (AA) limitation in mammalian cells triggers a collection of signaling cascades jointly referred to as the AA response (AAR). In human HepG2 hepatocellular carcinoma, the early growth response 1 (EGR1) gene was induced by either AA deprivation or endoplasmic reticulum stress. AAR-dependent EGR1 activation was discovered to be independent of the well characterized GCN2-ATF4 pathway and instead dependent on MEK-ERK signaling, one of the MAPK pathways. ChIP showed that constitutively bound ELK1 at the EGR1 proximal promoter region was phosphorylated after AAR activation. Increased p-ELK1 binding was associated with increased de novo recruitment of RNA polymerase II to the EGR1 promoter. EGR1 transcription was not induced in HEK293T cells lacking endogenous MEK activity, but overexpression of exogenous constitutively active MEK in HEK293T cells resulted in increased basal and AAR-induced EGR1 expression. ChIP analysis of the human vascular endothelial growth factor A (VEGF-A) gene, a known EGR1-responsive gene, revealed moderate increases in AAR-induced EGR1 binding within the proximal promoter and highly inducible binding to a site within the first intron. Collectively, these data document a novel AA-activated MEK-ERK-ELK1 signaling mechanism.


Assuntos
Aminoácidos/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transcrição Gênica , Sequência de Bases , Primers do DNA , Células HEK293 , Humanos , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA