Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 13(4): 1370-1380, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923526

RESUMO

Background: Tumor-initiating cells (TIC) often elude conventional cancer treatment, which results in metastasis and cancer relapse. Recently, studies have begun to focus on the TIC population in tumors to provide better therapeutic options. Previously, we have reported the successful development of a TIC-specific probe TiY with the binding target as vimentin. While a low concentration of TiY showed a TIC visualization, at a high concentration, TiY induced selective toxicity onto TIC in vitro. In this study, we aim to assess TiY's applicability in theranostics purposes, from in vivo visualization to therapeutic effect toward TIC, in cancer mouse models. Methods: We performed cell experiments with the TIC line model derived from resected primary non-small cell lung cancer (NSCLC) patient tumor. The animal model studies were conducted in mice of NSCLC patient-derived xenograft (PDX). TiY was intravenously delivered into the mice models at different concentrations to assess its in vivo TIC-selective staining and therapeutic effect. Results: We demonstrated the TIC-selective identification and therapeutic effect of TiY in animal models. TiY treatment induced a significant ablation of the TIC population in the tumor, and further molecular study elucidated that the mechanism of TiY is through vimentin dynamics in TIC. Conclusion: The results underscore the applicability of TiY for cancer treatment by selectively targeting soluble vimentin in TIC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/patologia , Vimentina/metabolismo , Medicina de Precisão , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Células-Tronco Neoplásicas/metabolismo
2.
J Am Chem Soc ; 141(37): 14673-14686, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31436967

RESUMO

Tumor initiating cells (TIC) are resistant to conventional anticancer therapy and associated with metastasis and relapse in cancer. Although various TIC markers and their antibodies have been proposed, it is limited to the use of antibodies for in vivo imaging or treatment of TIC. In this study, we discovered heme oxygenase 2 (HMOX2) as a novel biomarker for TIC and developed a selective small molecule probe TiNIR (tumor initiating cell probe with near infrared). TiNIR detects and enriches the functionally active TIC in human lung tumors, and through the photoacoustic property, TiNIR also visualizes lung TIC in the patient-derived xenograft (PDX) model. Furthermore, we demonstrate that TiNIR inhibits tumor growth by blocking the function of HMOX2, resulting in significantly increased survival rates of the cancer model mice. The novel therapeutic target HMOX2 and its fluorescent ligand TiNIR will open a new path for the molecular level of lung TIC diagnosis and treatment.


Assuntos
Corantes Fluorescentes/farmacologia , Heme Oxigenase (Desciclizante)/metabolismo , Neoplasias Pulmonares/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Animais , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/terapia , Camundongos , Células-Tronco Neoplásicas/enzimologia , Taxa de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Chembiochem ; 17(22): 2118-2122, 2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27782351

RESUMO

Selection of a specific neural stem/progenitor cells (NSPCs) has attracted broad attention in regenerative medicine for neurological disorders. Here, we report a fluorescent probe, CDg13, and its application for isolating strong neurogenic NSPCs. In comparison to the NSPCs isolated by other biomarkers, CDg13-stained NSPCs showed higher capability to differentiate into neurons. Target identification revealed that the fluorescence intensity of the probe within cells is inversely proportional to the expression levels of mouse and human Abcg2 transporters. These findings suggest that low Abcg2 expression is a biomarker for neurogenic NSPCs in mouse brain. Furthermore, CDg13 can be used to isolate Abcg2low cells from heterogeneous cell populations.


Assuntos
Benzamidas/química , Corantes Fluorescentes/química , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Xantenos/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Benzamidas/metabolismo , Biomarcadores/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Diferenciação Celular , Células Cultivadas , Embrião de Mamíferos/citologia , Humanos , Camundongos , Microscopia de Fluorescência , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Células-Tronco Neurais/química , Células-Tronco Neurais/citologia , Neurônios/citologia , Propionatos/química , Propionatos/metabolismo , Quinolinas/química , Quinolinas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Xantenos/metabolismo
4.
J Am Chem Soc ; 138(33): 10394-7, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27500425

RESUMO

Fluorescent probes have emerged as an essential tool in the molecular recognition events in biological systems; however, due to the complex structures of certain biomolecules, it remains a challenge to design small-molecule fluorescent probes with high sensitivity and selectivity. Inspired by the enzyme-catalyzed reaction between biomolecule and probe, we present a novel combination-reaction two-step sensing strategy to improve sensitivity and selectivity. Based on this strategy, we successfully prepared a turn-on fluorescent reduced nicotinamide adenine dinucleotide (NADH) probe, in which boronic acid was introduced to bind with NADH and subsequently accelerate the sensing process. This probe shows remarkably improved sensitivity (detection limit: 0.084 µM) and selectivity to NADH in the absence of any enzymes. In order to improve the practicality, the boronic acid was further modified to change the measurement conditions from alkalescent (pH 9.5) to physiological environment (pH 7.4). Utilizing these probes, we not only accurately quantified the NADH weight in a health care product but also evaluated intracellular NADH levels in live cell imaging. Thus, these bio-inspired fluorescent probes offer excellent tools for elucidating the roles of NADH in biological systems as well as a practical strategy to develop future sensitive and selective probes for complicated biomolecules.


Assuntos
Biomimética , Ácidos Borônicos/metabolismo , Corantes Fluorescentes/metabolismo , NAD/metabolismo , Ácidos Borônicos/química , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio , Limite de Detecção
5.
Angew Chem Int Ed Engl ; 55(5): 1773-6, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26676712

RESUMO

Adenosine triphosphate (ATP), commonly produced in mitochondria, is required by almost all the living organisms; thus fluorescent probes for monitoring mitochondrial ATP levels fluctuation are essential and highly desired. Herein, we report a multisite-binding switchable fluorescent probe, ATP-Red 1, which selectively and rapidly responds to intracellular concentrations of ATP. Live-cell imaging indicated that ATP-Red 1 mainly localized to mitochondria with good biocompatibility and membrane penetration. In particular, with the help of ATP-Red 1, we successfully observed not only the decreased mitochondrial ATP levels in the presence of KCN and starvation state, but also the increased mitochondrial ATP levels in the early stage of cell apoptosis. These results indicate that ATP-Red 1 is a useful tool for investigating ATP-relevant biological processes.


Assuntos
Trifosfato de Adenosina/metabolismo , Corantes Fluorescentes/química , Mitocôndrias/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Humanos , Microscopia de Fluorescência
6.
J Am Chem Soc ; 137(6): 2336-42, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25626163

RESUMO

Development of highly sensitive and selective sensing systems of divalent zinc ion (Zn(2+)) in organisms has been a growing interest in the past decades owing to its pivotal role in cellular metabolism, apoptosis, and neurotransmission. Herein, we report the rational design and synthesis of a Zn(2+) fluorescent-based probe by assembling lanthanide-doped upconversion nanoparticles (UCNPs) with chromophores. Specifically, upconversion luminescence (UCL) can be effectively quenched by the chromophores on the surface of nanoparticles via a fluorescence resonant energy transfer (FRET) process and subsequently recovered upon the addition of Zn(2+), thus allowing for quantitative monitoring of Zn(2+). Importantly, the sensing system enables detection of Zn(2+) in real biological samples. We demonstrate that this chromophore-UCNP nanosystem is capable of implementing an efficient in vitro and in vivo detection of Zn(2+) in mouse brain slice with Alzheimer's disease and zebrafish, respectively.


Assuntos
Corantes/química , Nanopartículas , Zinco/análise , Linhagem Celular Tumoral , Humanos , Técnicas In Vitro
7.
Stem Cell Res ; 11(3): 1314-22, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24090932

RESUMO

Methods for the isolation of live neural stem cells from the brain are limited due to the lack of well-defined cell surface markers and tools to detect intracellular markers. To date most methods depend on the labeling of extracellular markers using antibodies, with intracellular markers remaining inaccessible in live cells. Using a novel intracellular protein FABP7 (Fatty Acid Binding Protein-7) selective fluorescent chemical probe CDr3, we have successfully isolated high FABP7 expressing cells from the embryonic and adult mouse brains. These cells are capable of forming neurospheres in culture, express neural stem cell marker genes and differentiate into neurons, astrocytes and oligodendrocytes. Characterization of cells sorted with Aldefluor or antibodies against CD133 or SSEA-1 showed that the cells isolated by CDr3 exhibit a phenotype distinct from the cells sorted with conventional methods. FABP7 labeling with CDr3 represents a novel method for rapid isolation of neural stem cells based on the expression of a single intracellular marker.


Assuntos
Compostos de Boro/metabolismo , Encéfalo/citologia , Separação Celular/métodos , Proteínas de Ligação a Ácido Graxo/metabolismo , Corantes Fluorescentes/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Antígeno AC133 , Animais , Antígenos CD/imunologia , Antígenos CD/metabolismo , Astrócitos/citologia , Astrócitos/metabolismo , Compostos de Boro/química , Diferenciação Celular , Proteína 7 de Ligação a Ácidos Graxos , Corantes Fluorescentes/química , Glicoproteínas/imunologia , Glicoproteínas/metabolismo , Antígenos CD15/imunologia , Antígenos CD15/metabolismo , Camundongos , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Peptídeos/imunologia , Peptídeos/metabolismo , Fenótipo , Ligação Proteica
8.
Exp Neurobiol ; 22(1): 38-44, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23585721

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative motor disease caused by degeneration of dopaminergic neurons in the substantia nigra. Because brain inflammation has been considered a risk factor for PD, we analyzed whether PTEN induced putative kinase 1 (PINK1), an autosomal recessive familial PD gene, regulates brain inflammation during injury states. Using acutely prepared cortical slices to mimic injury, we analyzed expression of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6 at the mRNA and protein levels. Both mRNA and protein expression of these cytokines was higher at 6-24 h after slicing in PINK1 knockout (KO) slices compared to that in wild-type (WT) slices. In serial experiments to understand the signaling pathways that increase inflammatory responses in KO slices, we found that IκB degradation was enhanced but Akt phosphorylation decreased in KO slices compared to those in WT slices. In further experiments, an inhibitor of PI3K (LY294002) upstream of Akt increased expression of pro-inflammatory cytokines. Taken together, these results suggest that PINK1 deficiency enhance brain inflammation through reduced Akt activation and enhanced IκB degradation in response to brain injury.

9.
Glia ; 61(5): 800-12, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23440919

RESUMO

PINK1 (PTEN induced putative kinase 1), a familial Parkinson's disease (PD)-related gene, is expressed in astrocytes, but little is known about its role in this cell type. Here, we found that astrocytes cultured from PINK1-knockout (KO) mice exhibit defective proliferative responses to epidermal growth factor (EGF) and fetal bovine serum. In PINK1-KO astrocytes, basal and EGF-induced p38 activation (phosphorylation) were increased whereas EGF receptor (EGFR) expression and AKT activation were decreased. p38 inhibition (SB203580) or knockdown with small interfering RNA (siRNA) rescued EGFR expression and AKT activation in PINK1-KO astrocytes. Proliferation defects in PINK1-KO astrocytes appeared to be linked to mitochondrial defects, manifesting as decreased mitochondrial mass and membrane potential, increased intracellular reactive oxygen species level, decreased glucose-uptake capacity, and decreased ATP production. Mitochondrial toxin (oligomycin) and a glucose-uptake inhibitor (phloretin) mimicked the PINK1-deficiency phenotype, decreasing astrocyte proliferation, EGFR expression and AKT activation, and increasing p38 activation. In addition, the proliferation defect in PINK1-KO astrocytes resulted in a delay in the wound healing process. Taken together, these results suggest that PINK1 deficiency causes astrocytes dysfunction, which may contribute to the development of PD due to delayed astrocytes-mediated repair of microenvironment in the brain.


Assuntos
Astrócitos/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Mitocôndrias/metabolismo , Proteínas Quinases/deficiência , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/biossíntese , Animais , Astrócitos/patologia , Bovinos , Proliferação de Células , Células Cultivadas , Regulação para Baixo/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Regulação para Cima/genética
10.
PLoS One ; 7(4): e34693, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22496842

RESUMO

LRRK2, a Parkinson's disease associated gene, is highly expressed in microglia in addition to neurons; however, its function in microglia has not been evaluated. Using Lrrk2 knockdown (Lrrk2-KD) murine microglia prepared by lentiviral-mediated transfer of Lrrk2-specific small inhibitory hairpin RNA (shRNA), we found that Lrrk2 deficiency attenuated lipopolysaccharide (LPS)-induced mRNA and/or protein expression of inducible nitric oxide synthase, TNF-α, IL-1ß and IL-6. LPS-induced phosphorylation of p38 mitogen-activated protein kinase and stimulation of NF-κB-responsive luciferase reporter activity was also decreased in Lrrk2-KD cells. Interestingly, the decrease in NF-κB transcriptional activity measured by luciferase assays appeared to reflect increased binding of the inhibitory NF-κB homodimer, p50/p50, to DNA. In LPS-responsive HEK293T cells, overexpression of the human LRRK2 pathologic, kinase-active mutant G2019S increased basal and LPS-induced levels of phosphorylated p38 and JNK, whereas wild-type and other pathologic (R1441C and G2385R) or artificial kinase-dead (D1994A) LRRK2 mutants either enhanced or did not change basal and LPS-induced p38 and JNK phosphorylation levels. However, wild-type LRRK2 and all LRRK2 mutant variants equally enhanced NF-κB transcriptional activity. Taken together, these results suggest that LRRK2 is a positive regulator of inflammation in murine microglia, and LRRK2 mutations may alter the microenvironment of the brain to favor neuroinflammation.


Assuntos
Encéfalo/metabolismo , Encefalite/metabolismo , Microglia/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Linhagem Celular , Técnicas de Silenciamento de Genes , Interleucina-1beta/biossíntese , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Lipopolissacarídeos/farmacologia , MAP Quinase Quinase 4/metabolismo , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/biossíntese , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Fator de Necrose Tumoral alfa/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
PLoS One ; 5(10): e13756, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-21060796

RESUMO

BACKGROUND: Brain inflammation is accompanied by brain injury. However, it is controversial whether inflammatory responses are harmful or beneficial to neurons. Because many studies have been performed using cultured microglia and neurons, it has not been possible to assess the influence of multiple cell types and diverse factors that dynamically and continuously change in vivo. Furthermore, behavior of microglia and other inflammatory cells could have been overlooked since most studies have focused on neuronal death. Therefore, it is essential to analyze the precise roles of microglia and brain inflammation in the injured brain, and determine their contribution to neuronal damage in vivo from the onset of injury. METHODS AND FINDINGS: Acute neuronal damage was induced by stereotaxic injection of ATP into the substantia nigra pars compacta (SNpc) and the cortex of the rat brain. Inflammatory responses and their effects on neuronal damage were investigated by immunohistochemistry, electron microscopy, quantitative RT-PCR, and stereological counting, etc. ATP acutely caused death of microglia as well as neurons in a similar area within 3 h. We defined as the core region the area where both TH(+) and Iba-1(+) cells acutely died, and as the penumbra the area surrounding the core where Iba-1(+) cells showed activated morphology. In the penumbra region, morphologically activated microglia arranged around the injury sites. Monocytes filled the damaged core after neurons and microglia died. Interestingly, neither activated microglia nor monocytes expressed iNOS, a major neurotoxic inflammatory mediator. Monocytes rather expressed CD68, a marker of phagocytic activity. Importantly, the total number of dopaminergic neurons in the SNpc at 3 h (∼80% of that in the contralateral side) did not decrease further at 7 d. Similarly, in the cortex, ATP-induced neuron-damage area detected at 3 h did not increase for up to 7 d. CONCLUSIONS: Different cellular components (microglia, astrocytes, monocytes, and neutrophils) and different factors (proinflammatory and neurotrophic) could be produced in inflammatory processes depending on the nature of the injury. The results in this study suggest that the inflammatory responses of microglia and monocytes in response to ATP-induced acute injury could not be neurotoxic.


Assuntos
Trifosfato de Adenosina/farmacologia , Lesões Encefálicas/patologia , Morte Celular , Inflamação/patologia , Trifosfato de Adenosina/administração & dosagem , Animais , Sequência de Bases , Primers do DNA , Imuno-Histoquímica , Microscopia Eletrônica , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
J Biol Chem ; 281(21): 15001-12, 2006 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-16554296

RESUMO

Unmethylated CpG motifs present in bacterial DNA (CpG DNA) induce innate inflammatory responses, including rapid induction of proinflammatory cytokines. Although innate inflammatory responses induced by CpG DNA and other pathogen-associated molecular patterns are essential for the eradication of infectious microorganisms, excessive activation of innate immunity is detrimental to the host. In this study, we demonstrate that CpG DNA, but not control non-CpG DNA, induces a fulminant liver failure with subsequent shock-mediated death by promoting massive apoptotic death of hepatocytes in D-galactosamine (D-GalN)-sensitized mice. Inhibition of mitochondrial membrane permeability transition pore opening or caspase 9 activity in vivo protects D-GalN-sensitized mice from the CpG DNA-mediated liver injury and death. CpG DNA enhanced production of proinflammatory cytokines in D-GalN-sensitized mice via a TLR9/MyD88-dependent pathway. In addition, CpG DNA failed to induce massive hepatocyte apoptosis and subsequent fulminant liver failure and death in D-GalN-sensitized mice that lack TLR9, MyD88, tumor necrosis factor (TNF)-alpha, or TNF receptor I but not interleukin-6 or -12p40. Taken together, our results provide direct evidence that CpG DNA induces a severe acute liver injury and shock-mediated death through the mitochondrial apoptotic pathway-dependent death of hepatocytes caused by an enhanced production of TNF-alpha through a TLR9/MyD88 signaling pathway in D-GalN-sensitized mice.


Assuntos
Apoptose , Ilhas de CpG , DNA/metabolismo , Galactosamina/farmacologia , Hepatócitos/metabolismo , Fígado/lesões , Mitocôndrias/metabolismo , Animais , Inibidores Enzimáticos/metabolismo , Inflamação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA