Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
BMB Rep ; 56(8): 445-450, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37401239

RESUMO

The development of atherosclerotic cardiovascular disease is associated with the phenotypic switching of vascular smooth muscle cells (SMCs) from a contractile to a synthetic state, leading to cell migration and proliferation. Platelet­derived growth factor­BB (PDGF­BB) modulates this de-differentiation by initiating a number of biological processes. In this study, we show that gene expression of hyaluronic acid (HA) and proteoglycan link protein 1 (HAPLN1) was upregulated during differentiation of human aortic SMCs (HASMCs) into a contractile state, but downregulated upon during PDGF-BB-induced dedifferentiation. This is the first study showing that the treatment of HASMCs with full-length recombinant human HAPLN1 (rhHAPLN1) significantly reversed PDGF-BB-induced decrease in the protein levels of contractile markers (SM22α, α-SMA, calponin, and SM-MHC), and inhibited the proliferation and migration of HASMCs induced by PDGF-BB. Furthermore, our results show that rhHAPLN1 significantly inhibited the phosphorylation of FAK, AKT, STAT3, p38 MAPK and Raf mediated by the binding of PDGF-BB to PDGFRß. Together, these results indicated that rhHAPLN1 can suppress the PDGF-BB-stimulated phenotypic switching and subsequent de-differentiation of HASMCs, highlighting its potential as a novel therapeutic target for atherosclerosis and other vascular diseases. [BMB Reports 2023; 56(8): 445-450].


Assuntos
Ácido Hialurônico , Músculo Liso Vascular , Humanos , Becaplermina/farmacologia , Ácido Hialurônico/farmacologia , Proteínas Proto-Oncogênicas c-sis/farmacologia , Proteínas Proto-Oncogênicas c-sis/metabolismo , Músculo Liso Vascular/metabolismo , Células Cultivadas , Proteoglicanas/metabolismo , Movimento Celular , Proliferação de Células , Miócitos de Músculo Liso/metabolismo
2.
Bioorg Med Chem Lett ; 34: 127676, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33166687

RESUMO

We recently reported the biological evaluations of monovalent IAP antagonist 7 with good potency (MDA-MB-231, IC50 = 19 nM). In an effort to increase cellular activity and improve favorable drug-like properties, we newly designed and synthesized bivalent analogues based on quinazoline structure of 7. Optimization of cellular potency and CYP inhibition led to the identification of 27, which showed dramatic increase of over 100-fold (IC50 = 0.14 nM) and caused substantial tumor regressions in MDA-MB-231 xenograft model. These results strongly support 27 as a promising bivalent antagonist for the development of an effective anti-tumor approaches.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Quinazolinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cães , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Camundongos , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Quinazolinas/síntese química , Quinazolinas/química , Ratos , Relação Estrutura-Atividade
3.
Neuroscience ; 427: 1-15, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31765623

RESUMO

Neurotransmitter release is mediated by ceramide, which is generated by sphingomyelin hydrolysis. In the present study, we examined whether synaptosomal-associated protein 25 (SNAP-25) is involved in ceramide production and exocytosis. Neutral sphingomyelinase 2 (nSMase2) was partially purified from bovine brain and we found that SNAP-25 was enriched in the nSMase2-containing fractions. In rat synaptosomes and PC12 cells, the immunoprecipitation pellet of anti-SNAP-25 antibody showed higher nSMase activity than the immunoprecipitation pellet of anti-nSMase2 antibody. In PC12 cells, SNAP-25 was colocalized with nSMase2. Transfection of SNAP-25 small interfering RNA (siRNA) significantly inhibited nSMase2 translocation to the plasma membrane. A23187-induced ceramide production was concomitantly reduced in SNAP-25 siRNA-transfected PC12 cells compared with that in scrambled siRNA-transfected cells. Moreover, transfection of SNAP-25 siRNA inhibited dopamine release, whereas addition of C6-ceramide to the siRNA-treated cells moderately reversed this inhibition. Additionally, nSMase2 inhibition reduced dopamine release. Collectively, our results indicate that SNAP-25 interacts with nSMase2 during ceramide production, which mediates exocytosis and neurotransmitter release.


Assuntos
Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Animais , Transporte Biológico , Bovinos , Membrana Celular/metabolismo , Ceramidas/biossíntese , Dopamina/metabolismo , Células PC12 , Ratos , Esfingomielina Fosfodiesterase/química , Sinaptossomos
4.
In Vivo ; 33(6): 1901-1910, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31662518

RESUMO

BACKGROUND/AIM: Interleukin (IL)-1ß is a pro-inflammatory cytokine that has recently been established as a stimulator of angiogenesis via regulation of proangiogenic factor expression in the tumor microenvironment. This study aimed to demonstrate the inhibitory effects of Robinia pseudoacacia leaf extract (RP) on IL-1ß-mediated tumor angiogenesis. MATERIALS AND METHODS: Secreted embryonic alkaline phosphatase (SEAP) reporter gene assay, ex vivo and in vitro tube formation assay, western blot, and quantitative PCR were used to analyze the inhibitory effect of RP on IL-1ß-mediated angiogenesis. RESULTS: RP inhibited secretion of SEAP, blocked IL-1ß signaling, and inhibited IL-1ß-mediated angiogenesis in ex vivo and in vitro assays. RP inhibited nuclear translocation of NF-ĸB by suppressing phosphorylation of IL-1ß signaling protein kinases and inhibited mRNA expression of IL-1ß-induced pro-angiogenic factors including VEGFA, FGF2, ICAM1, CXCL8, and IL6. CONCLUSION: RP suppressed IL-1ß-mediated angiogenesis and, thus, could be a promising agent in anticancer therapy.


Assuntos
Interleucina-1beta/metabolismo , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Extratos Vegetais/farmacologia , Folhas de Planta/química , Robinia/química , Animais , Citocinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
5.
Biomol Ther (Seoul) ; 27(2): 193-200, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30231605

RESUMO

Ceramide metabolism is known to be an essential etiology for various diseases, such as atopic dermatitis and Gaucher disease. Glucosylceramide synthase (GCS) is a key enzyme for the synthesis of glucosylceramide (GlcCer), which is a main ceramide metabolism pathway in mammalian cells. In this article, we developed a liquid chromatography-tandem mass spectrometry (LCMS/MS) method to determine GCS activity using synthetic non-natural sphingolipid C8-ceramide as a substrate. The reaction products, C8-GlcCer for GCS, could be separated on a C18 column by reverse-phase high-performance liquid chromatography (HPLC). Quantification was conducted using the multiple reaction monitoring (MRM) mode to monitor the precursor-to-product ion transitions of m/z 588.6 → 264.4 for C8-GlcCer at positive ionization mode. The calibration curve was established over the range of 0.625-160 ng/mL, and the correlation coefficient was larger than 0.999. This method was successfully applied to detect GCS in the human hepatocellular carcinoma cell line (HepG2 cells) and mouse peripheral blood mononuclear cells. We also evaluated the inhibition degree of a known GCS inhibitor 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) on GCS enzymatic activity and proved that this method could be successfully applied to GCS inhibitor screening of preventive and therapeutic drugs for ceramide metabolism diseases, such as atopic dermatitis and Gaucher disease.

6.
Cell Death Dis ; 9(6): 670, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29867196

RESUMO

Autophagy is essential for optimal cell function and survival, and the entire process accompanies membrane dynamics. Ceramides are produced by different enzymes at different cellular membrane sites and mediate differential signaling. However, it remains unclear which ceramide-producing pathways/enzymes participate in autophagy regulation under physiological conditions such as nutrient starvation, and what the underlying mechanisms are. In this study, we demonstrate that among ceramide-producing enzymes, neutral sphingomyelinase 2 (nSMase2) plays a key role in autophagy during nutrient starvation. nSMase2 was rapidly and stably activated upon starvation, and the enzymatic reaction in the Golgi apparatus facilitated autophagy through the activation of p38 MAPK and inhibition of mTOR. Moreover, nSMase2 played a protective role against cellular damage depending on autophagy. These findings suggest that nSMase2 is a novel regulator of autophagy and provide evidence that Golgi-localized ceramides participate in cytoprotective autophagy against starvation.


Assuntos
Autofagia , Ceramidas/metabolismo , Complexo de Golgi/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Animais , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Ativação Enzimática , Masculino , Camundongos Endogâmicos C57BL , Células PC12 , Doença de Parkinson/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Inanição , Estresse Fisiológico , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
Cell Signal ; 44: 171-187, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29329781

RESUMO

Dopamine (DA) reuptake is the primary mechanism to terminate dopaminergic transmission in the synaptic cleft. The dopamine transporter (DAT) has an important role in the regulation of DA reuptake. This study provides anatomical and physiological evidence that DAT recycling is regulated by ceramide kinase via the sphingomyelin pathway. First, the results show that DAT and neutral sphingomyelinase 2 (nSMase2) were successfully co-precipitated from striatal samples and were colocalized in the mouse striatum or PC12 cells. We also identified a protein-protein interaction between nSMase2 and DAT through in situ proximity ligation assay experiments in the mouse striatum. Second, dopamine (DA) stimulated the formation of ceramide and increased nSMase activity in PC12 cells, while treatment with a cell-permeable ceramide-1-phosphate (C1P) increased DA uptake. Third, we used inhibitors and siRNA to inhibit nSMase2 and ceramide kinase and observed the effects on DAT recycling in PC12 cells. Treatment with ceramide kinase inhibitor K1, or nSMase inhibitor GW4869, decreased DA uptake in PC12 cells, although the application of FB1, a ceramide synthase inhibitor, did not affect DA uptake. Transfection of nSMase2 and CERK siRNA decreased DAT surface level in PC12 cells. These results suggested that SM-derived C1P affects cell surface levels of DAT.


Assuntos
Corpo Estriado/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Animais , Transporte Biológico , Ceramidas/metabolismo , Camundongos Endogâmicos C57BL , Oxirredutases/antagonistas & inibidores , Células PC12 , Monoéster Fosfórico Hidrolases/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Ligação Proteica , Ratos
8.
Drug Dev Ind Pharm ; 43(9): 1557-1565, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28554216

RESUMO

OBJECTIVES: Nanoparticulation using fat and supercritical fluid (NUFSTM) is a drug delivery platform technology enabling efficient and effective formulation of poorly soluble drugs. We performed experiments to examine whether NUFS™ could improve poor bioavailability and reduce fed-fasted bioavailability variances of erlotinib (Ert). METHODS: NUFS-Ert was prepared using NUFS™ technology; its physical properties were characterized, and drug release was measured. Furthermore, in vitro and in vivo efficacy tests and pharmacokinetic analysis were performed. RESULTS: NUFS-Ert nanoparticles had an average size of 250 nm and were stable for 2 months at 40 °C, 4 °C, and room temperature. The dissolution rate of NUFS-Ert increased in bio-relevant dissolution media. NUFS-Ert was more potent in inhibiting EGF signaling and in suppressing the proliferation of A549, a human non-small cell lung cancer cell line. Furthermore, A549 xenografts in BALB/c nude mice treated with NUFS-Ert regressed more efficiently than those in the mice treated with vehicle or Tarceva®. In addition, experimental lung metastasis was more efficiently inhibited by NUFS-Ert than by Tarceva®. The relative bioavailability of NUFS-Ert compared with that of Tarceva® was 550% and the ratio of the area under the concentration-time curve (AUC) of fed state to the AUC of fasted state was 1.8 for NUFS-Ert and 5.8 for Tarceva®. CONCLUSIONS: NUFS-Ert could improve poor bioavailability and reduce fed-fasted bioavailability variances of Ert. NUFS-Ert was more efficacious than Tarceva®.


Assuntos
Antineoplásicos/farmacocinética , Disponibilidade Biológica , Cloridrato de Erlotinib/farmacocinética , Excipientes/química , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/química , Animais , Antineoplásicos/química , Química Farmacêutica , Cloridrato de Erlotinib/química , Cloridrato de Erlotinib/farmacologia , Humanos , Camundongos Nus , Solubilidade
9.
Biochem Biophys Res Commun ; 479(2): 266-271, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27638310

RESUMO

Recombinant human GM-CSF (rhGM-CSF) from yeast has been clinically applied to immunosuppressed patients. The production of suspension-cultured rice-cell-derived rhGM-CSF (rrhGM-CSF), which has a longer blood clearance time and the same bioactivity as yeast-derived rhGM-CSF, and the analysis of its N-glycans have been reported recently. However, there are no previous reports of the O-glycosylation of rhGM-CSF from plant cells, and so this study investigated O-glycans, O-glycosylation sites, and their structural role in rrhGM-CSF. Monosaccharide analysis revealed the presence of O-glycans comprising arabinose and galactose. Eight O-glycans comprising four arabinose residues with zero to seven galactose residues along with their relative quantities were analyzed. Analysis of pronase-digested glycopeptides indicated that the O-glycans are partially attached to Ser 5, Ser 7, Ser 9, or Thr 10 residues, and glycan heterogeneity was confirmed at each site. Pro-to-hydroxyproline conversions occurred at Pro 2, Pro 6, and Pro 8 residues. The preparation of deglycosylated rrhGM-CSFs revealed that deglycosylation greatly affects their α-helix structures. These findings indicate that O-glycans of rrhGM-CSF are essential for maintaining its structural stability and result in an extended in vivo half-life, but without affecting its biological function. This is the first report on the O-glycosylation of rhGM-CSF derived from plant cells.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/química , Oryza/metabolismo , Polissacarídeos/química , Arabinose/química , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Galactose/química , Glicopeptídeos/química , Glicosilação , Humanos , Monossacarídeos/química , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
10.
ACS Chem Neurosci ; 7(11): 1488-1498, 2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27442785

RESUMO

Nerve growth factor (NGF)-induced neuronal regeneration has emerged as a strategy to treat neuronal degeneration-associated disorders. However, direct NGF administration is limited by the occurrence of adverse effects at high doses of NGF. Therefore, development of a therapeutic strategy to promote the NGF trophic effect is required. In view of the lack of understanding of the mechanism for potentiating the NGF effect, this study investigated molecular targets of DA-9801, a well-standardized Dioscorea rhizome extract, which has a promoting effect on NGF. An increase in intracellular calcium ion level was induced by DA-9801, and chelation of extracellular calcium ions with ethylene-bis(oxyethylenenitrilo)tetraacetic acid (EGTA) suppressed the potentiating effect of DA-9801 on NGF-induced neurite outgrowth. In addition, EGTA treatment reduced the DA-9801-induced phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2), the major mediators of neurite outgrowth. To find which calcium ion-permeable channel contributes to the calcium ion influx induced by DA-9801, we treated PC12 cells with various inhibitors of calcium ion-permeable channels. NF449, a P2X1 receptor selective antagonist, significantly abolished the potentiating effect of DA-9801 on NGF-induced neurite outgrowth and abrogated the DA-9801-induced ERK1/2 phosphorylation. In addition, transfection with siRNA of P2X1 receptor significantly reduced the DA-9801-enhanced neurite outgrowth. In conclusion, calcium ion influx through P2X1 receptor mediated the promoting effect of DA-9801 on NGF-induced neurite outgrowth via ERK1/2 phosphorylation.


Assuntos
Fator de Crescimento Neural/metabolismo , Neuritos/efeitos dos fármacos , Crescimento Neuronal/efeitos dos fármacos , Preparações de Plantas/farmacologia , Purinérgicos/farmacologia , Receptores Purinérgicos P2X1/metabolismo , Animais , Cálcio/metabolismo , Quelantes de Cálcio/farmacologia , Cátions Bivalentes/metabolismo , Ácido Egtázico/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neuritos/fisiologia , Crescimento Neuronal/fisiologia , Fármacos Neuroprotetores/farmacologia , Células PC12 , Fosforilação/efeitos dos fármacos , RNA Interferente Pequeno , Ratos , Receptores Purinérgicos P2X1/genética
11.
Biol Pharm Bull ; 38(2): 169-78, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25482167

RESUMO

In the present study, we examined the mechanisms underlying the effect of DA-9801 on neurite outgrowth. We found that DA-9801 elicits its effects via the mitogen-activated protein kinase (MEK) extracellular signal-regulated kinase (ERK)1/2-cAMP response element-binding protein (CREB) pathway. DA-9801, an extract from a mixture of Dioscorea japonica and Dioscorea nipponica, was reported to promote neurite outgrowth in PC12 cells. The effects of DA-9801 on cell viability and expression of neuronal markers were evaluated in PC12 cells. To investigate DA-9801 action, specific inhibitors targeting the ERK signaling cascade were used. No cytotoxicity was observed in PC12 cells at DA-9801 concentrations of less than 30 µg/mL. In the presence of nerve growth factor (NGF, 2 ng/mL), DA-9801 promoted neurite outgrowth and increased the relative mRNA levels of neurofilament-L (NF-L), a marker of neuronal differentiation. The Raf-1 inhibitor GW5074 and MEK inhibitor PD98059 significantly attenuated DA-9801-induced neurite outgrowth. Additionally, the MEK1 and MEK2 inhibitor SL327 significantly attenuated the increase in the percentage of neurite-bearing PC12 cells induced by DA-9801 treatment. Conversely, the selective p38 mitogen-activated protein kinase inhibitor SB203580 did not attenuate the DA-9801 treatment-induced increase in the percentage of neurite-bearing PC12 cells. DA-9801 enhanced the phosphorylation of ERK1/2 and CREB in PC12 cells incubated with and without NGF. Pretreatment with PD98059 blocked the DA-9801-induced phosphorylation of ERK1/2 and CREB. In conclusion, DA-9801 induces neurite outgrowth by affecting the ERK1/2-CREB signaling pathway. Insights into the mechanism underlying this effect of DA-9801 may suggest novel potential strategies for the treatment of peripheral neuropathy.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Preparações de Plantas/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , MAP Quinase Quinase Quinases/metabolismo , Proteínas de Neurofilamentos/metabolismo , Células PC12 , Proteínas Proto-Oncogênicas c-raf , Ratos
12.
J Agric Food Chem ; 62(41): 10110-7, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25238033

RESUMO

Ellagic acid (EA) is present in certain fruits and nuts, including raspberries, pomegranates, and walnuts, and has anti-inflammatory and antioxidant properties. The aims of this study were to examine the protective effect of EA on concanavalin A (Con A)-induced hepatitis and to elucidate its underlying molecular mechanisms in mice. Mice were orally administered EA at different doses before the intravenous delivery of Con A; the different experimental groups were as follows: (i) vehicle control, (ii) Con A alone without EA, (iii) EA at 50 mg/kg, (iv) EA at 100 mg/kg, and (v) EA at 200 mg/kg. We found that EA pretreatment significantly reduced the levels of plasma aminotransferase and liver necrosis in Con A-induced hepatitis. Also, EA significantly decreased the expression levels of the toll-like receptor 2 (TLR2) and TLR4 mRNA and protein in liver tissues. Further, EA decreased the phosphorylation of JNK, ERK1/2, and p38. EA-treated groups showed suppressions of nuclear factor κB (NF-κB) and IκB-α degradation levels in liver tissues. In addition, EA pretreatment decreased the expression of pro-inflammatory cytokines, such as tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), and interleukin 1ß (IL-1ß). These results suggest that EA protects against T-cell-mediated hepatitis through TLR and mitogen-activated protein kinase (MAPK)/NF-κB signaling pathways.


Assuntos
Ácido Elágico/administração & dosagem , Hepatite/tratamento farmacológico , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Substâncias Protetoras/administração & dosagem , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Concanavalina A/efeitos adversos , Hepatite/etiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Quinases Ativadas por Mitógeno/genética , NF-kappa B/genética , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética
13.
J Med Food ; 17(9): 996-1002, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24971903

RESUMO

Ellagic acid (EA) is a well- known phytochemical that modulates various cellular processes. It is present in a variety of foods, including grapes, strawberries, and nuts. However, the influence of EA on immunological responses is not well defined. Here, we investigated the effects of EA on the lipopolysaccharide (LPS)-induced bone marrow-derived dendritic cells (BMDCs). EA was not cytotoxic to DCs. EA suppressed LPS-induced expression of costimulatory molecules (CD80 and CD86), but it did not suppress the expression of major histocompatibility complex (MHC) class I and MHC class II in BMDCs. In particular, EA blocked LPS-induced c-Jun N-terminal kinase (JNK) activation. LPS-mediated expression of proinflammatory cytokines (IL-12 and IFN-γ) was diminished by EA. We also confirmed that levels of IL-12 and IFN-γ were not influenced by EA in the presence of a JNK inhibitor. Taken together, these data demonstrate that EA regulates the immune response through the modulation of LPS-induced DC maturation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Ácido Elágico/farmacologia , Extratos Vegetais/farmacologia , Animais , Antígeno B7-1 , Antígeno B7-2 , Células da Medula Óssea , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Frutas/química , Interferon gama/metabolismo , Interleucina-12/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL
14.
PLoS One ; 8(6): e67216, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840630

RESUMO

Activation of sphingomyelinase (SMase) by extracellular stimuli is the major pathway for cellular production of ceramide, a bioactive lipid mediator acting through sphingomyelin (SM) hydrolysis. Previously, we reported the existence of six forms of neutral pH-optimum and Mg(2+)-dependent SMase (N-SMase) in the membrane fractions of bovine brain. Here, we focus on N-SMase ε from salt-extracted membranes. After extensive purification by 12,780-fold with a yield of 1.3%, this enzyme was eventually characterized as N-SMase2. The major single band of 60-kDa molecular mass in the active fractions of the final purification step was identified as heat shock protein 60 (Hsp60) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis. Proximity ligation assay and immunoprecipitation study showed that Hsp60 interacted with N-SMase2, prompting us to examine the effect of Hsp60 on N-SMase2 and ceramide production. Interestingly, Hsp60 siRNA treatment significantly increased the protein level of N-SMase2 in N-SMase2-overexpressed HEK293 cells. Furthermore, transfection of Hsp60 siRNA into PC12 cells effectively increased both N-SMase activity and ceramide production and increased dopamine re-uptake with paralleled increase. Taken together, these results show that Hsp60 may serve as a negative regulator in N-SMase2-induced dopamine re-uptake by decreasing the protein level of N-SMase2.


Assuntos
Chaperonina 60/fisiologia , Dopamina/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Animais , Bovinos , Células HEK293 , Humanos , Células PC12 , Ratos , Ratos Sprague-Dawley
15.
Biol Pharm Bull ; 36(3): 425-31, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23449328

RESUMO

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is an important regulator of the maturation and function of cells in the granulocyte and macrophage lineages, and also plays a significant role in wound healing. In a previous study, we expressed human GM-CSF in rice cells (rice cell-derived human GM-CSF; rhGM-CSF). The purpose of the present study was to evaluate its effect on wound healing in oral mucositis. Oral mucositis was induced in Syrian hamster cheek pouches by 5-fluorouracil treatment and mechanical scratching. Ulcerated areas were treated from days 3 to 14 with an application of 200 µL saline, or of the same volume of a solution containing 0.04, 0.2, or 1 µg/mL rhGM-CSF. Treatment of hamsters with rhGM-CSF reduced the ulcerated areas of the oral mucosa, compared with the control. Early in the healing process, the mucositis tissue layer of the rhGM-CSF-treated group showed significantly decreased myeloperoxidase activity and increased numbers of proliferating cell nuclear antigen (PCNA)-positive cells. Treatment with rhGM-CSF also affected expression of inflammatory cytokines in the ulcerative mucosal tissue. These results demonstrate the efficacy of plant-produced rhGM-CSF in wound healing and have significant implications for the development of rhGM-CSF as a therapeutic agent for ulcerative oral mucositis.


Assuntos
Antimetabólitos Antineoplásicos/toxicidade , Fluoruracila/toxicidade , Fator Estimulador de Colônias de Granulócitos e Macrófagos/uso terapêutico , Estomatite/tratamento farmacológico , Animais , Cricetinae , Interleucina-1beta/genética , Masculino , Mesocricetus , Mucosa Bucal/efeitos dos fármacos , Mucosa Bucal/enzimologia , Oryza/genética , Peroxidase/metabolismo , Antígeno Nuclear de Célula em Proliferação/análise , Proteínas Recombinantes/uso terapêutico , Estomatite/induzido quimicamente , Estomatite/patologia , Fator de Crescimento Transformador beta/genética , Cicatrização/efeitos dos fármacos
16.
Mol Cells ; 32(5): 405-13, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21874539

RESUMO

The Ca(2+)-independent phospholipase A(2) (iPLA(2)) subfamily of enzymes is associated with arachidonic acid (AA) release and the subsequent increase in fatty acid turnover. This phenomenon occurs not only during apoptosis but also during inflammation and lymphocyte proliferation. In this study, we purified and characterized a novel type of iPLA(2) from bovine brain. iPLA(2) was purified 4,174-fold from the bovine brain by a sequential process involving DEAE-cellulose anion exchange, phenyl-5PW hydrophobic interaction, heparin-Sepharose affinity, Sephacryl S-300 gel filtration, Mono S cation exchange, Mono Q anion exchange, and Superose 12 gel filtration. A single peak of iPLA(2) activity was eluted at an apparent molecular mass of 155 kDa during the final Superose 12 gel-filtration step. The purified enzyme had an isoelectric point of 5.3 on two-dimensional gel electrophoresis (2-DE) and was inhibited by arachidonyl trifluoromethyl ketone (AACOCF(3)), Triton X-100, iron, and Ca(2+). However, it was not inhibited by bromoenol lactone (BEL), an inhibitor of iPLA(2), and adenosine triphosphate (ATP). The spot with the iPLA(2) activity did not match with any known protein sequence, as determined by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) analysis. Altogether, these data suggest that the purified enzyme is a novel form of cytosolic iPLA(2).


Assuntos
Encéfalo/enzimologia , Citosol/enzimologia , Fosfolipases A2/isolamento & purificação , Animais , Bovinos , Eletroforese em Gel de Poliacrilamida , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
Mol Cells ; 32(4): 325-31, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21874540

RESUMO

Ceramide has been suggested to be not only a tumor-suppressive lipid but also a regulator of phagocytosis. We examined whether exogenous cell-permeable C(6)-ceramide enhances the phagocytic activity of Kupffer cells (KCs) and affects the level of cellular ceramides. Rat KCs were isolated by collagenase digestion and differential centrifugation, using Percoll system. Phagocytic activity was measured by FACS analysis after incubating KCs with fluorescence-conjugated latex beads, and the level of cellular ceramide was analyzed by liquid chromatography tandem-mass spectrometry (LC-MS/MS). In this study we found that permeable C(6)-ceramide increases the cellular levels of endogenous ceramides via a sphingosine-recycling pathway leading to enhanced phagocytosis by KCs.


Assuntos
Ceramidas/farmacologia , Regulação da Expressão Gênica , Células de Kupffer/efeitos dos fármacos , Fígado/patologia , Fagocitose , Animais , Separação Celular , Células Cultivadas , Ceramidas/genética , Ceramidas/metabolismo , Citometria de Fluxo , Regulação da Expressão Gênica/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Células de Kupffer/metabolismo , Células de Kupffer/patologia , Masculino , Fagocitose/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Esfingosina/metabolismo
18.
PLoS One ; 5(5): e10489, 2010 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-20463975

RESUMO

Alzheimer's disease (AD) is characterized by the deposition of aggregated beta-amyloid (Abeta), which triggers a cellular stress response called the unfolded protein response (UPR). The UPR signaling pathway is a cellular defense system for dealing with the accumulation of misfolded proteins but switches to apoptosis when endoplasmic reticulum (ER) stress is prolonged. ER stress is involved in neurodegenerative diseases including AD, but the molecular mechanisms of ER stress-mediated Abeta neurotoxicity still remain unknown. Here, we show that treatment of Abeta triggers the UPR in the SK-N-SH human neuroblastoma cells. Abeta mediated UPR pathway accompanies the activation of protective pathways such as Grp78/Bip and PERK-eIF2alpha pathway, as well as the apoptotic pathways of the UPR such as CHOP and caspase-4. Knockdown of PERK enhances Abeta neurotoxicity through reducing the activation of eIF2alpha and Grp8/Bip in neurons. Salubrinal, an activator of the eIF2alpha pathway, significantly increased the Grp78/Bip ER chaperone resulted in attenuating caspase-4 dependent apoptosis in Abeta treated neurons. These results indicate that PERK-eIF2alpha pathway is a potential target for therapeutic applications in neurodegenerative diseases including AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/patologia , Transdução de Sinais , Estresse Fisiológico , eIF-2 Quinase/metabolismo , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cinamatos/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Ativação Enzimática/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Proteínas de Choque Térmico/metabolismo , Humanos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Tioureia/análogos & derivados , Tioureia/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos
19.
Cell Signal ; 22(5): 865-70, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20096352

RESUMO

Ceramide serves as a second messenger produced from sphingomyelin by the activation of sphingomyelinase (SMase). Here, we suggest that neutral SMase 2 (nSMase2) may regulate dopamine (DA) uptake. nSMase2 siRNA-transfected PC12 cells showed lower levels of nSMase activity and ceramide than scramble siRNA-transfected and control cells. Interestingly, transfection of nSMase2 siRNA or pretreatment with the nSMase2-specific inhibitor GW4869 resulted in decreased DA uptake. Reciprocally, exposure of PC12 cells to cell-permeable C(6)-ceramide induced a concentration-dependent increase in DA uptake. Removal of extracellular calcium by EGTA increased DA uptake in scramble-transfected and control cells, but not in nSMase2 siRNA-transfected or GW4869-pretreated cells. Moreover, siRNA-transfected cells showed higher levels of intracellular calcium than scramble cells, while C(6)-ceramide treatment resulted in decreased intracellular calcium compared to vehicle treatment alone. Taken together, these data suggest that nSMase2 may increase DA uptake through inducing ceramide production and thereby decreasing intracellular calcium levels.


Assuntos
Cálcio/metabolismo , Dopamina/metabolismo , Espaço Intracelular/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Compostos de Anilina/farmacologia , Animais , Compostos de Benzilideno/farmacologia , Diferenciação Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Ceramidas/biossíntese , Ácido Egtázico/farmacologia , Espaço Intracelular/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Células PC12 , RNA Interferente Pequeno/metabolismo , Ratos , Transfecção
20.
Cell Signal ; 22(4): 610-8, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19932170

RESUMO

Cellular hypoxia can lead to cell death or adaptation and has important effects on development, physiology, and pathology. Here, we investigated the role and regulation of ceramide in hypoxia-induced apoptosis of SH-SY5Y neuroblastoma cells. Hypoxia increased the ceramide concentration; subsequently, we observed biochemical changes indicative of apoptosis, such as DNA fragmentation, nuclear staining, and poly ADP-ribose polymerase (PARP) cleavage. The hypoxic cell death was potently inhibited by a caspase inhibitor, zVAD-fmk (benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone). l-Cycloserine, a serine palmitoyltransferase (SPT) inhibitor, and fumonisin B(1) (FB(1)), a ceramide synthase inhibitor, inhibited the hypoxia-induced increase in ceramide, indicating that the increase occurred via the de novo pathway. Hypoxia increased the activity and protein levels of SPT2, suggesting that the hypoxia-induced increase in ceramide is due to the transcriptional up-regulation of SPT2. Specific siRNA of SPT2 prevented hypoxia-induced cell death and ceramide production. However, hypoxia also increased the cellular level of glucosylceramide, which was inhibited by a glucosylceramide synthase (GCS) inhibitor and specific siRNA, but not a ceramidase inhibitor. The increase in glucosylceramide was accompanied by increases in both PARP cleavage and DNA fragmentation. Together, the current results suggest that both SPT and GCS may regulate the cellular level of ceramide, and thus may be critical enzymes for deciding the fate of the cells exposed to hypoxia.


Assuntos
Apoptose , Hipóxia Celular , Ceramidas/metabolismo , Serina C-Palmitoiltransferase/metabolismo , Linhagem Celular Tumoral , Endocanabinoides , Inibidores Enzimáticos/farmacologia , Etanolaminas/farmacologia , Glucosilceramidas/metabolismo , Glucosiltransferases/metabolismo , Humanos , Morfolinas/farmacologia , Neurônios/citologia , Neurônios/metabolismo , Ácidos Oleicos , Esfingosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA