Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Sci Rep ; 14(1): 10105, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698020

RESUMO

Colorectal cancer (CRC) is one of the top five most common and life-threatening malignancies worldwide. Most CRC develops from advanced colorectal adenoma (ACA), a precancerous stage, through the adenoma-carcinoma sequence. However, its underlying mechanisms, including how the tumor microenvironment changes, remain elusive. Therefore, we conducted an integrative analysis comparing RNA-seq data collected from 40 ACA patients who visited Dongguk University Ilsan Hospital with normal adjacent colons and tumor samples from 18 CRC patients collected from a public database. Differential expression analysis identified 21 and 79 sequentially up- or down-regulated genes across the continuum, respectively. The functional centrality of the continuum genes was assessed through network analysis, identifying 11 up- and 13 down-regulated hub-genes. Subsequently, we validated the prognostic effects of hub-genes using the Kaplan-Meier survival analysis. To estimate the immunological transition of the adenoma-carcinoma sequence, single-cell deconvolution and immune repertoire analyses were conducted. Significant composition changes for innate immunity cells and decreased plasma B-cells with immunoglobulin diversity were observed, along with distinctive immunoglobulin recombination patterns. Taken together, we believe our findings suggest underlying transcriptional and immunological changes during the adenoma-carcinoma sequence, contributing to the further development of pre-diagnostic markers for CRC.


Assuntos
Adenoma , Neoplasias Colorretais , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Adenoma/genética , Adenoma/imunologia , Adenoma/patologia , República da Coreia , Biologia Computacional/métodos , Masculino , Feminino , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Prognóstico , Pessoa de Meia-Idade , Idoso , Biomarcadores Tumorais/genética , Estimativa de Kaplan-Meier , Perfilação da Expressão Gênica
2.
J Immunother Cancer ; 12(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38471713

RESUMO

BACKGROUND: Recombinant human interleukin (rhIL)-7-hyFc (efineptakin alfa; NT-I7) is a potent T-cell amplifier, with two IL-7 molecules fused to IgD/IgG4 elements. rhIL-7-hyFc promotes extensive infiltration of CD8+ T cells into the tumor, concurrently increasing the numbers of intratumoral PD-1+CD8+ T cells. The hIL-2/TCB2 complex (SLC-3010) inhibits tumor growth by preferential activation of CD122 (IL-2Rß)high CD8+ T cells and natural killer cells, over regulatory T cells (Tregs). We investigated the underlying mechanisms of rhIL-7-hyFc and hIL-2/TCB2c antitumor activity and the potential synergistic efficacy, specifically focusing on tumor-specific CD8+ cells within the tumor and the tumor-draining lymph nodes (tdLN). METHODS: MC38 and CT26 tumor-bearing mice were administered with 10 mg/kg rhIL-7-hyFc intramuscularly and 0.9 mg/kg hIL-2/TCB2c intravenously. Anti-PD-1 monoclonal antibody was administered intraperitoneally three times at 3-day intervals at a dose of 5 mg/kg. Tumor volume was measured to assess efficacy. To compare the composition of immune cells between each monotherapy and the combination therapy, we analyzed tumors and tdLNs by flow cytometry. RESULTS: Our data demonstrate that the combination of rhIL-7-hyFc and hIL-2/TCB2c increases efficacy and generates an immune-stimulatory tumor microenvironment (TME). The TME is characterized by an increased infiltration of tumor-specific CD8+ T cells, and a decreased frequency of CD39highTIM-3+ Treg cells. Most importantly, rhIL-7-hyFc increases infiltration of a CD62L+Ly108+ early progenitor population of exhausted CD8+ T cells (TPEX), which may retain long-term proliferation capacity and replenish functional effector CD8+ T cells. hIL-2/TCB2c induces differentiation of CD62L+Ly108+ TPEX rapidly into CD101+ terminally differentiated subsets (terminally exhausted T cell (TEX term)). Our study also demonstrates that rhIL-7-hyFc significantly enhances the proliferation rate of TPEX in the tdLNs, positively correlating with their abundance within the tumor. Moreover, rhIL-7-hyFc and hIL-2/TCB2c can overcome the limited therapeutic effectiveness of PD-1 blockade, culminating in the complete regression of tumors. CONCLUSIONS: rhIL-7-hyFc can expand and maintain the progenitor pool of exhausted CD8+ T cells, whereas hIL-2/TCB2c promotes their differentiation into TEX term. Together, this induces an immune-stimulatory TME that improves the efficacy of checkpoint blockade.


Assuntos
Linfócitos T CD8-Positivos , Interleucina-7 , Neoplasias , Proteínas Recombinantes de Fusão , Humanos , Animais , Camundongos , Microambiente Tumoral , Receptor de Morte Celular Programada 1 , Fatores Imunológicos
3.
Biochem Biophys Res Commun ; 696: 149469, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38194806

RESUMO

Accumulating data suggest that ribosomal protein S6 kinase 1 (S6K1), an effector in the mammalian target of rapamycin (mTOR) pathway, plays pleiotropic roles in tumor progression. However, to date, while the tumorigenic function of S6K1 in tumor cells has been well elucidated, its role in the tumor stroma remains poorly understood. We recently showed that S6K1 mediates vascular endothelial growth factor A (VEGF-A) production in macrophages, thereby supporting tumor angiogenesis and growth. As macrophage-derived VEGF-A is crucial for both tumor cell intravasation and extravasation across the vascular endothelium, our previous findings suggest that stromal S6K1 signaling is required for tumor metastatic spread. Therefore, we aimed to determine the impact of host S6K1 depletion on tumor metastasis using a murine model of pulmonary metastasis (S6k1-/- mice implanted with B16F10 melanoma). The ablation of S6K1 in the host microenvironment significantly reduced the metastasized B16F10 melanoma cells on the lung surface in both spontaneous and intravenous lung metastasis mouse models without affecting the incidence of metastasis to distant lymph nodes. In addition, stromal S6K1 loss decreased the number of tumor cells circulating in the peripheral blood of mice bearing B16F10 xenografts without affecting the vascular leakage induced by VEGF-A in vivo. These observations demonstrate that S6K1 signaling in host cells other than endothelial cells is required to modulate the host microenvironment to facilitate the metastatic spread of tumors via blood circulation, thus revealing its novel role in the tumor stroma during tumor progression.


Assuntos
Neoplasias Pulmonares , Melanoma , Humanos , Animais , Camundongos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Melanoma/genética , Células Endoteliais/metabolismo , Transdução de Sinais , Neoplasias Pulmonares/patologia , Mamíferos/metabolismo , Microambiente Tumoral
4.
J Fam Nurs ; : 10748407231198249, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37846068

RESUMO

The purpose of this research was to systematically examine and collate evidence on couple-oriented interventions for mental health to identify trends in the literature, review research strategies, and suggest directions for future research. A systematic search included studies relating to couple-oriented interventions for preventing mental disorders and/or promoting mental health. We identified a total of 52 studies, which included 55 articles. Our findings revealed that interventions were delivered through various modes, including face-to-face, telephone, and online, with the majority of couple-oriented interventions operating in conjoint sessions. The most common intervention was for selective prevention targeting patients with cancer and their partners. This review provided evidence of the applicability of theoretical frameworks, dyad analysis, and measurements associated with couple-oriented interventions. Findings can help family nurse practitioners and health care professionals advance strategies to develop and implement evidence-based, couple-oriented interventions for primary prevention of mental disorders and the promotion of mental health.

6.
Theranostics ; 13(3): 1198-1216, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793862

RESUMO

Rationale: ß-catenin is a component for cell adhesion and a transcriptional coactivator in epithelial-mesenchymal transition (EMT). Previously we found that catalytically active PLK1 drives EMT in non-small cell lung cancer (NSCLC), upregulating extracellular matrix factors including TSG6, laminin γ2, and CD44. To understand the underlying mechanism and clinical significance of PLK1 and ß-catenin in NSCLC, their relationship and function in metastatic regulation were investigated. Methods: The clinical relevance between the survival rate of NSCLC patients and the expression of PLK1 and ß-catenin was analyzed by a KM plot. Immunoprecipitation, kinase assay, LC-MS/MS spectrometry, and site-directed mutagenesis were performed to reveal their interaction and phosphorylation. A lentiviral doxycycline-inducible system, Transwell-based 3D culture, tail-vein injection model, confocal microscopy, and chromatin immunoprecipitation assays were used to elucidate the function of phosphorylated ß-catenin in the EMT of NSCLC. Results: Clinical analysis revealed that the high expression of CTNNB1/PLK1 was inversely correlated with the survival rates of 1,292 NSCLC patients, especially in metastatic NSCLC. In TGF-ß-induced or active PLK1-driven EMT, ß-catenin, PLK1, TSG6, laminin γ2, and CD44 were concurrently upregulated. ß-catenin is a binding partner of PLK1 in TGF-ß-induced EMT and is phosphorylated at S311. Phosphomimetic ß-catenin promotes cell motility, invasiveness of NSCLC cells, and metastasis in a tail-vein injection mouse model. Its upregulated stability by phosphorylation enhances transcriptional activity through nuclear translocation for the expression of laminin γ2, CD44, and c-Jun, therefore enhancing PLK1 expression by AP-1. Conclusions: Our findings provide evidence for the critical role of the PLK1/ß-catenin/AP-1 axis in metastatic NSCLC, implying that ß-catenin and PLK1 may serve as a molecular target and prognostic indicator of the therapeutic response in metastatic NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteínas Serina-Treonina Quinases , beta Catenina , Animais , Camundongos , beta Catenina/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida , Matriz Extracelular/metabolismo , Laminina/metabolismo , Neoplasias Pulmonares/patologia , Fosforilação , Espectrometria de Massas em Tandem , Fator de Transcrição AP-1/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Quinase 1 Polo-Like
7.
Nat Cancer ; 4(2): 290-307, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36550235

RESUMO

We report a proteogenomic analysis of pancreatic ductal adenocarcinoma (PDAC). Mutation-phosphorylation correlations identified signaling pathways associated with somatic mutations in significantly mutated genes. Messenger RNA-protein abundance correlations revealed potential prognostic biomarkers correlated with patient survival. Integrated clustering of mRNA, protein and phosphorylation data identified six PDAC subtypes. Cellular pathways represented by mRNA and protein signatures, defining the subtypes and compositions of cell types in the subtypes, characterized them as classical progenitor (TS1), squamous (TS2-4), immunogenic progenitor (IS1) and exocrine-like (IS2) subtypes. Compared with the mRNA data, protein and phosphorylation data further classified the squamous subtypes into activated stroma-enriched (TS2), invasive (TS3) and invasive-proliferative (TS4) squamous subtypes. Orthotopic mouse PDAC models revealed a higher number of pro-tumorigenic immune cells in TS4, inhibiting T cell proliferation. Our proteogenomic analysis provides significantly mutated genes/biomarkers, cellular pathways and cell types as potential therapeutic targets to improve stratification of patients with PDAC.


Assuntos
Carcinoma Ductal Pancreático , Carcinoma de Células Escamosas , Neoplasias Pancreáticas , Proteogenômica , Animais , Camundongos , Humanos , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/genética , Biomarcadores , Neoplasias Pancreáticas
8.
Cell Biol Toxicol ; 39(4): 1509-1529, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35842499

RESUMO

The Plk2 is a cellular stress-responsive factor that is induced in response to oxidative stress. However, the roles of Plk2 in acute kidney injury (AKI) have not been clarified. We previously found that Plk2 is an interacting factor of Nrf2 in response to cellular stress, since Plk2 is upregulated in the Nrf2-dependent network. Here, we show that the levels of p53, Plk2, p21cip1, and chromatin-bound Nrf2 were all upregulated in kidney tissues of mice or NRK52E cells treated with either cisplatin or methotrexate. Upregulation of Plk2 by p53 led to an increase of Nrf2 in both soluble and chromatin fractions in cisplatin-treated NRK52E cells. Consistently, depletion of Plk2 suppressed the levels of Nrf2. Of note, Plk2 directly phosphorylated Nrf2 at Ser40, which facilitated its interaction with p21cip1 and translocation into the nuclei for the activation of anti-oxidative and anti-inflammatory factors in response to AKI. Together, these findings suggest that Plk2 may serve as an anti-oxidative and anti-inflammatory regulator through the phosphorylation and activation of Nrf2 to protect kidney cells from kidney toxicants and that Plk2 and Nrf2 therefore work cooperatively for the protection and survival of kidney cells from harmful stresses.


Assuntos
Injúria Renal Aguda , Proteína Supressora de Tumor p53 , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Cromatina , Cisplatino/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Fosforilação , Proteína Supressora de Tumor p53/metabolismo
9.
PLoS One ; 17(9): e0274879, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36174000

RESUMO

Uterine fibroid is one of the most prevalent benign tumors in women, with high socioeconomic costs. Although genome-wide association studies (GWAS) have identified several loci associated with uterine fibroid risks, they could not successfully interpret the biological effects of genomic variants at the gene expression levels. To prioritize uterine fibroid susceptibility genes that are biologically interpretable, we conducted a transcriptome-wide association study (TWAS) by integrating GWAS data of uterine fibroid and expression quantitative loci data. We identified nine significant TWAS genes including two novel genes, RP11-282O18.3 and KBTBD7, which may be causal genes for uterine fibroid. We conducted functional enrichment network analyses using the TWAS results to investigate the biological pathways in which the overall TWAS genes were involved. The results demonstrated the immune system process to be a key pathway in uterine fibroid pathogenesis. Finally, we carried out chemical-gene interaction analyses using the TWAS results and the comparative toxicogenomics database to determine the potential risk chemicals for uterine fibroid. We identified five toxic chemicals that were significantly associated with uterine fibroid TWAS genes, suggesting that they may be implicated in the pathogenesis of uterine fibroid. In this study, we performed an integrative analysis covering the broad application of bioinformatics approaches. Our study may provide a deeper understanding of uterine fibroid etiologies and informative notifications about potential risk chemicals for uterine fibroid.


Assuntos
Leiomioma , Transcriptoma , Feminino , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Humanos , Leiomioma/genética , Toxicogenética
10.
Exp Mol Med ; 54(8): 1188-1200, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35982301

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disorder characterized by chronic inflammation and the destruction of joints and systemic organs. RA is commonly accompanied by neuropsychiatric complications, such as cognitive impairment and depression. However, the role of monoamine oxidase (MAO) and its inhibitors in controlling neurotransmitters associated with these complications in RA have not been clearly identified. Here, we report that peripheral and central MAO-B are highly associated with joint inflammation and cognitive impairment in RA, respectively. Ribonucleic acid (RNA) sequencing and protein expression quantification were used to show that MAO-B and related molecules, such as gamma aminobutyric acid (GABA), were elevated in the inflamed synovium of RA patients. In primary cultured fibroblast-like synoviocytes in the RA synovium, MAO-B expression was significantly increased by tumor necrosis factor (TNF)-α-induced autophagy, which produces putrescine, the polyamine substrate for GABA synthesis. We also observed that MAO-B-mediated aberrant astrocytic production of GABA was augmented by interleukin (IL)-1ß and inhibited CA1-hippocampal pyramidal neurons, which are responsible for memory storage, in an animal model of RA. Moreover, a newly developed reversible inhibitor of MAO-B ameliorated joint inflammation by inhibiting cyclooxygenase (Cox)-2. Therefore, MAO-B can be an effective therapeutic target for joint inflammation and cognitive impairment in patients with RA.


Assuntos
Artrite Reumatoide , Disfunção Cognitiva , Animais , Artrite Reumatoide/complicações , Artrite Reumatoide/tratamento farmacológico , Células Cultivadas , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Fibroblastos/metabolismo , Inflamação/metabolismo , Monoaminoxidase/metabolismo , Monoaminoxidase/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Ácido gama-Aminobutírico/metabolismo
11.
Exp Mol Med ; 54(4): 414-425, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379935

RESUMO

Accumulating evidence indicates that mitotic protein kinases are involved in metastatic migration as well as tumorigenesis. Protein kinases and cytoskeletal proteins play a role in the efficient release of metastatic cells from a tumor mass in the tumor microenvironment, in addition to playing roles in mitosis. Mitotic protein kinases, including Polo-like kinase 1 (PLK1) and Aurora kinases, have been shown to be involved in metastasis in addition to cell proliferation and tumorigenesis, depending on the phosphorylation status and cellular context. Although the genetic programs underlying mitosis and metastasis are different, the same protein kinases and cytoskeletal proteins can participate in both mitosis and cell migration/invasion, resulting in migratory tumors. Cytoskeletal remodeling supports several cellular events, including cell division, movement, and migration. Thus, understanding the contributions of cytoskeletal proteins to the processes of cell division and metastatic motility is crucial for developing efficient therapeutic tools to treat cancer metastases. Here, we identify mitotic kinases that function in cancer metastasis as well as tumorigenesis. Several mitotic kinases, namely, PLK1, Aurora kinases, Rho-associated protein kinase 1, and integrin-linked kinase, are considered in this review, as an understanding of the shared machineries between mitosis and metastasis could be helpful for developing new strategies to treat cancer.


Assuntos
Neoplasias , Proteínas Quinases , Aurora Quinases/genética , Aurora Quinases/metabolismo , Carcinogênese , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/metabolismo , Células HeLa , Humanos , Mitose , Fosforilação , Proteínas Quinases/metabolismo , Microambiente Tumoral
12.
J Liver Cancer ; 22(1): 51-56, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37383540

RESUMO

The concept of oligometastasis is widely accepted for various types of solid tumors; accordingly, better outcomes can be anticipated with aggressive local interventions. The treatment of advanced hepatocellular carcinoma (HCC) with extrahepatic metastasis is systemic therapy. However, treatment responses to systemic therapy are poor. Recently, a small number of metastatic cancers (oligometastasis) have been controlled by local therapy rather than systemic therapy. Our study reports a case of a 66-year-old male patient with advanced HCC with lung metastasis, which was treated with local therapy. There were less than four metastases in the lungs, which were treated with wedge resection, radiofrequency, and radiation therapy. He repeatedly underwent local therapy for lung oligometastasis and locoregional therapy for intrahepatic HCC rather than systemic therapy; control by local therapy was possible as his liver function was preserved with Child-Turcotte-Pugh class A.

14.
Eur J Med Chem ; 226: 113860, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34597897

RESUMO

Several anticancer agents have been developed and innovative approaches have been made toward cancer type-specific medicines for cancer treatment. As a continuous effort to develop potential chemotherapeutic agents, a novel series of 2,4-diphenyl-5,6-dihydrobenzo(h)quinolin-8-amines containing amino groups, hydroxyphenyl and fluorine functionalities were designed and synthesized. The compounds were evaluated for topo IIα inhibitory and cytotoxicity against HCT15, and HeLa human cancer cell lines. Among synthesized thirty compounds, the majority exhibited strong topo IIα inhibition and anti-proliferation against HCT15 colorectal adenocarcinoma cell line. The structure-activity relationship study revealed that compounds with -CF3 and -OCF3 substituents at 4- position and 3' or 4'-hydroxyphenyl at 2-position attached to the central pyridine ring displayed potent topo IIα and anti-proliferative activity in colorectal and cervix cancer cell line. In vitro studies provided the evidence that compounds 16, 19, 22, and 28 possess excellent topo IIα inhibition and antiproliferative activity. For a better understanding, topo IIα cleavage complex, EtBr displacement, KI quenching assays and molecular docking of compound 19 was performed and the results revealed the mode of action as a DNA intercalative topo IIα poison inhibitor. The results obtained from this study provide insight into the DNA binding mechanism of 2,4-diphenyl-5,6-dihydrobenzo(h)quinolin-8-amines and alteration in topo IIα inhibitory and antiproliferative activity with modifications in the rigid structure.


Assuntos
Aminas/farmacologia , Antineoplásicos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Descoberta de Drogas , Inibidores da Topoisomerase II/farmacologia , Aminas/síntese química , Aminas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química , Células Tumorais Cultivadas
15.
Cancers (Basel) ; 13(17)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34503223

RESUMO

To overcome the limitations of chemoresistance, combination therapies using druggable targets have been investigated. Our previous studies led us to hypothesize that the downregulation of PLK1 expression or activity can be one strategy to overcome the hurdles of taxane resistance by the downregulation of ABC transporters. To explore this, various versions of PLK1 including a constitutively active version, kinase-dead form, and polo-box domain mutant were expressed in paclitaxel-resistant lung adenocarcinoma (LUADTXR). Targeting PLK1 using shRNA or non-functional mutants downregulated ABCB1, ABCC9, and ABCG2 in LUADTXR cells, which was similar to the downregulation effects from treatment with PLK1 inhibitors. The high expression of EGFR in LUAD led us to administer gefitinib, showing a markedly reduced EGFR level in LUADTXR cells. When gefitinib and PLK1 inhibitors were combined, LUADTXR cells tended to undergo apoptosis more effectively than parental cells, showing a synergistic effect on the downregulation of ABC transporters through c-Myc and AP-1. Clinical data provide evidence for the relevance between survival rates and expressions of PLK1 and EGFR in LUAD patients. Based on these results, we suggest that a combination of gefitinib and PLK1 inhibitors exerts strong synergism in LUADTXR, which helps to overcome the limitations associated with taxanes.

16.
Abdom Radiol (NY) ; 46(10): 4787-4799, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34143259

RESUMO

PURPOSE: To identify features on preoperative MR imaging with diffusion-weighted imaging (DWI) for predicting next-generation sequencing (NGS)-based tumor cellularity and patient outcome after surgical resection of pancreatic ductal adenocarcinoma (PDAC). METHODS: This retrospective study included 105 patients with surgically resected PDAC who underwent preoperative MR imaging with DWI. Tumor cellularity was measured using molecular techniques and bioinformatics methods. Clinico-pathologic findings including tumor T stage for predicting disease-free survival (DFS) and overall survival (OS) were identified using Cox proportional hazards model. Important MR imaging findings including apparent diffusion coefficient (ADC) value of PDAC and modified ADC value (the ratio of the ADC value of PDAC to the ADC value of the spleen) for predicting higher tumor cellularity (≥ 30%) and poor prognosis were also identified. RESULTS: The median DFS and OS were 12.0 months [95% confidence interval (CI), 8.0-17.0] and 22.0 months (95% CI, 18.0-29.0), respectively. Higher T stage (T3/4) [hazard ratio (HR), 7.720, (95% CI 1.072, 55.612); p = 0.048] and higher tumor cellularity [HR, 1.599 (95% CI, 1.003-2.548); p = 0.048] were significantly associated with worse DFS. Among MR imaging features, the modified ADC value was significantly associated with tumor cellularity [odds ratio, 0.068 (95% CI, 0.012-0.372); p = 0.002], and PDAC with lower modified ADC value [≤ 1.40 (cutoff value)] showed significantly shorter median DFS than PDAC with higher modified ADC value [8 months (95% CI, 4-12) vs. 16 months (95% CI, 10-29); HR, 1.713 (95% CI, 1.073-2.735), log-rank p = 0.024]. CONCLUSION: Higher NGS-based tumor cellularity may be a negative prognostic factor in pancreatic cancer after resection, and modified ADC value derived from DWI could be helpful in predicting tumor cellularity and patient surgical outcome with regard to recurrence.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/cirurgia , Imagem de Difusão por Ressonância Magnética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imageamento por Ressonância Magnética , Recidiva Local de Neoplasia , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/cirurgia , Prognóstico , Estudos Retrospectivos
17.
Cell Death Differ ; 28(9): 2745-2764, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33963314

RESUMO

The prerequisite function of vimentin for the epithelial-mesenchymal transition (EMT) is not clearly elucidated yet. Here, we show that vimentin phosphorylated by PLK1, triggers TGF-ß-signaling, which consequently leads to metastasis and PD-L1 expression for immune suppression in lung adenocarcinoma. The clinical correlation between expression of both vimentin and PLK1, and overall survival rates of patients was significant in lung adenocarcinoma but not in squamous cell carcinoma. The phosphorylation of vimentin was accompanied by the activation of PLK1 during TGF-ß-induced EMT in lung adenocarcinoma. Among the several phosphorylation sites determined by phospho-proteomic analysis and the site-specific mutagenesis, the phosphorylation at S339 displayed the most effective metastasis and tumourigenesis with the highest expression of PD-L1, compared with that of wild-type and other versions in both 3D cell culture and tail-vein injection metastasis models. Phosphomimetic vimentin at S339 interacted with p-Smad2 for its nuclear localization, leading to the expression of PD-L1. Clinical relevance revealed the inverse correlation between the survival rates of patients and the expressions of VIM, PLK1, and CD274 in primary and metastatic lung adenocarcinoma. Thus, PLK1-mediated phosphorylation of vimentin activates TGF-ß signaling pathway, leading to the metastasis and immune escape through the expression of PD-L1, functioning as a shuttling protein in lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão/genética , Antígeno B7-H1/metabolismo , Neoplasias Pulmonares/genética , Proteína Smad2/metabolismo , Evasão Tumoral/genética , Vimentina/efeitos adversos , Adenocarcinoma de Pulmão/patologia , Animais , Humanos , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Nus , Metástase Neoplásica , Prognóstico , Transdução de Sinais , Microambiente Tumoral
18.
Metabolism ; 108: 154250, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32335074

RESUMO

BACKGROUND: Chronic steroid treatment causes an increase in visceral adiposity and osteoporosis. It is believed that steroids may alter a balance between differentiation of mesenchymal stem cells (MSCs) into either adipocytes or osteoblasts; however, the detailed molecular mechanisms are unclear. We previously identified Dexras1 as a critical factor that potentiates adipogenesis in response to glucocorticoids. Thus, in this study, we investigated the role of Dexras1 in maintaining the balance between chronic steroid treatment-associated adipogenesis and osteoporosis. MATERIAL AND METHODS: We treated wild type (WT) and Dexras1 knockout (KO) mice with dexamethasone for five weeks followed by 60% HFD for additional two weeks with dexamethasone. The changes of glucocorticoid-induced body weight gain and osteoporosis were analyzed. Bone marrow derived stromal cells (BMSCs) and mouse embryonic fibroblasts (MEFs) extracted from WT and Dexras1 KO mice, as well as MC3T3-E1 pre-osteoblasts and osteoclasts differentiated from RAW264.7 were analyzed to further define the role of Dexras1 in osteoblasts and osteoclasts. RESULTS: Dual-energy X-ray absorptiometry and micro-computed tomography analyses in murine femurs revealed that Dexras1 deficiency was associated with increased osteogenesis, concurrent with reduced adipogenesis. Furthermore, Dexras1 deficiency promoted osteogenesis of BMSCs and MEFs in vitro, suggesting that Dexras1 deficiency prevents steroid-induced osteoporosis. We also observed that Dexras1 downregulated SMAD signaling pathways, which reduced the osteogenic differentiation capacity of pre-osteoblast MC3T3-E1 cells into mature osteoblasts. CONCLUSION: We propose that Dexras1 is critical for maintaining the equilibrium between adipogenesis and osteogenesis upon steroid treatment.


Assuntos
Adipogenia/fisiologia , Osteogênese/fisiologia , Proteínas ras/metabolismo , Células 3T3 , Adipócitos/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Fêmur/metabolismo , Glucocorticoides/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteoporose/metabolismo , Células RAW 264.7 , Transdução de Sinais/fisiologia
19.
Oncoimmunology ; 9(1): 1681869, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32002288

RESUMO

IL-2 is a pleiotropic cytokine that plays an essential role in the survival, expansion, and function of CD8 T cells, regulatory T cells (Tregs), and natural killer (NK) cells. Previous studies showed that binding IL-2 with an anti-IL-2 monoclonal antibody (mAb) with a particular specificity could block its interaction with IL-2Rα, which is mainly expressed on Tregs. This selectivity can enhance the anti-tumor effects of IL-2 by activating CD8 T and NK cells, while disfavoring Treg stimulation. Based on this, we newly developed a series of anti-human IL-2 (hIL-2) mAbs (TCB1-3) that selectively stimulate CD8 T and NK cells without overtly activating Tregs. Among them, the hIL-2/TCB2 complex (hIL-2/TCB2c) exerted the best efficacy by inducing a prodigious expansion of host memory phenotype (MP) CD8 T (60-fold) and NK cells (18-fold) with less efficient Treg proliferation (5-fold). As a result, there was an average eightfold increase in the ratio of MP CD8 to Tregs. Accordingly, hIL-2/TCB2c strongly inhibited the growth of B16F10, MC38, and CT26 tumors. More remarkably, hIL-2/TCB2c showed synergy with checkpoint inhibitors such as anti-CTLA-4 or PD1 antibodies, and resulted in almost complete regression of implanted tumors and resistance to secondary tumor challenge. For direct clinical use, we generated a humanized form of TCB2 that had equal immunostimulatory and anti-tumor efficacy as a murine one. Collectively, these results show that TCB2 can provide a potent immunotherapeutic modality either alone or together with checkpoint inhibitors in cancer patients.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos Imunológicos/farmacologia , Interleucina-2 , Neoplasias Experimentais/terapia , Receptores de Interleucina-2 , Animais , Linfócitos T CD8-Positivos , Humanos , Interleucina-2/imunologia , Células Matadoras Naturais , Camundongos
20.
BMB Rep ; 52(9): 540-547, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31383253

RESUMO

Immune repertoire is a collection of enormously diverse adaptive immune cells within an individual. As the repertoire shapes and represents immunological conditions, identification of clones and characterization of diversity are critical for understanding how to protect ourselves against various illness such as infectious diseases and cancers. Over the past several years, fast growing technologies for high throughput sequencing have facilitated rapid advancement of repertoire research, enabling us to observe the diversity of repertoire at an unprecedented level. Here, we focus on B cell receptor (BCR) repertoire and review approaches to B cell isolation and sequencing library construction. These experiments should be carefully designed according to BCR regions to be interrogated, such as heavy chain full length, complementarity determining regions, and isotypes. We also highlight preprocessing steps to remove sequencing and PCR errors with unique molecular index and bioinformatics techniques. Due to the nature of massive sequence variation in BCR, caution is warranted when interpreting repertoire diversity from error-prone sequencing data. Furthermore, we provide a summary of statistical frameworks and bioinformatics tools for clonal evolution and diversity. Finally, we discuss limitations of current BCR-seq technologies and future perspectives on advances in repertoire sequencing. [BMB Reports 2019; 52(9): 540-547].


Assuntos
Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Receptores de Antígenos de Linfócitos B/metabolismo , Animais , Linfócitos B/metabolismo , Regiões Determinantes de Complementaridade/genética , Humanos , Receptores de Antígenos de Linfócitos B/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA