Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474202

RESUMO

BCR-ABL tyrosine kinase inhibitors are commonly employed for the treatment of chronic myeloid leukemia, yet their impact on human malignant melanoma remains uncertain. In this study, we delved into the underlying mechanisms of specific BCR-ABL tyrosine kinase inhibitors (imatinib, nilotinib, ZM-306416, and AT-9283) in human melanoma A375P cells. We first evaluated the influence of these inhibitors on cell growth using cell proliferation and wound-healing assays. Subsequently, we scrutinized cell cycle regulation in drug-treated A375P cells using flow cytometry and Western blot assays. Notably, imatinib, nilotinib, ZM-306416, and AT-9283 significantly reduced cell proliferation and migration in A375P cells. In particular, nilotinib and AT-9283 impeded the G1/S transition of the cell cycle by down-regulating cell cycle-associated proteins, including cyclin E, cyclin A, and CDK2. Moreover, these inhibitors reduced RB phosphorylation, subsequently inhibiting E2F transcriptional activity. Consequently, the expression of the E2F target genes (CCNA2, CCNE1, POLA1, and TK-1) was markedly suppressed in nilotinib and AT9283-treated A375P cells. In summary, our findings suggest that BCR-ABL tyrosine kinase inhibitors may regulate the G1-to-S transition in human melanoma A375P cells by modulating the RB-E2F complex.


Assuntos
Benzimidazóis , Melanoma , Ureia/análogos & derivados , Humanos , Mesilato de Imatinib , Fosforilação , Proteínas de Fusão bcr-abl/genética , Pirimidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Divisão Celular
2.
FEBS Open Bio ; 14(5): 793-802, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467537

RESUMO

The coupling of transcription and translation enables prokaryotes to regulate mRNA stability and reduce nonfunctional transcripts. Eukaryotes evolved other means to perform these functions. Here, we quantify the disparity between gene expression and protein levels and attempt to explain its origins. We collected publicly available simultaneous measurements of gene expression, protein level, division rate, and growth inhibition of breast cancer cells under drug perturbation. We used the cell lines as entities with shared origin, different evolutionary trajectories, and cancer hallmarks to define tasks subject to specializing and trading-off. We observed varying average mRNA and protein correlation across cell lines, and it was consistently higher for the gene products in the cancer hallmarks. The enrichment of hallmark gene products signifies the resources invested in it as a task. Enrichment based on mRNA or protein abundance corresponds to the relative resources dedicated to transcription and translation. The differences in gene- and protein-based enrichment correlated with nominal division rates but not growth inhibition under drug perturbations. Comparing the range of enrichment scores of the hallmarks within each cell signifies the resources dedicated to each. Cells appear to have a wider range of enrichment in protein synthesis relative to gene transcription. The difference and range of enrichment of the hallmark genes and proteins correlated with cell division and inhibition in response to drug treatments. We posit that cancer cells may express the genes coding for seemingly nonspecialized tasks but do not translate them to the corresponding proteins. This trade-off may cost the cells under normal conditions but confer benefits during stress.


Assuntos
Biossíntese de Proteínas , RNA Mensageiro , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Biossíntese de Proteínas/genética , Linhagem Celular Tumoral , Transcrição Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias/genética , Neoplasias/metabolismo , Feminino
3.
Signal Transduct Target Ther ; 8(1): 455, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38105263

RESUMO

Metastatic dissemination of solid tumors, a leading cause of cancer-related mortality, underscores the urgent need for enhanced insights into the molecular and cellular mechanisms underlying metastasis, chemoresistance, and the mechanistic backgrounds of individuals whose cancers are prone to migration. The most prevalent signaling cascade governed by multi-kinase inhibitors is the mitogen-activated protein kinase (MAPK) pathway, encompassing the RAS-RAF-MAPK kinase (MEK)-extracellular signal-related kinase (ERK) pathway. RAF kinase is a primary mediator of the MAPK pathway, responsible for the sequential activation of downstream targets, such as MEK and the transcription factor ERK, which control numerous cellular and physiological processes, including organism development, cell cycle control, cell proliferation and differentiation, cell survival, and death. Defects in this signaling cascade are associated with diseases such as cancer. RAF inhibitors (RAFi) combined with MEK blockers represent an FDA-approved therapeutic strategy for numerous RAF-mutant cancers, including melanoma, non-small cell lung carcinoma, and thyroid cancer. However, the development of therapy resistance by cancer cells remains an important barrier. Autophagy, an intracellular lysosome-dependent catabolic recycling process, plays a critical role in the development of RAFi resistance in cancer. Thus, targeting RAF and autophagy could be novel treatment strategies for RAF-mutant cancers. In this review, we delve deeper into the mechanistic insights surrounding RAF kinase signaling in tumorigenesis and RAFi-resistance. Furthermore, we explore and discuss the ongoing development of next-generation RAF inhibitors with enhanced therapeutic profiles. Additionally, this review sheds light on the functional interplay between RAF-targeted therapies and autophagy in cancer.


Assuntos
Neoplasias Pulmonares , Melanoma , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinases raf/genética , Quinases raf/metabolismo
4.
Front Oncol ; 13: 1189350, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469399

RESUMO

Breast cancer is a common tumor type among women, with a high fatality due to metastasis. Metastasis suppressors encode proteins that inhibit the metastatic cascade independent of the primary tumor growth. Raf kinase inhibitory protein (RKIP) is one of the promising metastasis suppressor candidates. RKIP is reduced or lost in aggressive variants of different types of cancer. A few pre-clinical or clinical studies have capitalized on this protein as a possible therapeutic target. In this article, we employed two breast cancer cells to highlight the role of RKIP as an antimetastatic gene. One is the low metastatic MCF-7 with high RKIP expression, and the other is MDA-MB-231 highly metastatic cell with low RKIP expression. We used high-throughput data to explore how RKIP is lost in human tissues and its effect on cell mobility. Based on our previous work recapitulating the links between RKIP and SNAI, we experimentally manipulated RKIP in the cell models through its novel upstream NME1 and investigated the subsequent genotypic and phenotypic changes. We also demonstrated that RKIP explained the uneven migration abilities of the two cell types. Furthermore, we identified the regulatory circuit that might carry the effect of an existing drug, Epirubicin, on activating gene transcription. In conclusion, we propose and test a potential strategy to reverse the metastatic capability of breast cancer cells by chemically manipulating RKIP expression.

5.
Cancers (Basel) ; 14(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36230768

RESUMO

Metastasis is associated with poor prognosis and is the major cause of death in cancer patients. The epithelial to mesenchymal transition (EMT) is essential for cancer cells to acquire a highly migratory phenotype. Metabolic reprogramming is required to meet the energy demands during this process. Recent studies have indicated that autophagy is involved in EMT, during which cancer cells depend on autophagy activation for survival. However, accumulating evidence indicates that autophagy's involvement in cancer is context-dependent, acting as either promoter or inhibitor. In this study, we investigated the role of autophagy in supplying energy to support EMT. We induced EMT in Non-small cell lung cancer A549 cells using TGF-ß1 with and without autophagy inhibition. Suppression of autophagy activity by knocking down of BECN1 or chloroquine (CQ) treatment inhibited mesenchymal protein expression. Interestingly, TGF-ß1 promoted the transcription of target mRNAs, SNAI1, VIM, and CDH2, regardless of autophagy status. The imbalance between protein and mRNA levels indicated the possibility of autophagy-dependent translational regulation. Since protein synthesis consumes large amounts of energy, it is tightly regulated via various cellular signaling pathways such as AMPK and mTOR. Our investigation showed inhibition of autophagy decreased ATP production from OXPHOS and led to the suppression of mRNA translation by phosphorylation of eukaryotic elongation factor 2 (eEF2). These results suggest that A549 non-small cell lung cancer required autophagy to maintain mitochondrial homeostasis during TGF-ß1 induced EMT. In conclusion, blocking autophagy decreased energy production and down-regulated proteins synthesis inhibiting TGF-ß1 induced EMT.

6.
Front Pharmacol ; 13: 934843, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991905

RESUMO

Cancer expands clonally, capitalizing on the variations between growing cells. Cancer cells specialize in one or more functions to gain an advantage. This study examined the prediction that cells would be vulnerable to drugs that perturb their specific tasks. We analyzed the correlation between gene expression and the response to drug perturbations in different cancer cells. Next, we assigned every cancer cell to an archetype based on gene expression. Finally, we calculated the enrichment of the cancer hallmark gene sets in each cell, archetypes, and response to drug treatment. We found that the extremes of gene expression were susceptible to change in response to perturbations. This correlation predicted the growth rate inhibition of breast cancer cells. Cancer hallmarks were enriched differently in the archetypes, and this enrichment predicted the cell's response to perturbations. We present evidence that specialized cancer cells are sensitive to compounds that perturb their tasks.

7.
Cell Biosci ; 12(1): 17, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35164848

RESUMO

BACKGOUND: Autophagy controls levels of cellular components during normal and stress conditions; thus, it is a pivotal process for the maintenance of cell homeostasis. In cancer, autophagy protects cells from cancerous transformations that can result from genomic instability induced by reactive oxygen species or other damaged components, but it can also promote cancer survival by providing essential nutrients during the metabolic stress condition of cancer progression. However, the molecular mechanism underlying autophagy-dependent regulation of the epithelial to mesenchymal transition (EMT) and metastasis is still elusive. METHODS: The intracellular level of NOTCH1 intracellular domain (NICD) in several cancer cells was studied under starvation, treatment with chloroquine or ATG7-knockdown. The autophagy activity in these cells was assessed by immunocytochemistry and molecular analyses. Cancer cell migration and invasion under modulation of autophagy were determined by in vitro scratch and Matrigel assays. RESULTS: In the study, autophagy activation stimulated degradation of NICD, a key transcriptional regulator of the EMT and cancer metastasis. We also found that NICD binds directly to LC3 and that the NICD/LC3 complex associates with SNAI1 and sequestosome 1 (SQSTM1)/p62 proteins. Furthermore, the ATG7 knockdown significantly inhibited degradation of NICD under starvation independent of SQSTM1-associated proteasomal degradation. In addition, NICD degradation by autophagy associated with the cellular level of SNAI1. Indeed, autophagy inhibited nuclear translocation of NICD protein and consequently decreased the transcriptional activity of its target genes. Autophagy activation substantially suppressed in vitro cancer cell migration and invasion. We also observed that NICD and SNAI1 levels in tissues from human cervical and lung cancer patients correlated inversely with expression of autophagy-related proteins. CONCLUSIONS: These findings suggest that the cellular level of NICD is regulated by autophagy during cancer progression and that targeting autophagy-dependent NICD/SNAI1 degradation could be a strategy for the development of cancer therapeutics.

8.
Cancers (Basel) ; 13(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34885208

RESUMO

Drug screening strategies focus on quantifying the phenotypic effects of different compounds on biological systems. High-throughput technologies have the potential to understand further the mechanisms by which these drugs produce the desired outcome. Reverse causal reasoning integrates existing biological knowledge and measurements of gene and protein abundances to infer their function. This approach can be employed to appraise the existing biological knowledge and data to prioritize targets for cancer therapies. We applied text mining and a manual literature search to extract known interactions between several metastasis suppressors and their regulators. We then identified the relevant interactions in the breast cancer cell line MCF7 using a knockdown dataset. We finally adopted a reverse causal reasoning approach to evaluate and prioritize pathways that are most consistent and responsive to drugs that inhibit cell growth. We evaluated this model in terms of agreement with the observations under treatment of several drugs that produced growth inhibition of cancer cell lines. In particular, we suggested that the metastasis suppressor PEBP1/RKIP is on the receiving end of two significant regulatory mechanisms. One involves RELA (transcription factor p65) and SNAI1, which were previously reported to inhibit PEBP1. The other involves the estrogen receptor (ESR1), which induces PEBP1 through the kinase NME1. Our model was derived in the specific context of breast cancer, but the observed responses to drug treatments were consistent in other cell lines. We further validated some of the predicted regulatory links in the breast cancer cell line MCF7 experimentally and highlighted the points of uncertainty in our model. To summarize, our model was consistent with the observed changes in activity with drug perturbations. In particular, two pathways, including PEBP1, were highly responsive and would be likely targets for intervention.

9.
J Neuroinflammation ; 18(1): 278, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34844610

RESUMO

BACKGROUND: Diabetic individuals have increased circulating inflammatory mediators which are implicated as underlying causes of neuroinflammation and memory deficits. Tonicity-responsive enhancer-binding protein (TonEBP) promotes diabetic neuroinflammation. However, the precise role of TonEBP in the diabetic brain is not fully understood. METHODS: We employed a high-fat diet (HFD)-only fed mice or HFD/streptozotocin (STZ)-treated mice in our diabetic mouse models. Circulating TonEBP and lipocalin-2 (LCN2) levels were measured in type 2 diabetic subjects. TonEBP haploinsufficient mice were used to investigate the role of TonEBP in HFD/STZ-induced diabetic mice. In addition, RAW 264.7 macrophages were given a lipopolysaccharide (LPS)/high glucose (HG) treatment. Using a siRNA, we examined the effects of TonEBP knockdown on RAW264 cell' medium/HG-treated mouse hippocampal HT22 cells. RESULTS: Circulating TonEBP and LCN2 levels were higher in experimental diabetic mice or type 2 diabetic patients with cognitive impairment. TonEBP haploinsufficiency ameliorated the diabetic phenotypes including adipose tissue macrophage infiltrations, neuroinflammation, blood-brain barrier leakage, and memory deficits. Systemic and hippocampal LCN2 proteins were reduced in diabetic mice by TonEBP haploinsufficiency. TonEBP (+ / -) mice had a reduction of hippocampal heme oxygenase-1 (HO-1) expression compared to diabetic wild-type mice. In particular, we found that TonEBP bound to the LCN2 promoter in the diabetic hippocampus, and this binding was abolished by TonEBP haploinsufficiency. Furthermore, TonEBP knockdown attenuated LCN2 expression in lipopolysaccharide/high glucose-treated mouse hippocampal HT22 cells. CONCLUSIONS: These findings indicate that TonEBP may promote neuroinflammation and cognitive impairment via upregulation of LCN2 in diabetic mice.


Assuntos
Disfunção Cognitiva/sangue , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Tipo 2/sangue , Lipocalina-2/sangue , Fatores de Transcrição NFATC/sangue , Doenças Neuroinflamatórias/sangue , Animais , Cognição/fisiologia , Disfunção Cognitiva/etiologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/psicologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/psicologia , Dieta Hiperlipídica , Aprendizagem em Labirinto/fisiologia , Camundongos , Doenças Neuroinflamatórias/etiologia , Células RAW 264.7
10.
Mar Drugs ; 19(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34822485

RESUMO

Models created by the intraperitoneal injection of lipopolysaccharide (LPS) and D-galactosamine (D-GalN) have been widely used to study the pathogenesis of human acute liver failure (ALF) and drug development. Our previous study reported that oyster (Crassostrea gigas) hydrolysate (OH) had a hepatoprotective effect in LPS/D-GalN-injected mice. This study was performed to identify the hepatoprotective effect of the tyrosine-alanine (YA) peptide, the main component of OH, in a LPS/D-GalN-injected ALF mice model. We analyzed the effect of YA on previously known mechanisms of hepatocellular injury in the model. LPS/D-GalN-injected mice showed inflammatory, apoptotic, ferroptotic, and pyroptotic liver injury. The pre-administration of YA (10 mg/kg or 50 mg/kg) significantly reduced the liver damage factors. The hepatoprotective effect of YA was higher in the 50 mg/kg YA pre-administered group than in the 10 mg/kg YA pre-administered group. These results showed that YA had a hepatoprotective effect by reducing inflammation, apoptosis, ferroptosis, and pyroptosis in the LPS/D-GalN-injected ALF mouse model. We suggest that YA can be used as a functional peptide for the prevention of acute liver injury.


Assuntos
Anti-Inflamatórios/farmacologia , Ostreidae , Peptídeos/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Organismos Aquáticos , Modelos Animais de Doenças , Galactosamina , Lipopolissacarídeos , Falência Hepática Aguda/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/química , Peptídeos/uso terapêutico , Piroptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
11.
Life Sci ; 285: 119968, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34543642

RESUMO

AIMS: The development of osteoarthritis (OA), the most common form of arthritis, is commonly associated with oxidative stress. Indeed, the lack of antioxidant responses largely increases OA incidence. OA is a leading cause of disability in the elderly, which reduces the quality of life and places high socioeconomic burdens on them. Several polyphenolic compounds, including chlorogenic acid (CGA), have shown cytoprotective effects via their antioxidant activity, but the exact mechanism (s) remain elusive. In this study, we demonstrated how CGA protects human chondrocytes against H2O2-induced apoptosis. MATERIALS AND METHODS: The cytoprotective effect by CGA in 500 µM hydrogen peroxide-treated C28/I2 cells was evaluated by cell viability, TUNEL assay, and Western blotting analyses, and autophagy assessment was further performed by AO and MDC staining and tandem mRFP-GFP fluorescence analyses. KEY FINDINGS: Treatment of CGA to the human chondrocytes under oxidative stress significantly decreased apoptosis markers, such as cleaved caspase 3 and cleaved PARP, and increased anti-apoptotic marker Bcl-xL and the antioxidant response proteins NRF2 and NF-κB. Furthermore, CGA-dependent activation of antioxidant response proteins NRF2 and NF-κB and its protective effects in chondrocytes depended on autophagy. Indeed, CGA treatment and autophagy induction significantly decreased reactive oxygen species (ROS)-induced apoptosis. SIGNIFICANCE: CGA exhibited the protective effect to human chondrocyte C28/I2 cells against oxidative stress-induced cell death by activating autophagy. These findings indicate that CGA is a potential therapeutic agent for the development of OA drugs.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Ácido Clorogênico/farmacologia , Condrócitos/efeitos dos fármacos , Citoproteção , Estresse Oxidativo/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular , Condrócitos/fisiologia , Humanos , Peróxido de Hidrogênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Osteoartrite/prevenção & controle
12.
Database (Oxford) ; 20212021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34415996

RESUMO

Screening for potential cancer therapies using existing large datasets of drug perturbations requires expertise and resources not available to all. This is often a barrier for lab scientists to tap into these valuable resources. To address these issues, one can take advantage of prior knowledge especially those coded in standard formats such as causal biological networks (CBN). Large datasets can be converted into appropriate structures, analyzed once and the results made freely available in easy-to-use formats. We used the Library of Integrated Cellular Signatures to model the cell-specific effect of hundreds of drug treatments on gene expression. These signatures were then used to predict the effect of the treatments on several CBN using the network perturbation amplitudes analysis. We packaged the pre-computed scores in a database with an interactive web interface. The intuitive user-friendly interface can be used to query the database for drug perturbations and quantify their effect on multiple key biological functions in cancer cell lines. In addition to describing the process of building the database and the interface, we provide a realistic use case to explain how to use and interpret the results. To sum, we pre-computed cancer-cell-specific perturbation amplitudes of several biological networks and made the output available in a database with an interactive web interface. Database URL https://mahshaaban.shinyapps.io/LINPSAPP/.


Assuntos
Neoplasias , Bases de Dados Factuais , Expressão Gênica , Neoplasias/tratamento farmacológico , Neoplasias/genética
13.
Biochim Biophys Acta Rev Cancer ; 1876(1): 188565, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33992723

RESUMO

Autophagy is a highly conserved metabolic process involved in the degradation of intracellular components including proteins and organelles. Consequently, it plays a critical role in recycling metabolic energy for the maintenance of cellular homeostasis in response to various stressors. In cancer, autophagy either suppresses or promotes cancer progression depending on the stage and cancer type. Epithelial-mesenchymal transition (EMT) and cancer metastasis are directly mediated by oncogenic signal proteins including SNAI1, SLUG, ZEB1/2, and NOTCH1, which are functionally correlated with autophagy. In this report, we discuss the crosstalk between oncogenic signaling pathways and autophagy followed by possible strategies for cancer treatment via regulation of autophagy. Although autophagy affects EMT and cancer metastasis, the overall signaling pathways connecting cancer progression and autophagy are still illusive. In general, autophagy plays a critical role in cancer cell survival by providing a minimum level of energy via self-digestion. Thus, cancer cells face nutrient limitations and challenges under stress during EMT and metastasis. Conversely, autophagy acts as a potential cancer suppressor by degrading oncogenic proteins, which are essential for cancer progression, and by removing damaged components such as mitochondria to enhance genomic stability. Therefore, autophagy activators or inhibitors represent possible cancer therapeutics. We further discuss the regulation of autophagy-dependent degradation of oncogenic proteins and its functional correlation with oncogenic signaling pathways, with potential applications in cancer therapy.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Neoplasias/metabolismo , Proteínas Oncogênicas/metabolismo , Animais , Antineoplásicos/uso terapêutico , Autofagia/efeitos dos fármacos , Proteínas Relacionadas à Autofagia/genética , Movimento Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Terapia de Alvo Molecular , Metástase Neoplásica , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Proteínas Oncogênicas/genética , Transdução de Sinais
14.
Int J Mol Sci ; 22(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802672

RESUMO

Raf kinase inhibitory protein (RKIP), also known as a phosphatidylethanolamine-binding protein 1 (PEBP1), functions as a tumor suppressor and regulates several signaling pathways, including ERK and NF-κκB. RKIP is severely downregulated in human malignant cancers, indicating a functional association with cancer metastasis and poor prognosis. The transcription regulation of RKIP gene in human cancers is not well understood. In this study, we suggested a possible transcription mechanism for the regulation of RKIP in human cancer cells. We found that Metadherin (MTDH) significantly repressed the transcriptional activity of RKIP gene. An analysis of publicly available datasets showed that the knockdown of MTDH in breast and endometrial cancer cell lines induced the expression RKIP. In addition, the results obtained from qRT-PCR and ChIP analyses showed that MTDH considerably inhibited RKIP expression. In addition, the RKIP transcript levels in MTDH-knockdown or MTDH-overexpressing MCF-7 cells were likely correlated to the protein levels, suggesting that MTDH regulates RKIP expression. In conclusion, we suggest that MTDH is a novel factor that controls the RKIP transcription, which is essential for cancer progression.


Assuntos
Progressão da Doença , Proteínas de Membrana/metabolismo , Neoplasias/genética , Neoplasias/patologia , Proteína de Ligação a Fosfatidiletanolamina/genética , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Membrana/genética , Mutação/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética , Regulação para Cima/genética
15.
Oncol Rep ; 42(4): 1621-1630, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31322268

RESUMO

One million females are diagnosed worldwide every year with breast cancer, and the mortality rate of these patients remains high. Several treatments, including surgery, are available for breast cancer. ß­Lapachone (ß­Lap), a natural quinone compound, has been developed for cancer treatment due to its strong cytotoxic effect through its action on NAD(P)H:quinone oxidoreductase 1 (NQO1)­dependent activity. However, the mechanism in regards to how ß­Lap induces cytotoxicity in breast cancer cells is still elusive. In the present study, we showed that ß­Lap induced apoptotic cell death via activation of protein kinase A (PKA) in NQO1­overexpressing MDA­MB­231 human breast cancer cells. This PKA­dependent cell death was observed solely in NQO1­overexpressing 231 cells via the high production of reactive oxygen species (ROS). Cell survival of antioxidant [N­acetylcysteine (NAC)]­treated NQO1­overexpressing 231 cells was significantly recovered, and NQO1­negative 231 cells did not respond to ß­Lap. Antiapoptotic proteins such as Bcl2 and Bcl­xL were decreased, while proapoptotic proteins, including cytochrome c, activation of caspase­3, and cleavage of PARP were increased after ß­Lap treatment of NQO1­overexpressing 231 cells. Furthermore, PKA activators, forskolin or dibutyryl­cAMP, an analog of cAMP, aggravated the ß­Lap­induced apoptotic cell death by decreasing antiapoptotic proteins and further activating proapoptotic proteins in NQO1­positive 231 cells. Treatment with a PKA inhibiter, H89, significantly increased cell viability even in NQO1­overexpressing cells treated with ß­Lap. These data showed that ß­Lap activated PKA via ROS accumulation, subsequently leading to apoptotic cell death in NQO1­positive breast cancer cells.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , NAD(P)H Desidrogenase (Quinona)/biossíntese , Naftoquinonas/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Espécies Reativas de Oxigênio/metabolismo
16.
PeerJ ; 7: e6509, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30867986

RESUMO

BACKGROUND: Transcription factors and microRNAs play a critical role in regulating the gene expression in normal physiology and pathological conditions. Many bioinformatics tools were built to predict and identify transcription factor and microRNA targets and their role in the development of diseases including cancers. The availability of public access high-throughput data allows researchers to make data-driven predictions. IMPLEMENTATION: Here, we developed an R package called cRegulome to access, manage and visualize data from open source databases. The package provides a programmatic access to the regulome (transcription factor and microRNA) expression correlations with target genes of different cancer types. It obtains a local instance of Cistrome Cancer and miRCancerdb databases and provides classes and methods to query, interact with and visualize the correlation data. AVAILABILITY: cRegulome is available on the comprehensive R archive network (CRAN) and the source code is hosted on GitHub as part of the ROpenSci on-boarding collection, https://github.com/ropensci/cRegulome.

17.
Cells ; 8(2)2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30736337

RESUMO

Autophagy, an intracellular degradation process, is essential for maintaining cell homeostasis by removing damaged organelles and proteins under various conditions of stress. In cancer, autophagy has conflicting functions. It plays a key role in protecting against cancerous transformation by maintaining genomic stability against genotoxic components, leading to cancerous transformation. It can also promote cancer cell survival by supplying minimal amounts of nutrients during cancer progression. However, the molecular mechanisms underlying how autophagy regulates the epithelial-to-mesenchymal transition (EMT) and cancer metastasis are unknown. Here, we show that starvation-induced autophagy promotes Snail (SNAI1) degradation and inhibits EMT and metastasis in cancer cells. Interestingly, SNAI1 proteins were physically associated and colocalized with LC3 and SQSTM1 in cancer cells. We also found a significant decrease in the levels of EMT and metastatic proteins under starvation conditions. Furthermore, ATG7 knockdown inhibited autophagy-induced SNAI1 degradation in the cytoplasm, which was associated with a decrease in SNAI1 nuclear translocation. Moreover, cancer cell invasion and migration were significantly inhibited by starvation-induced autophagy. These findings suggest that autophagy-dependent SNAI1 degradation could specifically regulate EMT and cancer metastasis during tumorigenesis.


Assuntos
Autofagia , Transição Epitelial-Mesenquimal , Proteólise , Fatores de Transcrição da Família Snail/metabolismo , Proteína 7 Relacionada à Autofagia/metabolismo , Movimento Celular , Núcleo Celular/metabolismo , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia , Ligação Proteica , Proteína Sequestossoma-1/metabolismo
18.
Cancers (Basel) ; 10(8)2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115852

RESUMO

Raf kinase inhibitor protein (RKIP) plays a critical role in many signaling pathways as a multi-functional adapter protein. In particular, the loss of RKIP's function in certain types of cancer cells results in epithelial to mesenchymal transition (EMT) and the promotion of cancer metastasis. In addition, RKIP inhibits autophagy by modulating LC3-lipidation and mTORC1. How the RKIP-dependent inhibition of autophagy is linked to EMT and cancer progression is still under investigation. In this study, we investigated the ways by which RKIP interacts with key gene products in EMT and autophagy during the progression of prostate cancer. We first identified the gene products of interest using the corresponding gene ontology terms. The weighted-gene co-expression network analysis (WGCNA) was applied on a gene expression dataset from three groups of prostate tissues; benign prostate hyperplasia, primary and metastatic cancer. We found two modules of highly co-expressed genes, which were preserved in other independent datasets of prostate cancer tissues. RKIP showed potentially novel interactions with one EMT and seven autophagy gene products (TGFBR1; PIK3C3, PIK3CB, TBC1D25, TBC1D5, TOLLIP, WDR45 and WIPI1). In addition, we identified several upstream transcription modulators that could regulate the expression of these gene products. Finally, we verified some RKIP novel interactions by co-localization using the confocal microscopy analysis in a prostate cancer cell line. To summarize, RKIP interacts with EMT and autophagy as part of the same functional unit in developing prostate cancer.

19.
BMC Res Notes ; 11(1): 103, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29471873

RESUMO

OBJECTIVES: microRNAs regulate expression of target genes by specifically binding to their transcripts, subsequently leading to translational inhibition or mRNA degradation. Gene regulation by microRNAs has been implicated in a wide range of physiological and pathological conditions. Here, we leverage the use of public-access data and the available genomic annotations to pre-calculate the correlation of the expression of a large number of microRNAs with gene at the mRNA and protein level in the context of cancers. RESULTS: Expression data of miRNAs, mRNAs and proteins in cancer patients from The Cancer Genome Atlas along with TargetScan miRNAs-target annotations were used to calculate the expression correlations between miRNAs and features (mRNAs/proteins) in a number of cancer studies. We then packed the output of this analysis into a database and made it available through an interactive web application. The miRCancerdb is an easy-to-use database to investigate the microRNAs-dependent regulation of target genes involved in development of cancer.


Assuntos
Bases de Dados Genéticas , Genoma/genética , Neoplasias/genética , Atlas como Assunto , Humanos , MicroRNAs/genética
20.
J Biomed Mater Res A ; 105(2): 363-376, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27643840

RESUMO

Polycaprolactone (PCL) is a biodegradable polyester that is bioresorbable and biocompatible, and is widely used in medical fields. This study examines in vitro and in vivo osteogenic activities of cultured human periosteum-derived osteoblasts (POs) seeded into growth factor (bone morphogenic protein 2 [BMP-2] or vascular endothelial growth factor [VEGF])-releasing scaffolds of PCL beads coated with Pluronic F127. Each growth factor immobilized in the PCL/F127 is cumulatively released from the beads for more than 40 days (up to 3.04 ± 0.08 ng mg-1 BMP-2 and 3.41 ± 0.18 ng mg-1 VEGF in 42 days). Long-term (∼2 years) experimental results obtained in a miniature pig model suggest that POs seeded into BMP-2 + VEGF-releasing PCL/P-F127 beads are the most effective for bone repair. In in vitro assays, osteogenic activities were higher in POs seeded into BMP-2-releasing PCL/Pluronic F127 beads at earlier time points and in POs seeded into BMP-2 + VEGF-releasing PCL/Pluronic F127 beads at later time points. These results suggest that the combination of BMP-2 and VEGF more sufficiently stimulates (in particular at late time points) osteoblast differentiation of POs seeded in the PCL/F127 in vitro and in vivo, and thus allows effective bone regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 363-376, 2017.


Assuntos
Proteína Morfogenética Óssea 2/química , Osteoblastos/metabolismo , Osteogênese , Periósteo/metabolismo , Poloxâmero/química , Poliésteres/química , Alicerces Teciduais/química , Fator A de Crescimento do Endotélio Vascular/química , Animais , Feminino , Humanos , Masculino , Osteoblastos/citologia , Periósteo/citologia , Suínos , Porco Miniatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA