Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
J Bone Joint Surg Am ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39178301

RESUMO

BACKGROUND: Previous studies assessing surgical fixation of osteoporotic proximal humeral fractures have primarily focused on medial calcar support. In this study, we utilized a specific model for 2-part surgical neck fracture of the osteoporotic proximal humerus to investigate how severe comminution of the greater tuberosity (GT) lateral wall affects biomechanical stability after fixation with a plate. METHODS: Ten matched pairs of cadaveric humeri (right and left) were assigned to either a surgical neck fracture alone (the SN group) or a surgical neck fracture with GT lateral wall comminution (the LW group) with use of block randomization. We removed 5 mm of the lateral wall of the GT to simulate severe comminution of the lateral wall. Axial compression stiffness, torsional stiffness, varus bending stiffness, and the single load to failure in varus bending were measured for all plate-bone constructs. RESULTS: Compared with the SN group, the LW group showed a significant decrease in all measures, including torsional stiffness (internal, p = 0.007; external, p = 0.007), axial compression stiffness (p = 0.002), and varus bending stiffness (p = 0.007). In addition, the mean single load to failure in varus bending for the LW group was 62% lower than that for the SN group (p = 0.005). CONCLUSIONS: Severe comminution of the GT lateral wall significantly compromised the biomechanical stability of osteoporotic, comminuted humeral surgical neck fractures. CLINICAL RELEVANCE: Although the generalizability of this cadaveric model may be limited to the extreme clinical scenario, the model showed that severe comminution of the GT lateral wall significantly compromised the stability of osteoporotic humeral surgical neck fractures fixed with a plate and screws alone.

2.
Nanoscale ; 16(31): 14748-14756, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38921728

RESUMO

Targeted drug delivery using metal-organic frameworks (MOFs) has shown significant progress. However, the tumor microenvironment (TME) impedes efficient MOF particle transfer into tumor cells. To tackle this issue, we pre-coated nano-sized MOF-808 particles with multifunctional proteins: glutathione S-transferase (GST)-affibody (Afb) and collagenase, aiming to navigate the TME more effectively. The surface of MOF-808 particles is coated with GST-Afb-a fusion protein of GST and human epidermal growth factor receptor 2 (HER2) Afb or epidermal growth factor receptor (EGFR) Afb which has target affinity. We also added collagenase enzymes capable of breaking down collagen in the extracellular matrix (ECM) through supramolecular conjugation, all without chemical modification. By stabilizing these proteins on the surface, GST-Afb mitigate biomolecule absorption, facilitating specific tumor cell targeting. Simultaneously, collagenase degrades the ECM in the TME, enabling deep tissue penetration of MOF particles. Our resulting system, termed collagenase-GST-Afb-MOF-808 (Col-Afb-M808), minimizes undesired interactions between MOF particles and external biological proteins. It not only induces cell death through Afb-mediated cell-specific targeting, but also showcases advanced cellular internalization in 3D multicellular spheroid cancer models, with effective deep tissue penetration. The therapeutic efficacy of Col-Afb-M808 was further assessed via in vivo imaging and evaluation of tumor inhibition following injection of IR-780 loaded Col-Afb-M808 in 4T1tumor-bearing nude mice. This study offers key insights into the regulation of the multifunctional protein-adhesive surface of MOF particles, paving the way for the designing even more effective targeted drug delivery systems with nano-sized MOF particles.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Glutationa Transferase/metabolismo , Glutationa Transferase/química , Colagenases/química , Colagenases/metabolismo , Feminino , Receptor ErbB-2/metabolismo , Receptores ErbB/metabolismo , Camundongos Nus , Sistemas de Liberação de Medicamentos , Microambiente Tumoral/efeitos dos fármacos , Antineoplásicos/química , Antineoplásicos/farmacologia , Camundongos Endogâmicos BALB C
3.
J Integr Neurosci ; 23(6): 122, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38940090

RESUMO

BACKGROUND: Rheum tanguticum root, cataloged as "Daehwang" in the Korean Pharmacopeia, is rich in various anthraquinones known for their anti-inflammatory and antioxidant properties. Formulations containing Daehwang are traditionally employed for treating neurological conditions. This study aimed to substantiate the antiepileptic and neuroprotective efficacy of R. tanguticum root extract (RTE) against trimethyltin (TMT)-induced epileptic seizures and hippocampal neurodegeneration. METHODS: The constituents of RTE were identified by ultra-performance liquid chromatography (UPLC). Experimental animals were grouped into the following five categories: control, TMT, and three TMT+RTE groups with dosages of 10, 30, and 100 mg/kg. Seizure severity was assessed daily for comparison between the groups. Brain tissue samples were examined to determine the extent of neurodegeneration and neuroinflammation using histological and molecular biology techniques. Network pharmacology analysis involved extracting herbal targets for Daehwang and disease targets for epilepsy from multiple databases. A protein-protein interaction network was built using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, and pivotal targets were determined by topological analysis. Enrichment analysis was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) tool to elucidate the underlying mechanisms. RESULTS: The RTE formulation was found to contain sennoside A, sennoside B, chrysophanol, emodin, physcion, (+)-catechin, and quercetin-3-O-glucuronoid. RTE effectively inhibited TMT-induced seizures at 10, 30, and 100 mg/kg dosages and attenuated hippocampal neuronal decay and neuroinflammation at 30 and 100 mg/kg dosages. Furthermore, RTE significantly reduced mRNA levels of tumor necrosis factor (TNF-α), glial fibrillary acidic protein (GFAP), and c-fos in hippocampal tissues. Network analysis revealed TNF, Interleukin-1 beta (IL-1ß), Interleukin-6 (IL-6), Protein c-fos (FOS), RAC-alpha serine/threonine-protein kinase (AKT1), and Mammalian target of rapamycin (mTOR) as the core targets. Enrichment analysis demonstrated significant involvement of R. tanguticum components in neurodegeneration (p = 4.35 × 10-5) and TNF signaling pathway (p = 9.94 × 10-5). CONCLUSIONS: The in vivo and in silico analyses performed in this study suggests that RTE can potentially modulate TMT-induced epileptic seizures and neurodegeneration. Therefore, R. tanguticum root is a promising herbal treatment option for antiepileptic and neuroprotective applications.


Assuntos
Anticonvulsivantes , Modelos Animais de Doenças , Epilepsia , Hipocampo , Fármacos Neuroprotetores , Extratos Vegetais , Raízes de Plantas , Rheum , Compostos de Trimetilestanho , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/administração & dosagem , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Rheum/química , Raízes de Plantas/química , Masculino , Anticonvulsivantes/farmacologia , Epilepsia/tratamento farmacológico , Epilepsia/induzido quimicamente , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Simulação por Computador , Farmacologia em Rede , Mapas de Interação de Proteínas , Ratos
4.
Bone Joint J ; 106-B(4): 380-386, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38555934

RESUMO

Aims: The study aimed to assess the clinical outcomes of arthroscopic debridement and partial excision in patients with traumatic central tears of the triangular fibrocartilage complex (TFCC), and to identify prognostic factors associated with unfavourable clinical outcomes. Methods: A retrospective analysis was conducted on patients arthroscopically diagnosed with Palmer 1 A lesions who underwent arthroscopic debridement and partial excision from March 2009 to February 2021, with a minimum follow-up of 24 months. Patients were assessed using the Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire, Mayo Wrist Score (MWS), and visual analogue scale (VAS) for pain. The poor outcome group was defined as patients whose preoperative and last follow-up clinical score difference was less than the minimal clinically important difference of the DASH score (10.83). Baseline characteristics, arthroscopic findings, and radiological factors (ulnar variance, MRI, or arthrography) were evaluated to predict poor clinical outcomes. Results: A total of 114 patients were enrolled in this study, with a mean follow-up period of 29.8 months (SD 14.4). The mean DASH score improved from 36.5 (SD 21.5) to 16.7 (SD 14.3), the mean MWS from 59.7 (SD 17.9) to 79.3 (SD 14.3), and the mean VAS pain score improved from 5.9 (SD 1.8) to 2.2 (SD 2.0) at the last follow-up (all p < 0.001). Among the 114 patients, 16 (14%) experienced poor clinical outcomes and ten (8.8%) required secondary ulnar shortening osteotomy. Positive ulnar variance was the only factor significantly associated with poor clinical outcomes (p < 0.001). Positive ulnar variance was present in 38 patients (33%); among them, eight patients (21%) required additional operations. Conclusion: Arthroscopic debridement alone appears to be an effective and safe initial treatment for patients with traumatic central TFCC tears. The presence of positive ulnar variance was associated with poor clinical outcomes, but close observation after arthroscopic debridement is more likely to be recommended than ulnar shortening osteotomy as a primary treatment.


Assuntos
Fibrocartilagem Triangular , Traumatismos do Punho , Humanos , Fibrocartilagem Triangular/cirurgia , Prognóstico , Resultado do Tratamento , Estudos Retrospectivos , Artroscopia/efeitos adversos , Traumatismos do Punho/diagnóstico por imagem , Traumatismos do Punho/cirurgia , Traumatismos do Punho/etiologia , Dor/etiologia
5.
Bioeng Transl Med ; 9(2): e10629, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38435815

RESUMO

Human induced pluripotent stem cells (iPSCs) hold great promise for personalized medicine, as they can be differentiated into specific cell types, especially mesenchymal stem cells (MSCs). Therefore, our study sought to assess the feasibility of deriving MSCs from teratomas generated from human iPSCs. Teratomas serve as a model to mimic multilineage human development, thus enriching specific somatic progenitors and stem cells. Here, we discovered a small, condensed mass of MSCs within iPSC-generated teratomas. Afterward, we successfully isolated MSCs from this condensed mass, which was a byproduct of teratoma development. To evaluate the characteristics and cell behaviors of iPSC-derived MSCs (iPSC-MSCs), we conducted comprehensive assessments using qPCR, immunophenotype analysis, and cell proliferation-related assays. Remarkably, iPSC-MSCs exhibited an immunophenotype resembling that of conventional MSCs, and they displayed robust proliferative capabilities, similar to those of higher pluripotent stem cell-derived MSCs. Furthermore, iPSC-MSCs demonstrated the ability to differentiate into multiple lineages in vitro. Finally, we evaluated the therapeutic potential of iPSC-MSCs using an osteochondral defect model. Our findings demonstrated that teratomas are a promising source for the isolation of condensed MSCs. More importantly, our results suggest that iPSC-MSCs derived from teratomas possess the capacity for tissue regeneration, highlighting their promise for future therapeutic applications.

6.
EJNMMI Radiopharm Chem ; 9(1): 15, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393404

RESUMO

BACKGROUND: Recent advancements in positron emission tomograph (PET) using prostate specific membrane antigen (PSMA)-targeted radiopharmaceuticals have changed the standard of care for prostate cancer patients by providing more accurate information during staging of primary and recurrent disease. [68Ga]Ga-P16-093 is a new PSMA-PET radiopharmaceutical that demonstrated superior imaging performance in recent head-to-head studies with [68Ga]Ga-PSMA-11. To improve the availability of this new PSMA PET imaging agent, [18F]AlF-P16-093 was developed. The 18F-analog [18F]AlF-P16-093 has been synthesized manually at low activity levels using [18F]AlF2+ and validated in pre-clinical models. This work reports the optimization of the production of > 15 GBq of [18F]AlF-P16-093 using a custom automated synthesis platform. RESULTS: The sensitivity of the radiochemical yield of [18F]AlF-P16-093 to reaction parameters of time, temperature and reagent amounts was investigated using a custom automated system. The automated system is a low-cost, cassette-based system designed for 1-pot syntheses with flow-controlled solid phase extraction (SPE) workup and is based on the Raspberry Pi Zero 2 microcomputer/Python3 ecosystem. The optimized none-decay-corrected yield was 52 ± 4% (N = 3; 17.5 ± 2.2 GBq) with a molar activity of 109 ± 14 GBq/µmole and a radiochemical purity of 98.6 ± 0.6%. Run time was 30 min. A two-step sequence was used: SPE-purified [18F]F- was reacted with 80 nmoles of freeze-dried AlCl3·6H2O at 65 °C for 5 min followed by reaction with 160 nmoles of P16-093 ligand at 40 °C for 4 min in a 1:1 mixture of ethanol:0.5 M pH 4.5 NaOAc buffer. The mixture was purified by SPE (> 97% recovery). The final product formulation (5 mM pH 7 phosphate buffer with saline) exhibited a rate of decline in radiochemical purity of ~ 1.4%/h which was slowed to ~ 0.4%/h when stored at 4 °C. CONCLUSION: The optimized method using a custom automated system enabled the efficient (> 50% none-decay-corrected yield) production of [18F]AlF-P16-093 with high radiochemical purity (> 95%). The method and automation system are simple and robust, facilitating further clinical studies with [18F]AlF-P16-093.

7.
Small ; 20(15): e2308872, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37994300

RESUMO

Chemotherapy using a nanoscaled drug delivery system is an effective cancer therapy, but its high drug concentration often causes drug resistance in cancer cells and normal cell damage. Combination therapy involving two or more different cell signaling pathways can be a powerful tool to overcome the limitations of chemotherapy. Herein, this article presents nanogel (NG)-mediated co-delivery of a chemodrug camptothecin (CPT) and mitochondria-targeting monomer (MT monomer) for efficient activation of two modes of the programmed cell death pathway (apoptosis and necroptosis) and synergistic enhancement of cancer therapy. CPT and the monomer are incorporated together into the redox-degradable polymeric NGs for release in response to the intracellular glutathione. The MT monomer is shown to undergo reactive oxygen species (ROS)-triggered disulfide polymerization inside the cancerous mitochondria in cooperation with the chemotherapeutic CPT elevating the intracellular ROS level. The CPT/monomer interconnection in cell death mechanisms for mitochondrial dysfunction and enhanced cell death is evidenced by a series of cell analyses showing ROS generation, mitochondria damage, impacts on (non)cancerous or drug-resistant cells, and cell death modes. The presented work provides beneficial insights for utilizing combination therapy to facilitate a desired cell death mechanism and developing a novel nanosystem for more efficacious cancer treatment.


Assuntos
Dissulfetos , Neoplasias , Polietilenoglicóis , Polietilenoimina , Humanos , Nanogéis , Preparações Farmacêuticas , Dissulfetos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Polimerização , Morte Celular , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Camptotecina/farmacologia , Camptotecina/uso terapêutico
8.
Biomaterials ; 304: 122425, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38100905

RESUMO

G protein-coupled receptors (GPCRs) play important roles in various pathogeneses and physiological regulations. Owing to their functional diversity, GPCRs are considered one of the primary pharmaceutical targets. However, drugs targeting GPCRs have not been developed yet to regenerate hard tissues such as teeth and bones. Mesenchymal stromal cells (MSCs) have high proliferation and multi-lineage differentiation potential, which are essential for hard tissue regeneration. Here, we present a strategy for targeting class A GPCRs for hard tissue regeneration by promoting the differentiation of endogenous MSCs into osteogenic and odontogenic progenitor cells. Through in vitro screening targeted at class A GPCRs, we identified six target receptors (LPAR1, F2R, F2RL1, F2RL2, S1PR1, and ADORA2A) and candidate drugs with potent biomineralization effects. Through a combination of profiling whole transcriptome and accessible chromatin regions, we identified that p53 acts as a key transcriptional activator of genes that modulate the biomineralization process. Moreover, the therapeutic potential of class A GPCR-targeting drugs was demonstrated in tooth pulpotomy and calvarial defect models. The selected drugs revealed potent regenerative effects in both tooth and bone defects, represented by newly formed highly mineralized regions. Consequently, this study provides translational evidence for a new regenerative strategy for damaged hard tissue.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Células-Tronco , Diferenciação Celular , Receptores Acoplados a Proteínas G , Regeneração Óssea
9.
Artigo em Inglês | MEDLINE | ID: mdl-37883653

RESUMO

Tumor hypoxia poses a significant challenge in photodynamic therapy (PDT), which uses molecular oxygen to produce reactive oxygen species upon light excitation of a photosensitizer. For hypoxia mitigation, an enzyme catalase (CAT) can be beneficially used to convert intracellular hydrogen peroxide to molecular oxygen, but its utility is significantly limited due to the intrinsic membrane impermeability. Herein, we present direct integration of CAT into the outer surface of unmodified metal-organic framework (MOF) nanoparticles (NPs) via supramolecular interactions for effective cellular entry of CAT and consequent enhancement of PDT. The results demonstrated that CAT-loaded MOF NPs could successfully enter hypoxic cancer cells, after which the intracellularly delivered CAT molecules became dissociated from the MOF surface to efficiently initiate the oxygen generation and PDT process along with a co-delivered photosensitizer IR780. This achievement suggests that our protein-MOF integration strategy holds great potential in biomedical studies to overcome tumor hypoxia as well as to efficiently deliver biomolecular cargos.

10.
J Am Chem Soc ; 145(40): 21991-22008, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37664981

RESUMO

Senolytics, which eliminate senescent cells from tissues, represent an emerging therapeutic strategy for various age-related diseases. Most senolytics target antiapoptotic proteins, which are overexpressed in senescent cells, limiting specificity and inducing severe side effects. To overcome these limitations, we constructed self-assembling senolytics targeting senescent cells with an intracellular oligomerization system. Intracellular aryl-dithiol-containing peptide oligomerization occurred only inside the mitochondria of senescent cells due to selective localization of the peptides by RGD-mediated cellular uptake into integrin αvß3-overexpressed senescent cells and elevated levels of reactive oxygen species, which can be used as a chemical fuel for disulfide formation. This oligomerization results in an artificial protein-like nanoassembly with a stable α-helix secondary structure, which can disrupt the mitochondrial membrane via multivalent interactions because the mitochondrial membrane of senescent cells has weaker integrity than that of normal cells. These three specificities (integrin αvß3, high ROS, and weak mitochondrial membrane integrity) of senescent cells work in combination; therefore, this intramitochondrial oligomerization system can selectively induce apoptosis of senescent cells without side effects on normal cells. Significant reductions in key senescence markers and amelioration of retinal degeneration were observed after elimination of the senescent retinal pigment epithelium by this peptide senolytic in an age-related macular degeneration mouse model and in aged mice, and this effect was accompanied by improved visual function. This system provides a strategy for the treatment of age-related diseases using supramolecular senolytics.


Assuntos
Senescência Celular , Senoterapia , Camundongos , Animais , Espécies Reativas de Oxigênio , Peptídeos/farmacologia , Integrinas
11.
J Colloid Interface Sci ; 649: 1014-1022, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37392681

RESUMO

Targeted delivery along with controlled drug release is considered crucial in development of a drug delivery system (DDS) for efficient cancer treatment. In this paper, we present a strategy to obtain such a DDS by utilizing disulfide-incorporated mesoporous organosilica nanoparticles (MONs), which were engineered to minimize the surface interactions with proteins for better targeting and therapeutic performance. That is, after MONs were loaded with a chemodrug doxorubicin (DOX) through the inner pores, their outer surface was treated for conjugation to the glutathione-S-transferase (GST)-fused cell-specific affibody (Afb) (GST-Afb). These particles exhibited prompt responsivity to the SS bond-dissociating glutathione (GSH), which resulted in considerable degradation of the initial particle morphology and DOX release. As the protein adsorption to the MON surface appeared largely reduced, their targeting ability with GSH-stimulated therapeutic activities was demonstrated in vitro by employing two kinds of the GST-Afb protein, which target human cancer cells with the surface membrane receptor, HER2 or EGFR. Compared with unmodified control particles, the presented results show that our system can significantly enhance cancer-therapeutic outcomes of the loaded drug, offering a promising way of designing a more efficacious DDS.


Assuntos
Nanopartículas , Neoplasias , Humanos , Portadores de Fármacos/uso terapêutico , Proteínas de Membrana/metabolismo , Proteínas de Membrana/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/metabolismo , Doxorrubicina/uso terapêutico , Glutationa/metabolismo , Neoplasias/tratamento farmacológico , Oxirredução , Dióxido de Silício/uso terapêutico , Porosidade , Liberação Controlada de Fármacos
12.
J Am Chem Soc ; 145(33): 18414-18431, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37525328

RESUMO

Lysosomes remain powerful organelles and important targets for cancer therapy because cancer cell proliferation is greatly dependent on effective lysosomal function. Recent studies have shown that lysosomal membrane permeabilization induces cell death and is an effective way to treat cancer by bypassing the classical caspase-dependent apoptotic pathway. However, most lysosome-targeted anticancer drugs have very low selectivity for cancer cells. Here, we show intra-lysosomal self-assembly of a peptide amphiphile as a powerful technique to overcome this problem. We designed a peptide amphiphile that localizes in the cancer lysosome and undergoes cathepsin B enzyme-instructed supramolecular assembly. This localized assembly induces lysosomal swelling, membrane permeabilization, and damage to the lysosome, which eventually causes caspase-independent apoptotic death of cancer cells without conventional chemotherapeutic drugs. It has specific anticancer effects and is effective against drug-resistant cancers. Moreover, this peptide amphiphile exhibits high tumor targeting when attached to a tumor-targeting ligand and causes significant inhibition of tumor growth both in cancer and drug-resistant cancer xenograft models.


Assuntos
Apoptose , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Lisossomos/metabolismo , Caspases/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo , Linhagem Celular Tumoral
13.
Tissue Eng Regen Med ; 20(4): 607-619, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37017922

RESUMO

BACKGROUND: Breast cancer patients suffer from lowered quality of life (QoL) after surgery. Breast conservancy surgery (BCS) such as partial mastectomy is being practiced and studied as an alternative to solve this problem. This study confirmed breast tissue reconstruction in a pig model by fabricating a 3-dimensional (3D) printed Polycaprolactone spherical scaffold (PCL ball) to fit the tissue resected after partial mastectomy. METHODS: A 3D printed Polycaprolactone spherical scaffold with a structure that can help adipose tissue regeneration was produced using computer-aided design (CAD). A physical property test was conducted for optimization. In order to enhance biocompatibility, collagen coating was applied and a comparative study was conducted for 3 months in a partial mastectomy pig model. RESULTS: In order to identify adipose tissue and fibroglandular tissue, which mainly constitute breast tissue, the degree of adipose tissue and collagen regeneration was confirmed in a pig model after 3 months. As a result, it was confirmed that a lot of adipose tissue was regenerated in the PCL ball, whereas more collagen was regenerated in the collagen-coated Polycaprolactone spherical scaffold (PCL-COL ball). In addition, as a result of confirming the expression levels of TNF-a and IL-6, it was confirmed that PCL ball showed higher levels than PCL-COL ball. CONCLUSION: Through this study, we were able to confirm the regeneration of adipose tissue through a 3-dimensional structure in a pig model. Studies were conducted on medium and large-sized animal models for the final purpose of clinical use and reconstruction of human breast tissue, and the possibility was confirmed.


Assuntos
Neoplasias da Mama , Alicerces Teciduais , Humanos , Animais , Suínos , Feminino , Alicerces Teciduais/química , Qualidade de Vida , Mastectomia Segmentar , Mastectomia , Colágeno/química
14.
J Neurointerv Surg ; 16(1): 61-66, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37015781

RESUMO

BACKGROUND: Automated measurement of the Alberta Stroke Program Early Computed Tomography Score (ASPECTS) can support clinical decision making. Based on a deep learning algorithm, we developed an automated ASPECTS scoring system (Heuron ASPECTS) and validated its performance in a prespecified clinical trial. METHODS: For model training, we used non-contrast computed tomography images of 487 patients with acute ischemic stroke (AIS). For the clinical trial, 326 patients (87 with AIS, 56 with other acute brain diseases, and 183 with no brain disease) were enrolled. The results of Heuron ASPECTS were compared with the consensus generated by two stroke experts using the Bland-Altman agreement. A mean difference of less than 0.35 and a maximum allowed difference of less than 3.8 were considered the primary outcome target. The sensitivity and specificity of the model for the 10 regions of interest and dichotomized ASPECTS were calculated. RESULTS: The Bland-Altman agreement had a mean difference of 0.03 [95% confidence interval (CI): -0.08 to 0.14], and the upper and lower limits of agreement were 2.80 [95% CI: 2.62 to 2.99] and -2.74 [95% CI: -2.92 to -2.55], respectively. For ASPECTS calculation, sensitivity and specificity to detect the early ischemic change for 10 ASPECTS regions were 62.78% [95% CI: 58.50 to 67.07] and 96.63% [95% CI: 96.18 to 97.09], respectively. Furthermore, in a dichotomized analysis (ASPECTS >4 vs. ≤4), the sensitivity and specificity were 94.01% [95% CI: 91.26 to 96.77] and 61.90% [95% CI: 47.22 to 76.59], respectively. CONCLUSIONS: The current trial results show that Heuron ASPECTS reliably measures the ASPECTS for use in clinical practice.


Assuntos
Isquemia Encefálica , Aprendizado Profundo , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Alberta , Isquemia Encefálica/diagnóstico por imagem , AVC Isquêmico/diagnóstico por imagem , Estudos Retrospectivos , Acidente Vascular Cerebral/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos
15.
JACS Au ; 2(11): 2539-2547, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36465549

RESUMO

To achieve spatiotemporal control, an enzyme-instructed self-assembly system is widely used, but this approach typically has a small effect on cellular fate. In this study, we show that the intralysosomal assembly by a carbonic anhydrase IX (CAIX)-targeting peptide amphiphile (Pep-AT) can control cellular fate with a low therapeutic dose by tuning the surface charge based on pH change. Pep-AT self-assembles into a fibrous aggregate with a negative surface charge in an extracellular environment near CAIX. During endocytosis, it changes into a nanofiber with a positive surface charge at the lysosome. Then, it can disrupt the lysosomal membrane and induce cellular apoptosis. This study demonstrates that a spatiotemporal assembly induced by a cancer enzyme and specific organelle can control the cellular fate of cancer.

16.
Proc Natl Acad Sci U S A ; 119(46): e2215528119, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343258

RESUMO

Group 2 innate lymphoid cells (ILC2) are innate counterparts of T helper 2 (Th2) cells that maintain tissue homeostasis and respond to injuries through rapid interleukin (IL)-5 and IL-13 secretion. ILC2s depend on availability of arginine and branched-chain amino acids for sustaining cellular fitness, proliferation, and cytokine secretion in both steady state and upon activation. However, the contribution of amino acid transporters to ILC2 functions is not known. Here, we found that ILC2s selectively express Slc7a8, encoding a transporter for arginine and large amino acids. Slc7a8 was expressed in ILC2s in a tissue-specific manner in steady state and was further increased upon activation. Genetic ablation of Slc7a8 in lymphocytes reduced the frequency of ILC2s, suppressed IL-5 and IL-13 production upon stimulation, and impaired type 2 immune responses to helminth infection. Consistent with this, Slc7a8-deficient ILC2s also failed to induce cytokine production and recruit eosinophils in a model of allergic lung inflammation. Mechanistically, reduced amino acid availability due to Slc7a8 deficiency led to compromised mitochondrial oxidative phosphorylation, as well as impaired activation of mammalian target of rapamycin and c-Myc signaling pathways. These findings identify Slc7a8 as a key supplier of amino acids for the metabolic programs underpinning fitness and activation of ILC2s.


Assuntos
Imunidade Inata , Linfócitos , Interleucina-13/genética , Aminoácidos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Homeostase , Arginina , Citocinas/metabolismo , Interleucina-33 , Pulmão/metabolismo
17.
Polymers (Basel) ; 14(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36145962

RESUMO

As breast conserving surgery increases in the surgical treatment of breast cancer, partial mastectomy is also increasing. Polycaprolactone (PCL) is a polymer that is used as an artifact in various parts of the human body based on the biocompatibility and mechanical properties of PCL. Here, we hypothesized that a PCL scaffold can be utilized for the restoration of breast tissue after a partial mastectomy. To demonstrate the hypothesis, a PCL scaffold was fabricated by 3D printing and three types of spherical PCL scaffold including PCL scaffold, PCL scaffold with collagen, and the PCL scaffold with breast tissue fragment were implanted in the rat breast defect model. After 6 months of implantation, the restoration of breast tissue was observed in the PCL scaffold and the expression of collagen in the PCL scaffold with collagen was seen. The expression of TNF-α was significantly increased in the PCL scaffold, but the expression of IL-6 showed no significant difference in all groups. Through this, it showed the possibility of using it as a method to conveniently repair tissue defects after partial mastectomy of the human body.

18.
J Ethnopharmacol ; 296: 115451, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35724744

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Patients with dementia are diagnosed with deficiency patterns and interior patterns in traditional Chinese medicine due to decreased physical strength, mental atrophy including cognitive function, and decreased motor function in the gastrointestinal tract. Since "greater yin symptom" in Shanghanlun has been interpreted as interior, deficiency, and cold pattern in traditional Chinese medicine, it is necessary to determine whether Geijigadaehwang-tang (GDT) has therapeutic effects on neurodegenerative diseases and the underlying mechanism if it has such effects. AIMS OF THE STUDY: Trimethyltin (TMT), a neurotoxic organotin compound, has been used to induce several neurodegenerative diseases, including epilepsy and Alzheimer's disease. This study aimed to evaluate the therapeutic efficacy of GDT for TMT-induced hippocampal neurodegeneration and seizures and to determine the mechanisms involved at the molecular level. MATERIALS AND METHODS: The main components of GDT were analyzed using ultra-performance liquid chromatography. TMT was used to induce neurotoxicity in microglial BV-2 cells and C57BL6 mice. GDT was administered at various doses to determine its neuroprotective and seizure inhibition effects. The inhibitory effects of GDT on TMT-induced apoptosis, inflammatory pathways, and oxidative stress pathways were determined in the mouse hippocampal tissues. RESULTS: GDT contained emodin, chrysophanol, albiflorin, paeoniflorin, 6-gingerol, and liquiritin apioside. In microglial BV-2 cells treated with TMT, GDT showed dose-dependent neuroprotective effects. Oral administration of GDT five times for 2.5 days before and after TMT injection inhibited seizures at doses of 180 and 540 mg/kg and inhibited neuronal death in the hippocampus. In hippocampal tissues extracted from mice, GDT inhibited the protein expression of ionized calcium binding adaptor molecule 1, glial fibrillary acidic protein, nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3, and phosphorylated nuclear factor (NF)-κB/total-NFκB ratio. Additionally, GDT inhibited the messenger RNA levels of tumor necrosis factor-α, inducible nitric oxide synthase, apoptosis-associated speck-like protein containing a caspase recruitment domain, caspase-1, interleukin-1ß, nuclear factor erythroid-2-related factor 2, and heme oxygenase-1. CONCLUSION: This study's results imply that GDT might have neuroprotective potential in neurodegenerative diseases through neuronal death inhibition and anti-inflammatory and antioxidant mechanisms.


Assuntos
Doenças Neurodegenerativas , Fármacos Neuroprotetores , Animais , Hipocampo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/metabolismo , Compostos de Trimetilestanho
19.
Adv Exp Med Biol ; 1365: 57-73, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35567741

RESUMO

The immune system plays essential roles in maintaining homeostasis in mammalian tissues that extend beyond pathogen clearance and host defense. Recently, several homeostatic circuits comprised of paired hematopoietic and non-hematopoietic cells have been described to influence tissue composition and turnover in development and after perturbation. Crucial circuit components include innate lymphoid cells (ILCs), which seed developing organs and shape their resident tissues by influencing progenitor fate decisions, microbial interactions, and neuronal activity. As they develop in tissues, ILCs undergo transcriptional imprinting that encodes receptivity to corresponding signals derived from their resident tissues but ILCs can also shift their transcriptional profiles to adapt to specific types of tissue perturbation. Thus, ILC functions are embedded within their resident tissues, where they constitute key regulators of homeostatic responses that can lead to both beneficial and pathogenic outcomes. Here, we examine the interactions between ILCs and various non-hematopoietic tissue cells, and discuss how specific ILC-tissue cell circuits form essential elements of tissue immunity.


Assuntos
Imunidade Inata , Linfócitos , Animais , Homeostase , Mamíferos
20.
J Cell Biol ; 221(7)2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35588693

RESUMO

Epithelial cells often leave their tissue context and ingress to form new cell types or acquire migratory ability to move to distant sites during development and tumor progression. Cells lose their apical membrane and epithelial adherens junctions during ingression. However, how factors that organize apical-basal polarity contribute to ingression is unknown. Here, we show that the dynamic regulation of the apical Crumbs polarity complex is crucial for normal neural stem cell ingression. Crumbs endocytosis and recycling allow ingression to occur in a normal timeframe. During early ingression, Crumbs and its complex partner the RhoGEF Cysts support myosin and apical constriction to ensure robust ingression dynamics. During late ingression, the E3-ubiquitin ligase Neuralized facilitates the disassembly of the Crumbs complex and the rapid endocytic removal of the apical cell domain. Our findings reveal a mechanism integrating cell fate, apical polarity, endocytosis, vesicle trafficking, and actomyosin contractility to promote cell ingression, a fundamental morphogenetic process observed in animal development and cancer.


Assuntos
Membrana Celular , Proteínas de Drosophila , Células Epiteliais , Proteínas de Membrana , Células-Tronco Neurais , Junções Aderentes/metabolismo , Animais , Membrana Celular/metabolismo , Polaridade Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Células Epiteliais/citologia , Proteínas de Membrana/metabolismo , Morfogênese/fisiologia , Células-Tronco Neurais/citologia , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA