Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Sci Adv ; 10(11): eadk0785, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478601

RESUMO

Cell migration is a critical contributor to metastasis. Cytokine production and its role in cancer cell migration have been traditionally associated with immune cells. We find that the histone methyltransferase Mixed-Lineage Leukemia 1 (MLL1) controls 3D cell migration via cytokines, IL-6, IL-8, and TGF-ß1, secreted by the cancer cells themselves. MLL1, with its scaffold protein Menin, controls actin filament assembly via the IL-6/8/pSTAT3/Arp3 axis and myosin contractility via the TGF-ß1/Gli2/ROCK1/2/pMLC2 axis, which together regulate dynamic protrusion generation and 3D cell migration. MLL1 also regulates cell proliferation via mitosis-based and cell cycle-related pathways. Mice bearing orthotopic MLL1-depleted tumors exhibit decreased lung metastatic burden and longer survival. MLL1 depletion leads to lower metastatic burden even when controlling for the difference in primary tumor growth rates. Combining MLL1-Menin inhibitor with paclitaxel abrogates tumor growth and metastasis, including preexistent metastasis. These results establish MLL1 as a potent regulator of cell migration and highlight the potential of targeting MLL1 in patients with metastatic disease.


Assuntos
Leucemia , Proteína de Leucina Linfoide-Mieloide , Animais , Humanos , Camundongos , Movimento Celular , Citocinas , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Interleucina-6 , Proteína de Leucina Linfoide-Mieloide/metabolismo , Quinases Associadas a rho , Fator de Crescimento Transformador beta1
2.
bioRxiv ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38168186

RESUMO

Chimeric antigen receptor (CAR) T cells express antigen-specific synthetic receptors, which upon binding to cancer cells, elicit T cell anti-tumor responses. CAR T cell therapy has enjoyed success in the clinic for hematological cancer indications, giving rise to decade-long remissions in some cases. However, CAR T therapy for patients with solid tumors has not seen similar success. Solid tumors constitute 90% of adult human cancers, representing an enormous unmet clinical need. Current approaches do not solve the central problem of limited ability of therapeutic cells to migrate through the stromal matrix. We discover that T cells at low and high density display low- and high-migration phenotypes, respectively. The highly migratory phenotype is mediated by a paracrine pathway from a group of self-produced cytokines that include IL5, TNFα, IFNγ, and IL8. We exploit this finding to "lock-in" a highly migratory phenotype by developing and expressing receptors, which we call velocity receptors (VRs). VRs target these cytokines and signal through these cytokines' cognate receptors to increase T cell motility and infiltrate lung, ovarian, and pancreatic tumors in large numbers and at doses for which control CAR T cells remain confined to the tumor periphery. In contrast to CAR therapy alone, VR-CAR T cells significantly attenuate tumor growth and extend overall survival. This work suggests that approaches to the design of immune cell receptors that focus on migration signaling will help current and future CAR cellular therapies to infiltrate deep into solid tumors.

3.
bioRxiv ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37961434

RESUMO

During the COVID-19 pandemic, hematopoietic stem cell transplant (HSCT) recipients faced an elevated mortality rate from SARS-CoV-2 infection, ranging between 10-40%. The SARS-CoV-2 mRNA vaccines are important tools in preventing severe disease, yet their efficacy in the post-transplant setting remains unclear, especially in patients subjected to myeloablative chemotherapy and immunosuppression. We evaluated the humoral and adaptive immune responses to the SARS-CoV-2 mRNA vaccination series in 42 HSCT recipients and 5 healthy controls. Peripheral blood mononuclear nuclear cells and serum were prospectively collected before and after each dose of the SARS-CoV-2 vaccine. Post-vaccination responses were assessed by measuring anti-spike IgG and nucleocapsid titers, and antigen specific T cell activity, before and after vaccination. In order to examine mechanisms behind a lack of response, pre-and post-vaccine samples were selected based on humoral and cellular responses for single-cell RNA sequencing with TCR and BCR sequencing. Our observations revealed that while all participants eventually mounted a humoral response, transplant recipients had defects in memory T cell populations that were associated with an absence of T cell response, some of which could be detected pre-vaccination.

4.
Small Methods ; 7(10): e2300594, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37312418

RESUMO

How to develop highly informative serology assays to evaluate the quality of immune protection against coronavirus disease-19 (COVID-19) has been a global pursuit over the past years. Here, a microfluidic high-plex immuno-serolomic assay is developed to simultaneously measure50 plasma or serum samples for50 soluble markers including 35proteins, 11 anti-spike/receptor binding domian (RBD) IgG antibodies spanningmajor variants, and controls. This assay demonstrates the quintuplicate test in a single run with high throughput, low sample volume, high reproducibilityand accuracy. It is applied to the measurement of 1012 blood samples including in-depth analysis of sera from 127 patients and 21 healthy donors over multiple time points, either with acute COVID infection or vaccination. The protein analysis reveals distinct immune mediator modules that exhibit a reduced degree of diversity in protein-protein cooperation in patients with hematologic malignancies or receiving B cell depletion therapy. Serological analysis identifies that COVID-infected patients with hematologic malignancies display impaired anti-RBD antibody response despite high level of anti-spike IgG, which can be associated with limited clonotype diversity and functional deficiency in B cells. These findings underscore the importance to individualize immunization strategies for these high-risk patients and provide an informative tool to monitor their responses at the systems level.


Assuntos
COVID-19 , Neoplasias Hematológicas , Vacinas , Humanos , COVID-19/prevenção & controle , Microfluídica , Imunoglobulina G
5.
Blood ; 141(20): 2508-2519, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-36800567

RESUMO

Proinflammatory signaling is a hallmark feature of human cancer, including in myeloproliferative neoplasms (MPNs), most notably myelofibrosis (MF). Dysregulated inflammatory signaling contributes to fibrotic progression in MF; however, the individual cytokine mediators elicited by malignant MPN cells to promote collagen-producing fibrosis and disease evolution are yet to be fully elucidated. Previously, we identified a critical role for combined constitutive JAK/STAT and aberrant NF-κB proinflammatory signaling in MF development. Using single-cell transcriptional and cytokine-secretion studies of primary cells from patients with MF and the human MPLW515L (hMPLW515L) murine model of MF, we extend our previous work and delineate the role of CXCL8/CXCR2 signaling in MF pathogenesis and bone marrow fibrosis progression. Hematopoietic stem/progenitor cells from patients with MF are enriched for a CXCL8/CXCR2 gene signature and display enhanced proliferation and fitness in response to an exogenous CXCL8 ligand in vitro. Genetic deletion of Cxcr2 in the hMPLW515L-adoptive transfer model abrogates fibrosis and extends overall survival, and pharmacologic inhibition of the CXCR1/2 pathway improves hematologic parameters, attenuates bone marrow fibrosis, and synergizes with JAK inhibitor therapy. Our mechanistic insights provide a rationale for therapeutic targeting of the CXCL8/CXCR2 pathway among patients with MF.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Mielofibrose Primária , Humanos , Camundongos , Animais , Mielofibrose Primária/patologia , Transtornos Mieloproliferativos/genética , Transdução de Sinais , Neoplasias/complicações , Citocinas/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo
6.
Neuro Oncol ; 25(3): 482-494, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35901838

RESUMO

BACKGROUND: Improved treatment of glioblastoma (GBM) needs to address tumor invasion, a hallmark of the disease that remains poorly understood. In this study, we profiled GBM invasion through integrative analysis of histological and single-cell RNA sequencing (scRNA-seq) data from 10 patients. METHODS: Human histology samples, patient-derived xenograft mouse histology samples, and scRNA-seq data were collected from 10 GBM patients. Tumor invasion was characterized and quantified at the phenotypic level using hematoxylin and eosin and Ki-67 histology stains. Crystallin alpha B (CRYAB) and CD44 were identified as regulators of tumor invasion from scRNA-seq transcriptomic data and validated in vitro, in vivo, and in a mouse GBM resection model. RESULTS: At the cellular level, we found that invasive GBM are less dense and proliferative than their non-invasive counterparts. At the molecular level, we identified unique transcriptomic features that significantly contribute to GBM invasion. Specifically, we found that CRYAB significantly contributes to postoperative recurrence and is highly co-expressed with CD44 in invasive GBM samples. CONCLUSIONS: Collectively, our analysis identifies differentially expressed features between invasive and nodular GBM, and describes a novel relationship between CRYAB and CD44 that contributes to tumor invasiveness, establishing a cellular and molecular landscape of GBM invasion.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Animais , Camundongos , Glioblastoma/genética , Glioblastoma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Perfilação da Expressão Gênica , Invasividade Neoplásica , Linhagem Celular Tumoral , Modelos Animais de Doenças
7.
ACS Appl Mater Interfaces ; 14(50): 56056-56064, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36507693

RESUMO

A flexible resistive-type polyaniline-based gas sensor was fabricated by simple dip-coating of graphene combined with in situ polymerization of aniline on a flexible waste mask substrate. The prepared polypropylene/graphene/polyaniline (PP/G/PANI) hybrid sensor demonstrated a fast response (114 s) and recovery time (23 s), ppb-level detection limit (100 ppb), high response value (250% toward 50 ppm NH3, which is over four times greater than that of the pristine PANI sensor), acceptable flexibility, excellent selectivity, and long-term stability at room temperature. The morphological and structural properties of the composite sensor materials were characterized by scanning electron microscopy and energy-dispersive spectroscopy characterization, and the surface chemistry of the hybrid sensors was analyzed by Fourier transform infrared spectroscopy. The excellent sensing performance was mainly ascribed to the larger specific surface area and efficient conducting paths of the porous PP/G/PANI network. Moreover, the PP/G/PANI hybrid gas sensor exhibited excellent sensing capability on volatile sulfur compounds contained in human breath, indicating that the hybrid sensor can be applied to breath analysis and kidney disease diagnosis.

8.
bioRxiv ; 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36093346

RESUMO

The immune response to SARS-CoV-2 for patients with altered immunity such as hematologic malignancies and autoimmune disease may differ substantially from that in general population. These patients remain at high risk despite wide-spread adoption of vaccination. It is critical to examine the differences at the systems level between the general population and the patients with altered immunity in terms of immunologic and serological responses to COVID-19 infection and vaccination. Here, we developed a novel microfluidic chip for high-plex immuno-serological assay to simultaneously measure up to 50 plasma or serum samples for up to 50 soluble markers including 35 plasma proteins, 11 anti-spike/RBD IgG antibodies spanning all major variants, and controls. Our assay demonstrated the quintuplicate test in a single run with high throughput, low sample volume input, high reproducibility and high accuracy. It was applied to the measurement of 1,012 blood samples including in-depth analysis of sera from 127 patients and 21 healthy donors over multiple time points, either with acute COVID infection or vaccination. The protein association matrix analysis revealed distinct immune mediator protein modules that exhibited a reduced degree of diversity in protein-protein cooperation in patients with hematologic malignancies and patients with autoimmune disorders receiving B cell depletion therapy. Serological analysis identified that COVID infected patients with hematologic malignancies display impaired anti-RBD antibody response despite high level of anti-spike IgG, which could be associated with limited clonotype diversity and functional deficiency in B cells and was further confirmed by single-cell BCR and transcriptome sequencing. These findings underscore the importance to individualize immunization strategy for these high-risk patients and provide an informative tool to monitor their responses at the systems level.

9.
Nanotechnology ; 33(47)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35944420

RESUMO

Crystallographically anisotropic two-dimensional (2D) molybdenum disulfide (MoS2) with vertically aligned (VA) layers is attractive for electrochemical sensing owing to its surface-enriched dangling bonds coupled with extremely large mechanical deformability. In this study, we explored VA-2D MoS2layers integrated on cellulose nanofibers (CNFs) for detecting various volatile organic compound gases. Sensor devices employing VA-2D MoS2/CNFs exhibited excellent sensitivities for the tested gases of ethanol, methanol, ammonia, and acetone; e.g. a high response rate up to 83.39% for 100 ppm ethanol, significantly outperforming previously reported sensors employing horizontally aligned 2D MoS2layers. Furthermore, VA-2D MoS2/CNFs were identified to be completely dissolvable in buffer solutions such as phosphate-buffered saline solution and baking soda buffer solution without releasing toxic chemicals. This unusual combination of high sensitivity and excellent biodegradability inherent to VA-2D MoS2/CNFs offers unprecedented opportunities for exploring mechanically reconfigurable sensor technologies with bio-compatible transient characteristics.

10.
Sci Adv ; 8(23): eabj2820, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35675405

RESUMO

A notable number of acute lymphoblastic leukemia (ALL) patients develop CD19-positive relapse within 1 year after receiving chimeric antigen receptor (CAR) T cell therapy. It remains unclear if the long-term response is associated with the characteristics of CAR T cells in infusion products, hindering the identification of biomarkers to predict therapeutic outcomes. Here, we present 101,326 single-cell transcriptomes and surface protein landscape from the infusion products of 12 ALL patients. We observed substantial heterogeneity in the antigen-specific activation states, among which a deficiency of T helper 2 function was associated with CD19-positive relapse compared with durable responders (remission, >54 months). Proteomic data revealed that the frequency of early memory T cells, rather than activation or coinhibitory signatures, could distinguish the relapse. These findings were corroborated by independent functional profiling of 49 patients, and an integrative model was developed to predict the response. Our data unveil the molecular mechanisms that may inform strategies to boost specific T cell function to maintain long-term remission.


Assuntos
Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células Precursoras , Antígenos CD19 , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Proteômica , Receptores de Antígenos Quiméricos/metabolismo , Recidiva
11.
Open Forum Infect Dis ; 9(6): ofac171, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35765315

RESUMO

Background: Global efforts are needed to elucidate the epidemiology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the underlying cause of coronavirus disease 2019 (COVID-19), including seroprevalence, risk factors, and long-term sequelae, as well as immune responses after vaccination across populations and the social dimensions of prevention and treatment strategies. Methods: In the United States, the National Cancer Institute in partnership with the National Institute of Allergy and Infectious Diseases, established the SARS-CoV-2 Serological Sciences Network (SeroNet) as the nation's largest coordinated effort to study coronavirus disease 2019. The network comprises multidisciplinary researchers bridging gaps and fostering collaborations among immunologists, epidemiologists, virologists, clinicians and clinical laboratories, social and behavioral scientists, policymakers, data scientists, and community members. In total, 49 institutions form the SeroNet consortium to study individuals with cancer, autoimmune disease, inflammatory bowel diseases, cardiovascular diseases, human immunodeficiency virus, transplant recipients, as well as otherwise healthy pregnant women, children, college students, and high-risk occupational workers (including healthcare workers and first responders). Results: Several studies focus on underrepresented populations, including ethnic minorities and rural communities. To support integrative data analyses across SeroNet studies, efforts are underway to define common data elements for standardized serology measurements, cellular and molecular assays, self-reported data, treatment, and clinical outcomes. Conclusions: In this paper, we discuss the overarching framework for SeroNet epidemiology studies, critical research questions under investigation, and data accessibility for the worldwide scientific community. Lessons learned will help inform preparedness and responsiveness to future emerging diseases.

12.
Medicine (Baltimore) ; 100(50): e27854, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34918634

RESUMO

BACKGROUND: Many studies have reported that exercise is effective for fibromyalgia and various types of exercise are recommended. However, most of exercises lack evidence for fibromyalgia symptoms. We aimed to examine the effect of core muscle strengthening exercise compared to general stretching exercise in fibromyalgia patients. METHODS: Forty fibromyalgia patients were enrolled. They were provided exercise program twice a week for 4 weeks: core muscle strengthening exercise and general stretching exercise.Outcome measures were Visual Analogue Scale, Borg Scale, fibromyalgia impact questionnaire (FIQ), widespread pain index, Symptom Severity Scale (SS), and balance scale and measured before and after exercise program. Balance function was assessed by checking the distance of sway on soft pad with eyes open (EO) and with eyes closed (EC). RESULTS: After program, FIQ, SS, EO, and eyes closed showed statistically significant differences in the strengthening group while Visual Analogue Scale, Borg scale, FIQ, widespread pain index, SS showed statistically significant differences in stretching group. And EO showed statistically significant differences in the intergroup analysis. CONCLUSIONS: Both exercise could improve symptoms of fibromyalgia but showed no significantly better efficiency with intergroup analysis. Only some balance function was improved with core muscle strengthening exercise with significant difference. Our study presents preliminary results regarding the comparison between both exercises for fibromyalgia through a randomized controlled trial.


Assuntos
Terapia por Exercício/métodos , Fibromialgia/terapia , Feminino , Humanos , Pessoa de Meia-Idade , Contração Muscular , Músculos , Dor , Maleabilidade , Estudos Prospectivos , Qualidade de Vida , Método Simples-Cego , Resultado do Tratamento
13.
Front Pediatr ; 9: 750272, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34796154

RESUMO

Background: The inter- and intrarater variability of conventional computed tomography (CT) classification systems for evaluating the extent of ischemic-edematous insult following traumatic brain injury (TBI) may hinder the robustness of TBI prognostic models. Objective: This study aimed to employ fully automated quantitative densitometric CT parameters and a cutting-edge machine learning algorithm to construct a robust prognostic model for pediatric TBI. Methods: Fifty-eight pediatric patients with TBI who underwent brain CT were retrospectively analyzed. Intracranial densitometric information was derived from the supratentorial region as a distribution representing the proportion of Hounsfield units. Furthermore, a machine learning-based prognostic model based on gradient boosting (i.e., CatBoost) was constructed with leave-one-out cross-validation. At discharge, the outcome was assessed dichotomously with the Glasgow Outcome Scale (favorability: 1-3 vs. 4-5). In-hospital mortality, length of stay (>1 week), and need for surgery were further evaluated as alternative TBI outcome measures. Results: Densitometric parameters indicating reduced brain density due to subtle global ischemic changes were significantly different among the TBI outcome groups, except for need for surgery. The skewed intracranial densitometry of the unfavorable outcome became more distinguishable in the follow-up CT within 48 h. The prognostic model augmented by intracranial densitometric information achieved adequate AUCs for various outcome measures [favorability = 0.83 (95% CI: 0.72-0.94), in-hospital mortality = 0.91 (95% CI: 0.82-1.00), length of stay = 0.83 (95% CI: 0.72-0.94), and need for surgery = 0.71 (95% CI: 0.56-0.86)], and this model showed enhanced performance compared to the conventional CRASH-CT model. Conclusion: Densitometric parameters indicative of global ischemic changes during the acute phase of TBI are predictive of a worse outcome in pediatric patients. The robustness and predictive capacity of conventional TBI prognostic models might be significantly enhanced by incorporating densitometric parameters and machine learning techniques.

14.
J Immunother Cancer ; 9(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34006631

RESUMO

BACKGROUND: Autologous T cells engineered to express a chimeric antigen receptor (CAR) specific for CD19 molecule have transformed the therapeutic landscape in patients with highly refractory leukemia and lymphoma, and the use of donor-generated allogeneic CAR T is paving the way for further breakthroughs in the treatment of cancer. However, it remains unknown how the intrinsic heterogeneities of these engineered cells mediate therapeutic efficacy and whether allogeneic products match the effectiveness of autologous therapies. METHODS: Using single-cell mRNA sequencing in conjunction with CITE-seq, we performed multiomics characterization of CAR T cells generated from healthy donor and patients with acute lymphoblastic leukemia. CAR T cells used in this study were manufactured at the University of Pennsylvania through lentiviral transduction with a CD19-4-1BB-CD3ζ construct. Besides the baseline condition, we engineered NIH-3T3 cells with human CD19 or mesothelin expression to conduct ex vivo antigen-specific or non-antigen stimulation of CAR T cells through 6-hour coculture at a 1:1 ratio. RESULTS: We delineated the global cellular and molecular CAR T landscape and identified that transcriptional CAR tonic signaling was regulated by a mixture of early activation, exhaustion signatures, and cytotoxic activities. On CD19 stimulation, we illuminated the disparities of CAR T cells derived from different origins and found that donor CAR T had more pronounced activation level in correlation with the upregulation of major histocompatibility complex class II genes compared with patient CAR T cells. This finding was independently validated in additional datasets from literature. Furthermore, GM-CSF(CSF2) expression was found to be associated with functional gene productions, but it induced little impact on the CAR T activation. CONCLUSIONS: Through integrated multiomics profiling and unbiased canonical pathway analyses, our results unveil heterogeneities in the transcriptional, phenotypic, functional, and metabolic profiles of donor and patient CAR T cells, providing mechanistic basis for ameliorating clinical outcomes and developing next-generation 'off- the-shelf' allogeneic products.


Assuntos
Antígenos CD19/genética , Perfilação da Expressão Gênica , Imunoterapia Adotiva , Ativação Linfocitária/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos Quiméricos/genética , Análise de Célula Única , Linfócitos T/transplante , Transcriptoma , Animais , Antígenos CD19/imunologia , Antígenos CD19/metabolismo , Estudos de Casos e Controles , Linhagem Celular Tumoral , Técnicas de Cocultura , Citotoxicidade Imunológica/genética , Humanos , Camundongos , Células NIH 3T3 , Fenótipo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , RNA-Seq , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
15.
Sci Rep ; 11(1): 7267, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790394

RESUMO

Although immunotherapy holds promising cytotoxic activity against lymphoma or leukemia, the immunosuppressive mechanisms of solid tumors remain challenging. In this study, we developed and applied a hypergravity exposure system as a novel strategy to improve the responsiveness of breast cancer cells to natural killer (NK) cells for efficient immunotherapy. Following exposure to hypergravity, either in the presence or absence of NK cells, we investigated for changes in the cell cytoskeletal structure, which is related to the F-actin mediated immune evasion mechanism (referred to as "actin response") of cancer cells. Breast cancer cell line MDA-MB-231 cells were exposed thrice to a 20 min hypergravitational condition (10 × g), with a 20 min rest period between each exposure. The applied hypergravity induces changes in the intracellular cytoskeleton structure without decreasing the cell viability but increasing the cytotoxicity of MDA-MB-231 from 4 to 18% (4.5-fold) at a 3:1 ratio (NK-to-target). Analyses related to F-actin further demonstrate that the applied hypergravity results in rearrangement of the cytoskeleton, leading to inhibition of the actin response of MDA-MB-231. Taken together, our results suggest that the mechanical load increases through application of hypergravity, which potentially improves efficiency of cell-based immunotherapies by sensitizing tumors to immune cell-mediated cytotoxicity.


Assuntos
Actinas/imunologia , Neoplasias da Mama/imunologia , Hipergravidade , Células Matadoras Naturais/imunologia , Proteínas de Neoplasias/imunologia , Neoplasias da Mama/terapia , Citoesqueleto/imunologia , Feminino , Humanos , Imunoterapia , Células MCF-7 , Evasão Tumoral
16.
Cell ; 183(6): 1665-1681.e18, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33188776

RESUMO

We present deterministic barcoding in tissue for spatial omics sequencing (DBiT-seq) for co-mapping of mRNAs and proteins in a formaldehyde-fixed tissue slide via next-generation sequencing (NGS). Parallel microfluidic channels were used to deliver DNA barcodes to the surface of a tissue slide, and crossflow of two sets of barcodes, A1-50 and B1-50, followed by ligation in situ, yielded a 2D mosaic of tissue pixels, each containing a unique full barcode AB. Application to mouse embryos revealed major tissue types in early organogenesis as well as fine features like microvasculature in a brain and pigmented epithelium in an eye field. Gene expression profiles in 10-µm pixels conformed into the clusters of single-cell transcriptomes, allowing for rapid identification of cell types and spatial distributions. DBiT-seq can be adopted by researchers with no experience in microfluidics and may find applications in a range of fields including developmental biology, cancer biology, neuroscience, and clinical pathology.


Assuntos
Código de Barras de DNA Taxonômico , Genômica , Especificidade de Órgãos/genética , Animais , Automação , Encéfalo/embriologia , Análise por Conglomerados , DNA Complementar/genética , Embrião de Mamíferos/metabolismo , Olho/embriologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Microfluídica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Análise de Célula Única , Transcriptoma/genética
17.
PLoS One ; 15(4): e0231174, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32267880

RESUMO

As the outermost organ, the skin can be damaged following injuries such as wounds and bacterial or viral infections, and such damage should be rapidly restored to defend the body against physical, chemical, and microbial assaults. However, the wound healing process can be delayed or prolonged by health conditions, including diabetes mellitus, venous stasis disease, ischemia, and even stress. In this study, we developed a vibrational cell culture model and investigated the effects of mechanical vibrations on human keratinocytes. The HaCaT cells were exposed to vibrations at a frequency of 45 Hz with accelerations of 0.8g for 2 h per day. The applied mechanical vibration did not affect cell viability or cell proliferation. Cell migratory activity did increase following exposure to vibration, but the change was not statistically significant. The results of immunostaining (F-actin), western blot (ERK1/2), and RT-qPCR (FGF-2, PDGF-B, HB-EGF, TGF-ß1, EGFR, and KGFR) analyses demonstrated that the applied vibration resulted in rearrangement of the cytoskeleton, leading to activation of ERK1/2, one of the MAPK signaling pathways, and upregulation of the gene expression levels of HB-EGF and EGFR. The results suggest that mechanical vibration may have wound healing potential and could be used as a mechanical energy-based treatment for enhancing wound healing efficiency.


Assuntos
Queratinócitos/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Estresse Fisiológico , Vibração/efeitos adversos , Cicatrização/fisiologia , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Técnicas de Cultura de Células/métodos , Linhagem Celular , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Receptores ErbB/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Humanos , Regulação para Cima
18.
ACS Sens ; 4(6): 1603-1611, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31244007

RESUMO

The sensitive detection of explosive and flammable gases is an extremely important safety consideration in today's industry. Identification of trace amounts of nonpolar analytes at ambient temperatures, however, is still a challenge because of their weak adsorption, and very few studies have been able to achieve it via a chemiresistive mechanism. Herein, we demonstrate the high performance of 2D vanadium carbide MXene (V2CTx) gas sensors with ultrahigh sensitivity toward nonpolar gases. The fabricated 2D V2CTx sensor devices consisting of single-/few-layer 2D V2CTx on polyimide film were able to detect both polar and nonpolar chemical species including hydrogen and methane with a very low limit of detection of 2 and 25 ppm, respectively, at room temperature (23 °C). The performance of the fabricated V2CTx gas sensors in detection of nonpolar gases surpasses that of previously reported state-of-the-art gas sensors based on other 2D materials.

19.
Genomics Proteomics Bioinformatics ; 17(2): 129-139, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31229590

RESUMO

The activation mechanism of chimeric antigen receptor (CAR)-engineered T cells may differ substantially from T cells carrying native T cell receptor, but this difference remains poorly understood. We present the first comprehensive portrait of single-cell level transcriptional and cytokine signatures of anti-CD19/4-1BB/CD28/CD3ζ CAR-T cells upon antigen-specific stimulation. Both CD4+ helper T (TH) cells and CD8+ cytotoxic CAR-T cells are equally effective in directly killing target tumor cells and their cytotoxic activity is associated with the elevation of a range of TH1 and TH2 signature cytokines, e.g., interferon γ, tumor necrotic factor α, interleukin 5 (IL5), and IL13, as confirmed by the expression of master transcription factor genes TBX21 and GATA3. However, rather than conforming to stringent TH1 or TH2 subtypes, single-cell analysis reveals that the predominant response is a highly mixed TH1/TH2 function in the same cell. The regulatory T cell activity, although observed in a small fraction of activated cells, emerges from this hybrid TH1/TH2 population. Granulocyte-macrophage colony stimulating factor (GM-CSF) is produced from the majority of cells regardless of the polarization states, further contrasting CAR-T to classic T cells. Surprisingly, the cytokine response is minimally associated with differentiation status, although all major differentiation subsets such as naïve, central memory, effector memory, and effector are detected. All these suggest that the activation of CAR-engineered T cells is a canonical process that leads to a highly mixed response combining both type 1 and type 2 cytokines together with GM-CSF, supporting the notion that polyfunctional CAR-T cells correlate with objective response of patients in clinical trials. This work provides new insights into the mechanism of CAR activation and implies the necessity for cellular function assays to characterize the quality of CAR-T infusion products and monitor therapeutic responses in patients.


Assuntos
Diferenciação Celular , Ativação Linfocitária/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Análise de Célula Única/métodos , Células Th1/citologia , Células Th2/citologia , Antígenos/metabolismo , Antígeno CTLA-4/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Citocinas/metabolismo , Citotoxicidade Imunológica/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Ativação Linfocitária/efeitos dos fármacos , Subpopulações de Linfócitos/efeitos dos fármacos , Subpopulações de Linfócitos/metabolismo , Fenótipo , Proteômica , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Células Th1/efeitos dos fármacos , Células Th2/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
20.
Dev Cell ; 49(2): 206-219.e7, 2019 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-30930167

RESUMO

Cell polarization is important for various biological processes. However, its regulation, particularly initiation, is incompletely understood. Here, we investigated mechanisms by which neutrophils break their symmetry and initiate their cytoskeleton polarization from an apolar state in circulation for their extravasation during inflammation. We show here that a local increase in plasma membrane (PM) curvature resulting from cell contact to a surface triggers the initial breakage of the symmetry of an apolar neutrophil and is required for subsequent polarization events induced by chemical stimulation. This local increase in PM curvature recruits SRGAP2 via its F-BAR domain, which in turn activates PI4KA and results in PM PtdIns4P polarization. Polarized PM PtdIns4P is targeted by RPH3A, which directs PIP5K1C90 and subsequent phosphorylated myosin light chain polarization, and this polarization signaling axis regulates neutrophil firm attachment to endothelium. Thus, this study reveals a mechanism for the initiation of cell cytoskeleton polarization.


Assuntos
Polaridade Celular/fisiologia , Neutrófilos/fisiologia , Actinas/metabolismo , Animais , Adesão Celular , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Movimento Celular/fisiologia , Junções Célula-Matriz , Citoesqueleto/metabolismo , Endotélio/metabolismo , Feminino , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/fisiologia , Células HEK293 , Humanos , Leucócitos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antígenos de Histocompatibilidade Menor/metabolismo , Cadeias Leves de Miosina/metabolismo , Neutrófilos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA