Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(12): 10490-10507, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38845345

RESUMO

Building on the preceding structural analysis and a structure-activity relationship (SAR) of 8-aryl-2-hexynyl nucleoside hA2AAR antagonist 2a, we strategically inverted C2/C8 substituents and eliminated the ribose moiety. These modifications aimed to mitigate potential steric interactions between ribose and adenosine receptors. The SAR findings indicated that such inversions significantly modulated hA3AR binding affinities depending on the type of ribose, whereas removal of ribose altered the functional efficacy via hA2AAR. Among the synthesized derivatives, 2-aryl-8-hexynyl adenine 4a demonstrated the highest selectivity for hA2AAR (Ki,hA2A = 5.0 ± 0.5 nM, Ki,hA3/Ki,hA2A = 86) and effectively blocked cAMP production and restored IL-2 secretion in PBMCs. Favorable pharmacokinetic properties and a notable enhancement of anticancer effects in combination with an mAb immune checkpoint blockade were observed upon oral administration of 4a. These findings establish 4a as a viable immune-oncology therapeutic candidate.


Assuntos
Adenina , Antagonistas do Receptor A2 de Adenosina , Nucleosídeos , Receptor A2A de Adenosina , Ribose , Humanos , Relação Estrutura-Atividade , Animais , Adenina/farmacologia , Adenina/química , Adenina/análogos & derivados , Antagonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/síntese química , Nucleosídeos/química , Nucleosídeos/farmacologia , Nucleosídeos/síntese química , Ribose/química , Ribose/metabolismo , Receptor A2A de Adenosina/metabolismo , Camundongos , Estrutura Molecular , Ratos , Feminino , Linhagem Celular Tumoral
4.
Genes Dis ; 11(1): 479-494, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37588207

RESUMO

Glioblastoma (GBM) is a malignant brain tumor that grows quickly, spreads widely, and is resistant to treatment. Fibroblast growth factor receptor (FGFR)1 is a receptor tyrosine kinase that regulates cellular processes, including proliferation, survival, migration, and differentiation. FGFR1 was predominantly expressed in GBM tissues, and FGFR1 expression was negatively correlated with overall survival. We rationally designed a novel small molecule CYY292, which exhibited a strong affinity for the FGFR1 protein in GBM cell lines in vitro. CYY292 also exerted an effect on the conserved Ser777 residue of FGFR1. CYY292 dose-dependently inhibited cell proliferation, epithelial-mesenchymal transition, stemness, invasion, and migration in vitro by specifically targeting the FGFR1/AKT/Snail pathways in GBM cells, and this effect was prevented by pharmacological inhibitors and critical gene knockdown. In vivo experiments revealed that CYY292 inhibited U87MG tumor growth more effectively than AZD4547. CYY292 also efficiently reduced GBM cell proliferation and increased survival in orthotopic GBM models. This study further elucidates the function of FGFR1 in the GBM and reveals the effect of CYY292, which targets FGFR1, on downstream signaling pathways directly reducing GBM cell growth, invasion, and metastasis and thus impairing the recruitment, activation, and function of immune cells.

5.
ACS Omega ; 8(39): 36361-36369, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37810713

RESUMO

Inflammatory responses are fundamental protective warning mechanisms. However, in certain instances, they contribute significantly to the development of several chronic diseases such as cancer. Based on previous studies of truncated 1'-homologated adenosine derivatives, l-nucleosides and their nucleobase-modified quinolone analogues were designed, synthesized, and evaluated for anti-inflammatory activities. The target molecules were synthesized via the key intramolecular cyclization of monotosylate and Mitsunobu condensation from the natural product, d-ribose. All compounds tested and showed potent anti-inflammatory activities, as indicated by their inhibition of LPS-induced IL-1ß secretion from the RAW 264.7 macrophages. Gene expressions of pro-inflammatory cytokines showed that all compounds, except 3a and 3b, significantly reduced LPS-induced IL-1ß and IL-6 mRNA expressions. The half-maximal inhibitory concentrations (IC50) of 2g and 2h against IL-1ß were 1.08 and 2.28 µM, respectively. In contrast, only 2d, 2g, and 3d effectively reversed LPS-induced TNFα mRNA expression. Our mechanistic study revealed that LPS-induced phosphorylation of NF-κB was significantly downregulated by all compounds tested, providing evidence that the NF-κB signaling pathway is involved in their anti-inflammatory activities. Among the compounds tested, 2g and 2h had the most potent anti-inflammatory effects, as shown by the extent of decrease in pro-inflammatory gene expression, protein secretion, and NF-κB phosphorylation. These findings suggest that the l-truncated 1'-homologated adenosine skeleton and its nucleobase-modified analogues have therapeutic potential as treatments for various human diseases by mediating inflammatory processes.

6.
J Med Chem ; 66(17): 12249-12265, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37603705

RESUMO

Based on hA2AAR structures, a hydrophobic C8-heteroaromatic ring in 5'-truncated adenosine analogues occupies the subpocket tightly, converting hA2AAR agonists into antagonists while maintaining affinity toward hA3AR. The final compounds of 2,8-disubstituted-N6-substituted 4'-thionucleosides, or 4'-oxo, were synthesized from d-mannose and d-erythrono-1,4-lactone, respectively, using a Pd-catalyst-controlled regioselective cross-coupling reaction. All tested compounds completely antagonized hA2AAR, including 5d with the highest affinity (Ki,A2A = 7.7 ± 0.5 nM). The hA2AAR-5d X-ray structure revealed that C8-heteroaromatic rings prevented receptor activation-associated conformational changes. However, the C8-substituted compounds still antagonized hA3AR. Structural SAR features and docking studies supported different binding modes at A2AAR and A3AR, elucidating pharmacophores for receptor activation and selectivity. Favorable pharmacokinetics were demonstrated, in which 5d displayed high oral absorption, moderate half-life, and bioavailability. Also, 5d significantly improved the antitumor effect of anti-PD-L1 in vivo. Overall, this study suggests that the novel dual A2AAR/A3AR nucleoside antagonists would be promising drug candidates for immune-oncology.


Assuntos
Adenosina , Neoplasias , Humanos , Adenosina/farmacologia , Antagonistas de Receptores de Andrógenos , Imunoterapia , Antagonistas de Receptores Purinérgicos P1 , Relação Estrutura-Atividade , Tionucleosídeos/química , Tionucleosídeos/farmacologia
7.
ACS Cent Sci ; 9(6): 1140-1149, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37396870

RESUMO

Despite genetic perturbations resulting in embryo lethality for most mitotic kinases, loss of the histone H3 mitotic kinase HASPIN reveals no adverse effect in mice models, establishing HASPIN as a promising target for anticancer therapy. However, developing a HASPIN inhibitor from conventional pharmacophores poses a technical challenge as this atypical kinase shares slight similarities with eukaryotic protein kinases. Chemically modifying a cytotoxic 4'-thioadenosine analogue through high genotoxicity yielded several novel nongenotoxic kinase inhibitors. In silico apporoaches utilizing transcriptomic and chemical similarities with known compounds and KINOMEscan profiles unveiled the HASPIN inhibitor LJ4827. LJ4827's specificity and potency as a HASPIN inhibitor were verified through in vitro kinase assay and X-ray crystallography. HASPIN inhibition by LJ4827 reduced histone H3 phosphorylation and impeded Aurora B recruitment in cancer cell centromeres but not in noncancer cells. Through transcriptome analysis of lung cancer patients, PLK1 was determined as a druggable synergistic partner to complement HASPIN inhibition. Chemical or genetic PLK1 perturbation with LJ4827 effectuated pronounced lung cancer cytotoxicity in vitro and in vivo. Therefore, LJ4827 is a novel anticancer therapeutic for selectively impeding cancer mitosis through potent HASPIN inhibition, and simultaneous HASPIN and PLK1 interference is a promising therapeutic strategy for lung cancer.

8.
J Med Chem ; 65(17): 11648-11657, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35977382

RESUMO

Modulators of the G protein-coupled A2A adenosine receptor (A2AAR) have been considered promising agents to treat Parkinson's disease, inflammation, cancer, and central nervous system disorders. Herein, we demonstrate that a thiophene modification at the C8 position in the common adenine scaffold converted an A2AAR agonist into an antagonist. We synthesized and characterized a novel A2AAR antagonist, 2 (LJ-4517), with Ki = 18.3 nM. X-ray crystallographic structures of 2 in complex with two thermostabilized A2AAR constructs were solved at 2.05 and 2.80 Å resolutions. In contrast to A2AAR agonists, which simultaneously interact with both Ser2777.42 and His2787.43, 2 only transiently contacts His2787.43, which can be direct or water-mediated. The n-hexynyl group of 2 extends into an A2AAR exosite. Structural analysis revealed that the introduced thiophene modification restricted receptor conformational rearrangements required for subsequent activation. This approach can expand the repertoire of adenosine receptor antagonists that can be designed based on available agonist scaffolds.


Assuntos
Nucleosídeos , Receptor A2A de Adenosina , Antagonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/farmacologia , Cristalografia por Raios X , Conformação Molecular , Receptor A2A de Adenosina/química , Tiofenos
9.
ACS Med Chem Lett ; 13(7): 1131-1136, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35859875

RESUMO

On the basis of the previously reported polypharmacological profile of truncated d-1'-homologated adenosine derivatives [J. Med. Chem.2020, 63, 16012], the l-nucleoside analogues were synthesized using computer-aided design and evaluated for biological activity. The target molecules were synthesized from d-ribose via the key intramolecular cyclization of the monotosylate and Mitsunobu condensation. The peroxisome proliferator-activated receptor (PPAR) binding activities of l-nucleoside analogue 2d (K i = 4.3 µM for PPARγ and 1.0 µM for PPARδ) were significantly improved in comparison with those of the d-nucleoside compound 1 (11.9 and 2.7 µM, respectively). In addition, the l-nucleosides showed more potent adiponectin-secretion-promoting activity than the d-nucleoside analogues.

10.
J Med Chem ; 63(24): 16012-16027, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33325691

RESUMO

Following our report that A3 adenosine receptor (AR) antagonist 1 exhibited a polypharmacological profile as a dual modulator of peroxisome proliferator-activated receptor (PPAR)γ/δ, we discovered a new template, 1'-homologated adenosine analogues 4a-4t, as dual PPARγ/δ modulators without AR binding. Removal of binding affinity to A3AR was achieved by 1'-homologation, and PPARγ/δ dual modulation was derived from the structural similarity between the target nucleosides and PPAR modulator drug, rosiglitazone. All the final nucleosides were devoid of AR-binding affinity and exhibited high binding affinities to PPARγ/δ but lacked PPARα binding. 2-Cl derivatives exhibited dual receptor-binding affinity to PPARγ/δ, which was absent for the corresponding 2-H derivatives. 2-Propynyl substitution prevented PPARδ-binding affinity but preserved PPARγ affinity, indicating that the C2 position defines a pharmacophore for selective PPARγ ligand designs. PPARγ/δ dual modulators functioning as both PPARγ partial agonists and PPARδ antagonists promoted adiponectin production, suggesting their therapeutic potential against hypoadiponectinemia-associated cancer and metabolic diseases.


Assuntos
Adenosina/química , Adenosina/farmacologia , Adiponectina/metabolismo , Descoberta de Drogas , Obesidade/tratamento farmacológico , PPAR alfa/antagonistas & inibidores , PPAR gama/agonistas , Animais , Sítios de Ligação , Humanos , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Simulação de Dinâmica Molecular , Obesidade/metabolismo , Obesidade/patologia , PPAR alfa/metabolismo , PPAR gama/metabolismo , Ligação Proteica , Relação Estrutura-Atividade
11.
ACS Med Chem Lett ; 11(10): 1799-1809, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33062157

RESUMO

The epidermal growth factor receptor (EGFR) is genetically altered in nearly 60% of glioblastoma tumors; however, tyrosine kinase inhibitors (TKIs) against EGFR have failed to show efficacy for patients with these lethal brain tumors. This failure is attributed to the inability of clinically tested EGFR TKIs to cross the blood-brain barrier (BBB) and achieve adequate pharmacological levels to inhibit various oncogenic forms of EGFR that drive glioblastoma. Through SAR analysis, we developed compound 5 (JCN037) from an anilinoquinazoline scaffold by ring fusion of the 6,7-dialkoxy groups to reduce the number of rotatable bonds and polar surface area and by introduction of an ortho-fluorine and meta-bromine on the aniline ring for improved potency and BBB penetration. Relative to the conventional EGFR TKIs erlotinib and lapatinib, JCN037 displayed potent activity against EGFR amplified/mutant patient-derived cell cultures, significant BBB penetration (2:1 brain-to-plasma ratio), and superior efficacy in an EGFR-driven orthotopic glioblastoma xenograft model.

12.
Artigo em Inglês | MEDLINE | ID: mdl-31964798

RESUMO

Alphaviruses are arthropod-borne, positive-stranded RNA viruses capable of causing severe disease with high morbidity. Chikungunya virus (CHIKV) is an alphavirus that causes a febrile illness which can progress into chronic arthralgia. The current lack of vaccines and specific treatment for CHIKV infection underscores the need to develop new therapeutic interventions. To discover new antiviral agents, we performed a compound screen in cell culture-based infection models and identified two carbocyclic adenosine analogues, 6'-ß-fluoro-homoaristeromycin (FHA) and 6'-fluoro-homoneplanocin A (FHNA), that displayed potent activity against CHIKV and Semliki Forest virus (SFV) with 50% effective concentrations in the nanomolar range at nontoxic concentrations. The compounds, designed as inhibitors of the host enzyme S-adenosylhomocysteine (SAH) hydrolase, impeded postentry steps in CHIKV and SFV replication. Selection of FHNA-resistant mutants and reverse genetics studies demonstrated that the combination of mutations G230R and K299E in CHIKV nonstructural protein 1 (nsP1) conferred resistance to the compounds. Enzymatic assays with purified wild-type (wt) SFV nsP1 suggested that an oxidized (3'-keto) form, rather than FHNA itself, directly inhibited the MTase activity, while a mutant protein with the K231R and K299E substitutions was insensitive to the compound. Both wt nsP1 and the resistant mutant were equally sensitive to the inhibitory effect of SAH. Our combined data suggest that FHA and FHNA inhibit CHIKV and SFV replication by directly targeting the MTase activity of nsP1, rather than through an indirect effect on host SAH hydrolase. The high potency and selectivity of these novel alphavirus mRNA capping inhibitors warrant further preclinical investigation of these compounds.


Assuntos
Adenosina/análogos & derivados , Antivirais/farmacologia , Vírus Chikungunya/efeitos dos fármacos , Vírus Chikungunya/fisiologia , Adenosina/farmacologia , Animais , Vírus Chikungunya/patogenicidade , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Guanosina Monofosfato/metabolismo , Mutação , Radioisótopos de Fósforo , Vírus da Floresta de Semliki/efeitos dos fármacos , Células Vero , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
13.
Eur J Med Chem ; 187: 111956, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31841728

RESUMO

We have reported on aristeromycin (1) and 6'-fluorinated-aristeromycin analogues (2), which are active against RNA viruses such as Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), Zika virus (ZIKV), and Chikungunya virus (CHIKV). However, these exhibit substantial cytotoxicity. As this cytotoxicity may be attributed to 5'-phosphorylation, we designed and synthesized one-carbon homologated 6'-fluorinated-aristeromycin analogues. This modification prevents 5'-phosphorlyation by cellular kinases, whereas the inhibitory activity towards S-adenosyl-l-homocysteine (SAH) hydrolase will be retained. The enantiomerically pure 6'-fluorinated-5'-homoaristeromycin analogues 3a-e were synthesized via the electrophilic fluorination of the silyl enol ether with Selectfluor, using a base-build up approach as the key steps. All synthesized compounds exhibited potent inhibitory activity towards SAH hydrolase, among which 6'-ß-fluoroadenosine analogue 3a was the most potent (IC50 = 0.36 µM). Among the compounds tested, 6'-ß-fluoro-homoaristeromycin 3a showed potent antiviral activity (EC50 = 0.12 µM) against the CHIKV, without noticeable cytotoxicity up to 250 µM. Only 3a displayed anti-CHIKV activity, whereas both3a and 3b inhibited SAH hydrolase with similar IC50 values (0.36 and 0.37 µM, respectively), which suggested that 3a's antiviral activity did not merely depend on the inhibition of SAH hydrolase. This is further supported by the fact that the antiviral effect was specific for CHIKV and some other alphaviruses and none of the homologated analogues inhibited other RNA viruses, such as SARS-CoV, MERS-CoV, and ZIKV. The potent inhibition and high selectivity index make 6'-ß-fluoro-homoaristeromycin (3a) a promising new template for the development of antivirals against CHIKV, a serious re-emerging pathogen that has infected millions of people over the past 15 years.


Assuntos
Adenosina/análogos & derivados , Antivirais/farmacologia , Vírus Chikungunya/efeitos dos fármacos , Adenosina/síntese química , Adenosina/química , Adenosina/farmacologia , Antivirais/síntese química , Antivirais/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
14.
J Med Chem ; 62(13): 6346-6362, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31244113

RESUMO

The 6'-fluorinated aristeromycins were designed as dual-target antiviral compounds aimed at inhibiting both the viral RNA-dependent RNA polymerase (RdRp) and the host cell S-adenosyl-l-homocysteine (SAH) hydrolase, which would indirectly target capping of viral RNA. The introduction of a fluorine at the 6'-position enhanced the inhibition of SAH hydrolase and the activity against RNA viruses. The adenosine and N6-methyladenosine analogues 2a-e showed potent inhibition against SAH hydrolase, while only the adenosine derivatives 2a-c exhibited potent antiviral activity against all tested RNA viruses such as Middle East respiratory syndrome-coronavirus (MERS-CoV), severe acute respiratory syndrome-coronavirus, chikungunya virus, and/or Zika virus. 6',6'-Difluoroaristeromycin (2c) showed the strongest antiviral effect for MERS-CoV, with a ∼2.5 log reduction in infectious progeny titer in viral load reduction assay. The phosphoramidate prodrug 3a also demonstrated potent broad-spectrum antiviral activity, possibly by inhibiting the viral RdRp. This study shows that 6'-fluorinated aristeromycins can serve as starting points for the development of broad-spectrum antiviral agents that target RNA viruses.


Assuntos
Adenosina/análogos & derivados , Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Vírus de RNA/efeitos dos fármacos , Adenosina/síntese química , Adenosina/farmacologia , Adenosil-Homocisteinase/antagonistas & inibidores , Animais , Antivirais/síntese química , Chlorocebus aethiops , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Halogenação , Humanos , Estrutura Molecular , Pró-Fármacos/síntese química , Pró-Fármacos/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Células Vero
15.
Arch Pharm Res ; 42(9): 780-789, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31041687

RESUMO

Based on the potent anti-HIV activity of L-2',3'-dideoxycytidine (L-ddC), L-2',3'-dideoxy-4'-selenonucleosides (L-4'-Se-ddNs) have been synthesized from natural chiral template, L-glutamic acid, using Pummerer-type condensation as a key step. All synthesized compounds were assayed for anti-HIV-1 activity, but none of them did show any significant antiviral activity up to 100 µM, probably due to conformational differences between L-ddC and L-4'-Se-ddC, induced by the bulky selenium atom, which might play an important role in phosphorylation by cellular kinase.


Assuntos
Fármacos Anti-HIV/farmacologia , Didesoxinucleosídeos/farmacologia , HIV/efeitos dos fármacos , Compostos de Selênio/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Didesoxinucleosídeos/síntese química , Didesoxinucleosídeos/química , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Compostos de Selênio/química , Relação Estrutura-Atividade
16.
Arch Pharm Res ; 42(9): 773-779, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30264323

RESUMO

Truncated 4'-thionucleosides 1-4 and 4'-oxonucleosides 5-8 as potent and selective A3AR antagonists were synthesized from D-mannose and D-erythronic acid γ-lactone, respectively. These nucleosides were evaluated for their anti-fibrotic renoprotective activity in TGF-ß1-treated murine proximal tubular (mProx) cells. Their antagonistic activities for A3AR were proportional to their inhibitory activities against TGF-ß1-induced collagen I upregulation in mProx cells. This result suggests that the binding affinity of A3AR antagonists is closely correlated with their anti-fibrotic activity. Thus, A3AR antagonists might be novel therapeutic candidates for treating chronic kidney disease.


Assuntos
Antagonistas do Receptor A3 de Adenosina/farmacologia , Adenosina/farmacologia , Fibrose/tratamento farmacológico , Nefropatias/tratamento farmacológico , Receptor A3 de Adenosina/metabolismo , Adenosina/análogos & derivados , Adenosina/química , Antagonistas do Receptor A3 de Adenosina/síntese química , Antagonistas do Receptor A3 de Adenosina/química , Animais , Relação Dose-Resposta a Droga , Fibrose/metabolismo , Humanos , Nefropatias/metabolismo , Estrutura Molecular , Ratos , Relação Estrutura-Atividade
17.
BMB Rep ; 51(10): 520-525, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29936931

RESUMO

Cardiovascular diseases arising from atherosclerosis are the leading causes of mortality and morbidity worldwide. Lipid-lowering agents have been developed in order to treat hypercholesterolemia, a major risk factor for atherosclerosis. However, the prevalence of cardiovascular diseases is increasing, indicating a need to identify novel therapeutic targets and develop new treatment agents. Adenosine receptors (ARs) are emerging as therapeutic targets in asthma, rheumatoid arthritis, cancer, ischemia, and inflammatory diseases. This study assessed whether LJ-1888, a selective antagonist for A3 AR, can inhibit the development of atherosclerosis in apolipoprotein E knock-out (ApoE-/-) mice who are fed a western diet. Plaque formation was significantly lower in ApoE-/- mice administered LJ-1888 than in mice not administered LJ-1888, without any associated liver damage. LJ-1888 treatment of ApoE-/- mice prevented western diet-induced hypercholesterolemia by markedly reducing low-density lipoprotein cholesterol levels and significantly increasing high-density lipoprotein cholesterol concentrations. Reduced hypercholesterolemia in ApoE-/- mice administered LJ-1888 was associated with the enhanced expression of genes involved in bile acid biosynthesis. These findings indicate that LJ-1888, a selective antagonist for A3 AR, may be a novel candidate for the treatment of atherosclerosis and hypercholesterolemia. [BMB Reports 2018; 51(10): 521-526].


Assuntos
Antagonistas do Receptor A3 de Adenosina/uso terapêutico , Adenosina/uso terapêutico , Apolipoproteínas E/deficiência , Aterosclerose/tratamento farmacológico , Hipercolesterolemia/tratamento farmacológico , Receptor A3 de Adenosina/metabolismo , Adenosina/farmacologia , Antagonistas do Receptor A3 de Adenosina/farmacologia , Animais , Aterosclerose/complicações , Aterosclerose/patologia , Ácidos e Sais Biliares/biossíntese , Vias Biossintéticas/genética , Dieta Ocidental , Regulação da Expressão Gênica/efeitos dos fármacos , Hipercolesterolemia/complicações , Hipercolesterolemia/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos Knockout , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/patologia , Fatores de Transcrição/metabolismo
18.
Eur J Med Chem ; 155: 406-417, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29906687

RESUMO

Based on the potent anticancer activity of 6'-fluorocyclopentenyl-cytosine 2b in phase IIa clinical trials for the treatment of gemcitabine-resistant pancreatic cancer, we carried out a systematic structure-activity relationship study of 6'-fluorocyclopentenyl-pyrimidines 3a-i and -purines 3j-o to discover novel anticancer agents. We also synthesized the phosphoramidate prodrug 3p of adenine derivative 1b to determine if the anticancer activity depended on the inhibition of DNA and/or RNA polymerase in cancer cells and/or on the inhibition of S-adenosylhomocysteine (SAH) hydrolase. All of the synthesized pyrimidine nucleosides exhibited much less potent anticancer activity in vitro than the cytosine derivative 2b, acting as RNA and/or DNA polymerase inhibitor, indicating that they could not be efficiently converted to their triphosphates for anticancer activity. Among all the synthesized purine nucleosides, adenine derivative 1b and N6-methyladenine derivative 3k showed potent anticancer activity, showing equipotent inhibitory activity as the positive control, neplanocin A (1a) or Ara-C. However, the phosphoramidate prodrug 3p showed less anticancer activity than 1b, indicating that it did not act as a RNA and/or DNA polymerase inhibitor like 2b. This result also demonstrates that the anticancer activity of 1b largely depends on the inhibition of histone methyltransferase, resulting from strong inhibition of SAH hydrolase. The deamination of the N6-amino group, the addition of the bulky alkyl group at the N6-amino group, or the introduction of the amino group at the C2 position almost abolished the anticancer activity.


Assuntos
Antineoplásicos/farmacologia , Ciclopentanos/farmacologia , Desenho de Fármacos , Hidrocarbonetos Fluorados/farmacologia , Pró-Fármacos/farmacologia , Purinas/farmacologia , Pirimidinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Ciclopentanos/síntese química , Ciclopentanos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Hidrocarbonetos Fluorados/síntese química , Hidrocarbonetos Fluorados/química , Estrutura Molecular , Pró-Fármacos/síntese química , Pró-Fármacos/química , Purinas/síntese química , Purinas/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
19.
Org Lett ; 19(21): 5732-5735, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-29028350

RESUMO

(-)-6'-ß-Fluoro-aristeromycin (2), a potent inhibitor of S-adenosylhomocysteine (AdoHcy) hydrolase, has been synthesized via stereoselective electrophilic fluorination followed by a purine base build-up approach. Interestingly, purine base condensation using a cyclic sulfate resulted in a synthesis of (+)-5'-ß-fluoro-isoaristeromycin (2a). Computational analysis indicates that the fluorine atom controlled the regioselectivity of the purine base substitution.

20.
J Med Chem ; 60(17): 7459-7475, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28799755

RESUMO

A3 adenosine receptor (AR) ligands including A3 AR agonist, N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide (1a, IB-MECA) were examined for adiponectin production in human bone marrow mesenchymal stem cells (hBM-MSCs). In this model, 1a significantly increased adiponectin production, which is associated with improved insulin sensitivity. However, A3 AR antagonists also promoted adiponectin production in hBM-MSCs, indicating that the A3 AR pathway may not be directly involved in the adiponectin promoting activity. In a target deconvolution study, their adiponectin-promoting activity was significantly correlated to their binding activity to both peroxisome proliferator activated receptor (PPAR) γ and PPARδ. They functioned as both PPARγ partial agonists and PPARδ antagonists. In the diabetic mouse model, 1a and its structural analogues A3 AR antagonists significantly decreased the serum levels of glucose and triglyceride, supporting their antidiabetic potential. These findings indicate that the polypharmacophore of these compounds may provide therapeutic insight into their multipotent efficacy against various human diseases.


Assuntos
Agonistas do Receptor A3 de Adenosina/uso terapêutico , Adenosina/análogos & derivados , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , PPAR delta/antagonistas & inibidores , PPAR gama/agonistas , Adenosina/química , Adenosina/farmacologia , Adenosina/uso terapêutico , Agonistas do Receptor A3 de Adenosina/química , Agonistas do Receptor A3 de Adenosina/farmacologia , Antagonistas do Receptor A3 de Adenosina/química , Antagonistas do Receptor A3 de Adenosina/farmacologia , Antagonistas do Receptor A3 de Adenosina/uso terapêutico , Adiponectina/metabolismo , Animais , Linhagem Celular , Diabetes Mellitus Experimental/metabolismo , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Resistência à Insulina , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PPAR delta/metabolismo , PPAR gama/metabolismo , Polifarmacologia , Receptor A3 de Adenosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA