Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Control Release ; 366: 142-159, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145660

RESUMO

Responsive heat resistance (by heat shock protein upregulation) and spontaneous reactive oxygen species (ROS) detoxification have been regarded as the major obstacles for photothermal/photodynamic therapy of cancer. To overcome the thermal resistance and improve ROS susceptibility in breast cancer therapy, Au ion-crosslinked hydrogels including indocyanine green (ICG) and polyphenol are devised. Au ion has been introduced for gel crosslinking (by catechol-Au3+ coordination), cellular glutathione depletion, and O2 production from cellular H2O2. ICG can generate singlet oxygen from O2 (for photodynamic therapy) and induce hyperthermia (for photothermal therapy) under the near-infrared laser exposure. (-)-Epigallocatechin gallate downregulates heat shock protein to overcome heat resistance during hyperthermia and exerts multiple anticancer functions in spite of its ironical antioxidant features. Those molecules are concinnously engaged in the hydrogel structure to offer fast gel transformation, syringe injection, self-restoration, and rheological tuning for augmented photo/chemotherapy of cancer. Intratumoral injection of multifunctional hydrogel efficiently suppressed the growth of primary breast cancer and completely eliminated the residual tumor mass. Proposed hydrogel system can be applied to tumor size reduction prior to surgery of breast cancer and the complete remission after its surgery.


Assuntos
Neoplasias da Mama , Hipertermia Induzida , Fotoquimioterapia , Humanos , Feminino , Espécies Reativas de Oxigênio/metabolismo , Hidrogéis/uso terapêutico , Peróxido de Hidrogênio , Verde de Indocianina/uso terapêutico , Verde de Indocianina/química , Neoplasias da Mama/tratamento farmacológico , Proteínas de Choque Térmico
2.
Bioeng Transl Med ; 8(5): e10470, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37693066

RESUMO

Indocyanine green (ICG), glucose oxidase (GOx), and copper(II) sulfate (Cu)-installed hybrid gel based on organic nanorod (cellulose nanocrystal [CNC]) and inorganic nanodisk (Laponite [LAP]) was developed to perform a combination of starvation therapy (ST), chemodynamic therapy (CDT), and photothermal therapy (PTT) for localized cancers. A hybrid CNC/LAP network with a nematic phase was designed to enable instant gelation, controlled viscoelasticity, syringe injectability, and longer in vivo retention. Moreover, ICG was introduced into the CNC/LAP gel system to induce hyperthermia of tumor tissue, amplifying the CDT effect; GOx was used for glucose deprivation (related to the Warburg effect); and Cu was introduced for hydroxyl radical generation (based on Fenton-like chemistry) and cellular glutathione (GSH) degradation in cancer cells. The ICG/GOx/Cu-installed CNC/LAP gel in combination with near-infrared (NIR) laser realized improved antiproliferation, cellular reactive oxygen species (ROS) generation, cellular GSH degradation, and apoptosis induction in colorectal cancer (CT-26) cells. In addition, local injection of the CNC/ICG/GOx/Cu/LAP gel into the implanted CT-26 tumor while irradiating it with NIR laser provided strong tumor growth suppression effects. In conclusion, the designed hybrid nanorod/nanodisk gel network can be efficiently applied to the local PTT/ST/CDT of cancer cells.

3.
Biofabrication ; 15(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37348491

RESUMO

Three-dimensional (3D)in vitrotumor models that can capture the pathophysiology of human tumors are essential for cancer biology and drug development. However, simulating the tumor microenvironment is still challenging because it consists of a heterogeneous mixture of various cellular components and biological factors. In this regard, current extracellular matrix (ECM)-mimicking hydrogels used in tumor tissue engineering lack physical interactions that can keep biological factors released by encapsulated cells within the hydrogel and improve paracrine interactions. Here, we developed a nanoengineered ion-covalent cross-linkable bioink to construct 3D bioprinted organotypic tumor models. The bioink was designed to implement the tumor ECM by creating an interpenetrating network composed of gelatin methacryloyl (GelMA), a light cross-linkable polymer, and synthetic nanosilicate (Laponite) that exhibits a unique ionic charge to improve retention of biological factors released by the encapsulated cells and assist in paracrine signals. The physical properties related to printability were evaluated to analyze the effect of Laponite hydrogel on bioink. Low GelMA (5%) with high Laponite (2.5%-3.5%) composite hydrogels and high GelMA (10%) with low Laponite (1.0%-2.0%) composite hydrogels showed acceptable mechanical properties for 3D printing. However, a low GelMA composite hydrogel with a high Laponite content could not provide acceptable cell viability. Fluorescent cell labeling studies showed that as the proportion of Laponite increased, the cells became more aggregated to form larger 3D tumor structures. Reverse transcription-polymerase chain reaction (RT-qPCR) and western blot experiments showed that an increase in the Laponite ratio induces upregulation of growth factor and tissue remodeling-related genes and proteins in tumor cells. In contrast, cell cycle and proliferation-related genes were downregulated. On the other hand, concerning fibroblasts, the increase in the Laponite ratio indicated an overall upregulation of the mesenchymal phenotype-related genes and proteins. Our study may provide a rationale for using Laponite-based hydrogels in 3D cancer modeling.


Assuntos
Bioimpressão , Neoplasias , Humanos , Alicerces Teciduais/química , Bioimpressão/métodos , Engenharia Tecidual/métodos , Gelatina/química , Impressão Tridimensional , Hidrogéis/farmacologia , Hidrogéis/química , Fatores Biológicos , Microambiente Tumoral
4.
Adv Healthc Mater ; 12(27): e2301096, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37256647

RESUMO

Peptide-based hydrogel biomaterials have emerged as an excellent strategy for immune system modulation. Peptide-based hydrogels are supramolecular materials that self-assemble into various nanostructures through various interactive forces (i.e., hydrogen bonding and hydrophobic interactions) and respond to microenvironmental stimuli (i.e., pH, temperature). While they have been reported in numerous biomedical applications, they have recently been deemed promising candidates to improve the efficacy of cancer immunotherapies and treatments. Immunotherapies seek to harness the body's immune system to preemptively protect against and treat various diseases, such as cancer. However, their low efficacy rates result in limited patient responses to treatment. Here, the immunomaterial's potential to improve these efficacy rates by either functioning as immune stimulators through direct immune system interactions and/or delivering a range of immune agents is highlighted. The chemical and physical properties of these peptide-based materials that lead to immuno modulation and how one may design a system to achieve desired immune responses in a controllable manner are discussed. Works in the literature that reports peptide hydrogels as adjuvant systems and for the delivery of immunotherapies are highlighted. Finally, the future trends and possible developments based on peptide hydrogels for cancer immunotherapy applications are discussed.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Hidrogéis/química , Imunoterapia , Peptídeos/química , Nanoestruturas/química , Neoplasias/terapia
5.
Bioact Mater ; 25: 360-373, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36879666

RESUMO

The tumor microenvironment consists of diverse, complex etiological factors. The matrix component of pancreatic ductal adenocarcinoma (PDAC) plays an important role not only in physical properties such as tissue rigidity but also in cancer progression and therapeutic responsiveness. Although significant efforts have been made to model desmoplastic PDAC, existing models could not fully recapitulate the etiology to mimic and understand the progression of PDAC. Here, two major components in desmoplastic pancreatic matrices, hyaluronic acid- and gelatin-based hydrogels, are engineered to provide matrices for tumor spheroids composed of PDAC and cancer-associated fibroblasts (CAF). Shape analysis profiles reveals that incorporating CAF contributes to a more compact tissue formation. Higher expression levels of markers associated with proliferation, epithelial to mesenchymal transition, mechanotransduction, and progression are observed for cancer-CAF spheroids cultured in hyper desmoplastic matrix-mimicking hydrogels, while the trend can be observed when those are cultured in desmoplastic matrix-mimicking hydrogels with the presence of transforming growth factor-ß1 (TGF-ß1). The proposed multicellular pancreatic tumor model, in combination with proper mechanical properties and TGF-ß1 supplement, makes strides in developing advanced pancreatic models for resembling and monitoring the progression of pancreatic tumors, which could be potentially applicable for realizing personalized medicine and drug testing applications.

6.
Adv Mater ; 34(49): e2205498, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36268986

RESUMO

Dynamic manipulation of supramolecular self-assembled structures is achieved irreversibly or under non-physiological conditions, thereby limiting their biomedical, environmental, and catalysis applicability. In this study, microgels composed of azobenzene derivatives stacked via π-cation and π-π interactions are developed that are electrostatically stabilized with Arg-Gly-Asp (RGD)-bearing anionic polymers. Lateral swelling of RGD-bearing microgels occurs via cis-azobenzene formation mediated by near-infrared-light-upconverted ultraviolet light, which disrupts intermolecular interactions on the visible-light-absorbing upconversion-nanoparticle-coated materials. Real-time imaging and molecular dynamics simulations demonstrate the deswelling of RGD-bearing microgels via visible-light-mediated trans-azobenzene formation. Near-infrared light can induce in situ swelling of RGD-bearing microgels to increase RGD availability and trigger release of loaded interleukin-4, which facilitates the adhesion structure assembly linked with pro-regenerative polarization of host macrophages. In contrast, visible light can induce deswelling of RGD-bearing microgels to decrease RGD availability that suppresses macrophage adhesion that yields pro-inflammatory polarization. These microgels exhibit high stability and non-toxicity. Versatile use of ligands and protein delivery can offer cytocompatible and photoswitchable manipulability of diverse host cells.


Assuntos
Microgéis , Macrófagos
7.
ACS Appl Mater Interfaces ; 14(31): 35309-35318, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35913267

RESUMO

Systemic administration of immune checkpoint blockade agents can activate the anticancer activity of immune cells; however, the response varies from patient to patient and presents potential off-target toxicities. Local administration of immune checkpoint inhibitors (ICIs) can maximize therapeutic efficacies while reducing side effects. This study demonstrates a minimally invasive strategy to locally deliver anti-programmed cell death protein 1 (anti-PD-1) with shear-thinning biomaterials (STBs). ICI can be injected into tumors when loaded in STBs (STB-ICI) composed of gelatin and silicate nanoplatelets (Laponite). The release of ICI from STB was mainly affected by the Laponite percentage in STBs and pH of the local microenvironment. Low Laponite content and acidic pH can induce ICI release. In a murine melanoma model, the injection of STB-ICI significantly reduced tumor growth and increased CD8+ T cell level in peripheral blood. STB-ICI also induced increased levels of tumor-infiltrating CD4+ helper T cells, CD8+ cytotoxic T cells, and tumor death. The STB-based minimally invasive strategy provides a simple and efficient approach to deliver ICIs locally.


Assuntos
Inibidores de Checkpoint Imunológico , Melanoma , Animais , Materiais Biocompatíveis/farmacologia , Linfócitos T CD8-Positivos , Humanos , Camundongos , Linfócitos T Citotóxicos , Microambiente Tumoral
8.
J Control Release ; 349: 617-633, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35868357

RESUMO

A hyaluronic acid (HA)-based one-pot hydrogel reactor with single syringe injection and immediate gelation was developed for starvation therapy (ST), chemodynamic therapy (CDT), ferroptosis, and photothermal therapy (PTT) against breast cancer. A rheologically tuned hydrogel network, composed of HA-phenylboronic acid (HP) and HA-dopamine (HD), was designed by introducing a boronate ester linkage (phenylboronic acid-dopamine interaction) and polydopamine bond (pH control). Ferrocene (Fc)-conjugated HP (Fc-HP) was synthesized to achieve ferroptosis, Fenton reaction-involved toxic hydroxyl radical (•OH) generation, and photothermal ablation in cancer therapy. Glucose oxidase (GOx) was entrapped in the pH-modulated Fc-HP (Fc-HP°)/HD hydrogel network for converting intracellular glucose to H2O2 to enable its own supply. The GOx/Fc combination-installed hydrogel reactor system can provide sustained ST/CDT/PTT functions along with ferroptosis. Injection of Fc-HP°/HD/GOx hydrogel with single-syringe injectability, shear-thinning feature, and self-healing capability offered a slow biodegradation rate and high safety profiles. Peritumorally injected Fc-HP°/HD/GOx hydrogel also efficiently suppressed the growth of breast cancer based on multifunctional therapeutic approaches with reduced dosing frequency. Hyperthermia induced by near-infrared (NIR) laser absorption may amplify the therapeutic effects of free radicals. It is expected that this Fc-HP°/HD/GOx hydrogel system can be applied to local cancer therapy with high efficacy and safety profiles.


Assuntos
Neoplasias da Mama , Hipertermia Induzida , Neoplasias , Ácidos Borônicos , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Dopamina/uso terapêutico , Ésteres/uso terapêutico , Feminino , Compostos Ferrosos , Glucose/metabolismo , Glucose Oxidase/química , Glucose Oxidase/uso terapêutico , Humanos , Ácido Hialurônico/química , Hidrogéis/química , Peróxido de Hidrogênio/metabolismo , Radical Hidroxila/uso terapêutico , Metalocenos/uso terapêutico , Neoplasias/tratamento farmacológico
9.
Small ; 18(21): e2107714, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35487761

RESUMO

Silk fibroin (SF) is a promising biomaterial for tendon repair, but its relatively rigid mechanical properties and low cell affinity have limited its application in regenerative medicine. Meanwhile, gelatin-based polymers have advantages in cell attachment and tissue remodeling but have insufficient mechanical strength to regenerate tough tissue such as tendons. Taking these aspects into account, in this study, gelatin methacryloyl (GelMA) is combined with SF to create a mechanically strong and bioactive nanofibrous scaffold (SG). The mechanical properties of SG nanofibers can be flexibly modulated by varying the ratio of SF and GelMA. Compared to SF nanofibers, mesenchymal stem cells (MSCs) seeded on SG fibers with optimal composition (SG7) exhibit enhanced growth, proliferation, vascular endothelial growth factor production, and tenogenic gene expression behavior. Conditioned media from MSCs cultured on SG7 scaffolds can greatly promote the migration and proliferation of tenocytes. Histological analysis and tenogenesis-related immunofluorescence staining indicate SG7 scaffolds demonstrate enhanced in vivo tendon tissue regeneration compared to other groups. Therefore, rational combinations of SF and GelMA hybrid nanofibers may help to improve therapeutic outcomes and address the challenges of tissue-engineered scaffolds for tendon regeneration.


Assuntos
Fibroínas , Células-Tronco Mesenquimais , Nanofibras , Proliferação de Células , Gelatina , Células-Tronco Mesenquimais/metabolismo , Metacrilatos , Seda , Tendões , Engenharia Tecidual , Alicerces Teciduais , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Nanoscale ; 14(2): 350-360, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34908077

RESUMO

Injectable shear-thinning biomaterials (STBs) have attracted significant attention because of their efficient and localized delivery of cells as well as various molecules ranging from growth factors to drugs. Recently, electrostatic interaction-based STBs, including gelatin/LAPONITE® nanocomposites, have been developed through a simple assembly process and show outstanding shear-thinning properties and injectability. However, the ability of different compositions of gelatin and LAPONITE® to modulate doxorubicin (DOX) delivery at different pH values to enhance the effectiveness of topical skin cancer treatment is still unclear. Here, we fabricated injectable STBs using gelatin and LAPONITE® to investigate the influence of LAPONITE®/gelatin ratio on mechanical characteristics, capacity for DOX release in response to different pH values, and cytotoxicity toward malignant melanoma. The release profile analysis of various compositions of DOX-loaded STBs under different pH conditions revealed that lower amounts of LAPONITE® (6NC25) led to higher pH-responsiveness capable of achieving a localized, controlled, and sustained release of DOX in an acidic tumor microenvironment. Moreover, we showed that 6NC25 had a lower storage modulus and required lower injection forces compared to those with higher LAPONITE® ratios. Furthermore, DOX delivery analysis in vitro and in vivo demonstrated that DOX-loaded 6NC25 could efficiently target subcutaneous malignant tumors via DOX-induced cell death and growth restriction.


Assuntos
Melanoma , Nanopartículas , Materiais Biocompatíveis , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Gelatina , Humanos , Concentração de Íons de Hidrogênio , Melanoma/tratamento farmacológico , Microambiente Tumoral
11.
Vet Sci ; 8(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34941834

RESUMO

A 6-year-old female Maltese dog presented with a cervical mass without pain. The tumor was surrounded by a thick fibrous tissue and consisted of an osteoid matrix with osteoblasts and two distinct areas: a mesenchymal cell-rich lesion with numerous multinucleated giant cells and a chondroid matrix-rich lesion. The tumor cells exhibited heterogeneous protein expression, including a positive expression of vimentin, cytokeratin, RANKL, CRLR, SOX9, and collagen 2, and was diagnosed as extraskeletal osteosarcoma. Despite its malignancy, the dog showed no sign of recurrence or metastasis three months after the resection. Further analysis of the tumor cells revealed a high expression of proliferation- and metastasis-related biomarkers in the absence of angiogenesis-related biomarkers, suggesting that the lack of angiogenesis and the elevated tumor-associated fibrosis resulted in a hypoxic tumor microenvironment and prevented metastasis.

12.
Carbohydr Polym ; 266: 118104, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34044922

RESUMO

Polypseudorotaxane structure and polydopamine bond-based crosslinked hyaluronic acid (HA) hydrogels including donepezil-loaded microspheres were developed for subcutaneous injection. Both dopamine and polyethylene glycol (PEG) were covalently bonded to the HA polymer for catechol polymerization and inclusion complexation with alpha-cyclodextrin (α-CD), respectively. A PEG chain of HA-dopamine-PEG (HD-PEG) conjugate was threaded with α-CD to make a polypseudorotaxane structure and its pH was adjusted to 8.5 for dopamine polymerization. Poly(lactic-co-glycolic acid) (PLGA)/donepezil microsphere (PDM) was embedded into the HD-PEG network for its sustained release. The HD-PEG/α-CD/PDM 8.5 hydrogel system exhibited an immediate gelation pattern, injectability through single syringe, self-healing ability, and shear-thinning behavior. Donepezil was released from the HD-PEG/α-CD/PDM 8.5 hydrogel in a sustained pattern. Following subcutaneous injection, the weight of excised HD-PEG/α-CD/PDM 8.5 hydrogel was higher than the other groups on day 14. These findings support the clinical feasibility of the HD-PEG/α-CD/PDM 8.5 hydrogel for subcutaneous injection.


Assuntos
Portadores de Fármacos/química , Ácido Hialurônico/análogos & derivados , Hidrogéis/química , Indóis/química , Polímeros/química , Animais , Plásticos Biodegradáveis/síntese química , Plásticos Biodegradáveis/química , Plásticos Biodegradáveis/toxicidade , Ciclodextrinas/síntese química , Ciclodextrinas/química , Ciclodextrinas/toxicidade , Donepezila/química , Portadores de Fármacos/síntese química , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Ácido Hialurônico/toxicidade , Hidrogéis/síntese química , Hidrogéis/toxicidade , Indóis/síntese química , Indóis/toxicidade , Masculino , Camundongos Endogâmicos ICR , Microesferas , Poloxâmero/síntese química , Poloxâmero/química , Poloxâmero/toxicidade , Polímeros/síntese química , Polímeros/toxicidade , Rotaxanos/síntese química , Rotaxanos/química , Rotaxanos/toxicidade , Substâncias Viscoelásticas/síntese química , Substâncias Viscoelásticas/química , Substâncias Viscoelásticas/toxicidade
13.
ACS Appl Mater Interfaces ; 13(2): 2189-2203, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33416318

RESUMO

Elaborately and serially pH-modulated hydrogels possessing optimized viscoelastic natures for short gelation time and single syringe injection were designed for peritumoral injection of an anticancer agent. Boronate ester bonds between phenylboronic acid (PBA) (installed in HA-PBA (HP)) and dopamine (included in HA-dopamine (HD)) along with self-polymerization of dopamine (via interactions between HD conjugates) were introduced as the main cross-linking strategies of a hyaluronic acid (HA) hydrogel. Considering pKa values (8.0-9.5) of PBA and dopamine, the pH of each polymer dispersion was controlled elaborately for injection through a single syringe, and the final pH was tuned nearby the physiological pH (pH 7.8). The shear-thinning behavior, self-healing property, and single syringe injectability of a designed hydrogel cross-linked nearby physiological pH may provide its convenient application to peritumoral injection and prolonged retention in local cancer therapy. Erlotinib (ERT) was encapsulated in a microsphere (MS), and it was further embedded in an HP/HD-based hydrogel for sustained and locoregional delivery. A rheologically tuned hydrogel containing an ERT MS exhibited superior tumor-suppressive efficiencies compared to the other groups in A549 tumor-bearing mice. A designed injectable hydrogel through a single syringe system may be efficiently applied to local cancer therapy with lower toxicities to healthy organs.


Assuntos
Antineoplásicos/administração & dosagem , Boratos/química , Preparações de Ação Retardada/química , Cloridrato de Erlotinib/administração & dosagem , Hidrogéis/química , Células A549 , Animais , Antineoplásicos/uso terapêutico , Cloridrato de Erlotinib/uso terapêutico , Esterificação , Humanos , Concentração de Íons de Hidrogênio , Injeções , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos ICR
14.
Small ; 17(7): e2004282, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33502118

RESUMO

Cancer immunotherapies, including immune checkpoint inhibitor (ICI)-based therapies, have revolutionized cancer treatment. However, patient response to ICIs is highly variable, necessitating the development of methods to quickly assess efficacy. In this study, an array of miniaturized bioreactors has been developed to model tumor-immune interactions. This immunotherapeutic high-throughput observation chamber (iHOC) is designed to test the effect of anti-PD-1 antibodies on cancer spheroid (MDA-MB-231, PD-L1+) and T cell (Jurkat) interactions. This system facilitates facile monitoring of T cell inhibition and reactivation using metrics such as tumor infiltration and interleukin-2 (IL-2) secretion. Status of the tumor-immune interactions can be easily captured within the iHOC by measuring IL-2 concentration using a micropillar array where sensitive, quantitative detection is allowed after antibody coating on the surface of array. The iHOC is a platform that can be used to model and monitor cancer-immune interactions in response to immunotherapy in a high-throughput manner.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Imunoterapia , Dispositivos Lab-On-A-Chip , Neoplasias/tratamento farmacológico
15.
Nanoscale ; 12(32): 16724-16729, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32785381

RESUMO

The skin houses a developed vascular and lymphatic network with a significant population of immune cells. Because of the properties of the skin, nucleic acid delivery through the tissue has the potential to treat a range of pathologies, including genetic skin conditions, hyperproliferative diseases, cutaneous cancers, wounds, and infections. This work presents a gelatin methacryloyl (GelMA) microneedle (MN)-based platform for local and controlled transdermal delivery of plasmid DNA (pDNA) with high transfection efficiency both in vitro and in vivo. Intracellular delivery of the nucleic acid cargo is enabled by poly(ß-amino ester) (PBAE) nanoparticles (NPs). After being embedded in the GelMA MNs, sustained release of DNA-encapsulated PBAE NPs is achieved and the release profiles can be controlled by adjusting the degree of crosslinking of the GelMA hydrogel. These results highlight the advantages and potential of using PBAE/DNA NP-embedded GelMA MN patches (MN/PBAE/DNA) for successful transdermal delivery of pDNA for tissue regeneration and cancer therapy.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Administração Cutânea , Terapia Genética , Transfecção
16.
Sci Adv ; 6(21): eaaz5913, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32494742

RESUMO

Despite great progress in biomaterial design strategies for replacing damaged articular cartilage, prevention of stem cell-derived chondrocyte hypertrophy and resulting inferior tissue formation is still a critical challenge. Here, by using engineered biomaterials and a high-throughput system for screening of combinatorial cues in cartilage microenvironments, we demonstrate that biomaterial cross-linking density that regulates matrix degradation and stiffness-together with defined presentation of growth factors, mechanical stimulation, and arginine-glycine-aspartic acid (RGD) peptides-can guide human mesenchymal stem cell (hMSC) differentiation into articular or hypertrophic cartilage phenotypes. Faster-degrading, soft matrices promoted articular cartilage tissue formation of hMSCs by inducing their proliferation and maturation, while slower-degrading, stiff matrices promoted cells to differentiate into hypertrophic chondrocytes through Yes-associated protein (YAP)-dependent mechanotransduction. in vitro and in vivo chondrogenesis studies also suggest that down-regulation of the Wingless and INT-1 (WNT) signaling pathway is required for better quality articular cartilage-like tissue production.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Materiais Biocompatíveis/metabolismo , Cartilagem Articular/metabolismo , Diferenciação Celular , Mecanotransdução Celular/fisiologia , Células-Tronco Mesenquimais/metabolismo , Fenótipo , Células-Tronco , Engenharia Tecidual/métodos
17.
Adv Healthc Mater ; 9(11): e2000527, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32364331

RESUMO

Transdermal delivery of water-insoluble drugs via hydrogel-based microneedle (MN) arrays is crucial for improving their therapeutic efficacies. However, direct loading of water-insoluble drug into hydrophilic matrices remains challenging. Here, a biodegradable MN array patch that is fabricated from naturally derived polymer conjugates of gelatin methacryloyl and ß-cyclodextrin (GelMA-ß-CD) is reported. When curcumin, an unstable and water-insoluble anticancer drug, is loaded as a model drug, its stability and solubility are improved due to the formation of an inclusion complex. The polymer-drug complex GelMA-ß-CD/CUR can be formulated into MN arrays with sufficient mechanical strength for skin penetration and tunable drug release profile. Anticancer efficacy of released curcumin is observed in three-dimensional B16F10 melanoma models. The GelMA-ß-CD/CUR MN exhibits relatively higher therapeutic efficacy through more localized and deeper penetrated manner compared with a control nontransdermal patch. In vivo studies also verify biocompatibility and degradability of the GelMA-ß-CD MN arrays patch.


Assuntos
Gelatina , beta-Ciclodextrinas , Administração Cutânea , Sistemas de Liberação de Medicamentos , Agulhas , Água
18.
Small ; 16(25): e2001837, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32419312

RESUMO

Stem cells secrete trophic factors that induce angiogenesis. These soluble factors are promising candidates for stem cell-based therapies, especially for cardiovascular diseases. Mechanical stimuli and biophysical factors presented in the stem cell microenvironment play important roles in guiding their behaviors. However, the complex interplay and precise role of these cues in directing pro-angiogenic signaling remain unclear. Here, a platform is designed using gelatin methacryloyl hydrogels with tunable rigidity and a dynamic mechanical compression bioreactor to evaluate the influence of matrix rigidity and mechanical stimuli on the secretion of pro-angiogenic factors from human mesenchymal stem cells (hMSCs). Cells cultured in matrices mimicking mechanical elasticity of bone tissues in vivo show elevated secretion of vascular endothelial growth factor (VEGF), one of representative signaling proteins promoting angiogenesis, as well as increased vascularization of human umbilical vein endothelial cells (HUVECs) with a supplement of conditioned media from hMSCs cultured across different conditions. When hMSCs are cultured in matrices stimulated with a range of cyclic compressions, increased VEGF secretion is observed with increasing mechanical strains, which is also in line with the enhanced tubulogenesis of HUVECs. Moreover, it is demonstrated that matrix stiffness and cyclic compression modulate secretion of pro-angiogenic molecules from hMSCs through yes-associated protein activity.


Assuntos
Células-Tronco Mesenquimais , Células Cultivadas , Sinais (Psicologia) , Meios de Cultivo Condicionados , Células Endoteliais da Veia Umbilical Humana , Humanos , Neovascularização Fisiológica , Fator A de Crescimento do Endotélio Vascular
19.
Adv Healthc Mater ; 8(24): e1901379, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31746151

RESUMO

The liver has a complex and unique microenvironment with multiple cell-cell interactions and internal vascular networks. Although nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease with multiple phases, no proper model could fully recapitulate the in vivo microenvironment to understand NAFLD progression. Here, an in vitro human liver model of NAFLD by coculturing human hepatocytes, umbilical vein endothelial cells (HUVECs), and Kupffer cells (KCs) into spheroids is presented. Analysis of indirect cross-talk using conditioned media between steatotic spheroids-composed of hepatocellular carcinoma-derived cells (HepG2) and HUVECs-and mouse KCs reveals that the latter can be activated showing increased cell area, elevated production of reactive oxygen species (ROS), and proinflammatory cytokines. Spheroids incorporating human KCs (HKCs) can also be induced into steatotic stage by supplementing fat. Steatotic spheroids with/without HKCs show different levels of steatotic stages through lipid accumulation and ROS production. Steatotic spheroids made from an immortalized hepatic progenitor cell line (HepaRG) compared to those made from HepG2 cells display similar trends of functionality, but elevated levels of proinflammatory cytokines, and improved reversibility of steatosis. The in vitro human liver system proposed makes strides in developing a model to mimic and monitor the progression of NAFLD.


Assuntos
Células Endoteliais/citologia , Hepatócitos/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células de Kupffer/citologia , Hepatopatia Gordurosa não Alcoólica/patologia , Meios de Cultivo Condicionados/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Células de Kupffer/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA