RESUMO
BACKGROUND: Peroxiredoxins (Prxs) are antioxidant enzymes that protect cells from oxidative stress induced by several factors. They regulate several signaling pathways, such as metabolism, immune response, and intracellular reactive oxygen species (ROS) homeostasis. Epithelial-mesenchymal transition (EMT) is a transforming process that induces the loss of epithelial features of cancer cells and the gain of the mesenchymal phenotype. The EMT promotes metastasis and cancer cell progression mediated by several pathways, such as mitogen-activated protein kinases (MAPKs) and epigenetic regulators. METHODS: We used Prx6 overexpressed and downregulated HCT116 cells to study the mechanism between Prx6 and colon cancer. The expression of Prx6, GAPDH, Snail, Twist1, E-cadherin, Vimentin, N-cadherin, ERK, p-ERK, p38, p-p38, JNK, and p-JNK were detected by Western blotting. Additionally, an animal study for xenograft assay was conducted to explore the function of Prx6 on tumorigenesis. Cell proliferation and migration were determined by IncuCyte Cell Proliferation and colony formation assays. RESULTS: We confirmed that the expression of Prx6 and EMT signaling highly occurs in HCT116 compared with that in other colon cancer cell lines. Prx6 regulates the EMT signaling pathway by modulating EMT-related transcriptional repressors and mesenchymal genes in HCT116 colon cancer cells. Under the Prx6-overexpressed condition, HCT116 cells proliferation increased significantly. Moreover, the HCT116 cells proliferation decreased in the siPrx6-treated cells. Eleven days after HCT116 cell injection, Prx6 was overexpressed in the HCT116-injected mice, and the tumor volume increased significantly compared with that of the control mice. Furthermore, Prx6 regulates EMT signaling through p38 phosphorylation in colon cancer cells. CONCLUSION: We suggested that Prx6 regulates EMT signaling pathway through p38 phosphorylation modulation in HCT116 colon cancer cells.
RESUMO
Efficacious and accessible sources of natural killer (NK) cells would widen their use as immunotherapeutics, particularly for solid cancers. Here, we show that human somatic cells can be directly reprogrammed into NK cells with a CD56brightCD16bright phenotype using pluripotency transcription factors and an optimized reprogramming medium. The directly reprogrammed NK cells have strong innate-adaptive immunomodulatory activity and are highly potent against a wide range of cancer cells, including difficult-to-treat solid cancers and cancer stem cells. Both directly reprogrammed NK cells bearing a cancer-specific chimeric antigen receptor and reprogrammed NK cells in combination with antibodies competent for antibody-dependent cell-mediated cytotoxicity led to selective anticancer effects with augmented potency. The direct reprogramming of human somatic cells into NK cells is amenable to the production of autologous and allogeneic NK cells, and will facilitate the design and testing of cancer immunotherapies and combination therapies.
Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia , Células Matadoras Naturais , Neoplasias/terapiaRESUMO
Although comparative genome-wide transcriptomic analysis has provided insight into the biology of human induced pluripotent stem cell-derived mesenchymal stem cells (iMSCs), the distinct alternative splicing (AS) signatures of iMSCs remain elusive. Here, we performed Illumina RNA sequencing analysis to characterize AS events in iMSCs compared with tissue-derived MSCs. A total of 4586 differentially expressed genes (|FC| > 2) were identified between iMSCs and umbilical cord blood-derived MSCs (UCB-MSCs), including 2169 upregulated and 2417 downregulated genes. Of these, 164 differentially spliced events (BF > 20) in 112 genes were identified between iMSCs and UCB-MSCs. The predominant type of AS found in iMSCs was skipped exons (43.3%), followed by retained introns (19.5%), alternative 3' (15.2%) and 5' (12.8%) splice sites, and mutually exclusive exons (9.1%). Functional enrichment analysis showed that the differentially spliced genes (|FC| > 2 and BF > 20) were mainly enriched in functions associated with focal adhesion, extracellular exosomes, extracellular matrix organization, cell adhesion, and actin binding. Splice isoforms of selected genes including TRPT1, CNN2, and AP1G2, identified in sashimi plots, were further validated by RT-PCR analysis. This study provides valuable insight into the biology of iMSCs and the translation of mechanistic understanding of iMSCs into therapeutic applications.
Assuntos
Processamento Alternativo/genética , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Mesenquimais/fisiologia , Células Cultivadas , Regulação para Baixo/genética , Exossomos/genética , Matriz Extracelular/genética , Adesões Focais/genética , Expressão Gênica/genética , Humanos , Transcriptoma/genética , Regulação para Cima/genéticaRESUMO
BACKGROUND: Schwann cells (SCs) are primarily responsible for regeneration and repair of the peripheral nervous system (PNS). Renewable and lineage-restricted SC precursors (SCPs) are considered highly desirable and promising cell sources for the production of SCs and for studies of SC lineage development, but SCPs are extremely limited. Here, we present a novel direct conversion strategy for the generation of human SCPs, capable of differentiating into functional SCs. METHODS: Easily accessible human skin fibroblast cells were directly induced into integration-free SCPs using episomal vectors (Oct3/4, Klf4, Sox2, L-Myc, Lin28 and p53 shRNA) under SCP lineage-specific chemically defined medium conditions. Induced SCPs (iSCPs) were further examined for their ability to differentiate into SCs. The identification and functionality of iSCPs and iSCP-differentiated SCs (iSCs) were confirmed according to morphology, lineage-specific markers, neurotropic factor secretion, and/or standard functional assays. RESULTS: Highly pure, Sox 10-positive of iSCPs (more than 95% purity) were generated from human skin fibroblasts within 3 weeks. Established iSCPs could be propagated in vitro while maintaining their SCP identity. Within 1 week, iSCPs could efficiently differentiate into SCs (more than 95% purity). The iSCs were capable of secreting various neurotrophic factors such as GDNF, NGF, BDNF, and NT-3. The in vitro myelinogenic potential of iSCs was assessed by myelinating cocultures using mouse dorsal root ganglion (DRG) neurons or human induced pluripotent stem cell (iPSC)-derived sensory neurons (HSNs). Furthermore, iSC transplantation promoted sciatic nerve repair and improved behavioral recovery in a mouse model of sciatic nerve crush injury in vivo. CONCLUSIONS: We report a robust method for the generation of human iSCPs/iSCs that might serve as a promising cellular source for various regenerative biomedical research and applications, such as cell therapy and drug discovery, especially for the treatment of PNS injury and disorders.
Assuntos
Células-Tronco Pluripotentes Induzidas , Traumatismos dos Nervos Periféricos , Animais , Diferenciação Celular , Células Cultivadas , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Regeneração Nervosa , Células de Schwann , Nervo IsquiáticoRESUMO
In CRISPR genome editing, CRISPR proteins form ribonucleoprotein complexes with guide RNAs to bind and cleave the target DNAs with complete sequence complementarity. CRISPR genome editing has a high potential for use in precision gene therapy for various diseases, including cancer and genetic disorders, which are caused by DNA mutations within the genome. However, several studies have shown that targeting the DNA via sequence complementarity is imperfect and subject to unintended genome editing of other genomic loci with similar sequences. These off-target problems pose critical safety issues in the therapeutic applications of CRISPR technology, with particular concerns in terms of the genome editing of pathogenic point mutations, where non-mutant alleles can become an off-target with only a one-base difference. In this study, we sought to assess a novel CRISPR genome editing technique that has been proposed to achieve a high specificity by positioning the mismatches within the protospacer adjacent motif (PAM) sequence. To this end, we compared the genome editing specificities of the PAM-based and conventional methods on an oncogenic single-base mutation in the endothelial growth factor receptor (EGFR). The results indicated that the PAM-based method provided a significantly increased genome editing specificity for pathogenic mutant alleles with single-base precision.
Assuntos
Edição de Genes/métodos , Mutação Puntual , Sistemas CRISPR-Cas , DNA Complementar/genética , DNA Intergênico/genética , Receptores ErbB/genética , HumanosRESUMO
Testis-specific protein, Y-encoded like (TSPYL) family proteins (TSPYL1-6), which are members of the nucleosome assembly protein superfamily, have been determined to be involved in the regulation of various cellular functions. However, the potential role of TSPYL family proteins in endothelial cells (ECs) has not been determined. Here, we demonstrated that the expression of TSPYL5 is highly enriched in human ECs such as human umbilical vein endothelial cells (HUVECs) and human pluripotent stem cell-differentiated ECs (hPSC-ECs). Importantly, TSPYL5 overexpression was shown to promote EC proliferation and functions, such as migration and tube formation, by downregulating p53 expression. Adriamycin-induced senescence was markedly blocked by TSPYL5 overexpression. In addition, the TSPYL5 depletion-mediated loss of EC functions was blocked by p53 inhibition. Significantly, TSPYL5 overexpression promoted angiogenesis in Matrigel plug and wound repair in a mouse skin wound healing model in vivo. Our results suggest that TSPYL5, a novel angiogenic regulator, plays a key role in maintaining endothelial integrity and function. These findings extend the understanding of TSPYL5-dependent mechanisms underlying the regulation of p53-related functions in ECs.
Assuntos
Células Endoteliais da Veia Umbilical Humana/fisiologia , Neovascularização Fisiológica/genética , Proteínas Nucleares/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Animais , Movimento Celular/genética , Proliferação de Células/genética , Células Cultivadas , Regulação para Baixo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos Transgênicos , Proteína Supressora de Tumor p53/metabolismoRESUMO
The importance of alternative splicing (AS) events in pluripotency regulation has been highlighted by the determination of different roles and contributions of different splice isoforms of pluripotency-related genes and by the identification of distinct pluripotency-related splicing factors. In particular, epithelial splicing regulatory protein 1 (ESRP1) has been characterized as an essential splicing factor required for the regulation of human pluripotency and differentiation. Nevertheless, a detailed molecular characterization of ESRP1 (mRNA splice variants 1-6) in human pluripotency is lacking. In this study, we determined that ESRP1 splice variants are differentially expressed in undifferentiated and differentiated human pluripotent stem cells (PSCs). Undifferentiated human PSCs predominantly expressed the ESRP1 v1, v4, and v5, and their expression was downregulated upon differentiation. Ectopic expression of ESRP1 v1, v4, or v5 enhanced the pluripotent reprogramming of human fibroblasts and restored the ESRP1 knockdown-mediated reduction of reprogramming efficiency. Notably, undifferentiated human PSCs expressed the cell surface protein CD44 variant 3 (CD44 v3), and isoform switching from CD44 v3 to CD44 variant 6 (CD44 v6) occurred upon differentiation. Importantly, the human PSC-specific ESRP1 variants influenced CD44 v3 expression. CD44 knockdown or inhibition of binding of CD44 with its major ligand, hyaluronan, significantly induced the loss of human PSC pluripotency and the reduction of reprogramming efficiency. Our results demonstrate that the effect of ESRP1 and CD44 on human PSC pluripotency is isoform-dependent and that ESRP1-induced CD44 v3 is functionally associated with human PSC pluripotency control. Stem Cells 2018;36:1525-1534.
Assuntos
Receptores de Hialuronatos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Proteínas de Ligação a RNA/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , HumanosRESUMO
Spliceosomes are the core host of pre-mRNA splicing, allowing multiple protein isoforms to be produced from a single gene. Herein, we reveal that spliceosomes are more abundant in human pluripotent stem cells (hPSs), including human embryonic stem cells (hESs) and human induced pluripotent stem cells (hiPSs), than non-hPSs, and their presence is associated with high transcriptional activity. Supportively, spliceosomal components involved in the catalytically active pre-mRNA splicing step were mainly co-localized with hPS spliceosomes. By profiling the gene expression of 342 selected splicing factors, we found that 71 genes were significantly altered during the reprogramming of human somatic cells into hiPSs. Among them, SNRPA1, SNRPD1, and PNN were significantly up-regulated during the early stage of reprogramming, identified as hub genes by interaction network and cluster analysis. SNRPA1, SNRPD1, or PNN depletion led to a pronounced loss of pluripotency and significantly blocked hiPS generation. SNRPA1, SNRPD1, and PNN co-localized with the hPS spliceosomes, physically interacted with each other, and positively influenced the appearance of hPS spliceosomes. Our data suggest that SNRPA1, SNRPD1, and PNN are key players in the regulation of pluripotency-specific spliceosome assembly and the acquisition and maintenance of pluripotency.
Assuntos
Moléculas de Adesão Celular/genética , Proteínas Nucleares/genética , Células-Tronco Pluripotentes/fisiologia , Splicing de RNA/genética , Ribonucleoproteína Nuclear Pequena U1/genética , Spliceossomos/genética , Proteínas Centrais de snRNP/genética , Linhagem Celular , Humanos , RNA Nuclear Pequeno/genética , Spliceossomos/metabolismo , TranscriptomaRESUMO
This study was designed to determine whether early gabapentin treatment has a protective analgesic effect on neuropathic pain and compared its effect to the late treatment in a rat neuropathic model, and as the potential mechanism of protective action, the alpha(2)delta(1)-subunit of the voltage-dependent calcium channel (alpha(2)delta(1)-subunit) was evaluated in both sides of the L5 dorsal root ganglia (DRG). Neuropathic pain was induced in male Sprague-Dawley rats by a surgical ligation of left L5 nerve. For the early treatment group, rats were injected with gabapentin (100 mg/kg) intraperitoneally 15 min prior to surgery and then every 24 hr during postoperative day (POD) 1-4. For the late treatment group, the same dose of gabapentin was injected every 24 hr during POD 8-12. For the control group, L5 nerve was ligated but no gabapentin was administered. In the early treatment group, the development of allodynia was delayed up to POD 10, whereas allodynia was developed on POD 2 in the control and the late treatment group (p<0.05). The alpha(2)delta(1)-subunit was up-regulated in all groups, however, there was no difference in the level of the alpha(2)delta(1)-subunit among the three groups. These results suggest that early treatment with gabapentin offers some protection against neuropathic pain but it is unlikely that this action is mediated through modulation of the alpha(2)delta(1)-subunit in DRG.