Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Neuroinflammation ; 18(1): 157, 2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34273979

RESUMO

BACKGROUND: Repetitive mild traumatic brain injury (mTBI) can result in chronic visual dysfunction. G-protein receptor 110 (GPR110, ADGRF1) is the target receptor of N-docosahexaenoylethanolamine (synaptamide) mediating the anti-neuroinflammatory function of synaptamide. In this study, we evaluated the effect of an endogenous and a synthetic ligand of GPR110, synaptamide and (4Z,7Z,10Z,13Z,16Z,19Z)-N-(2-hydroxy-2-methylpropyl) docosa-4,7,10,13,16,19-hexaenamide (dimethylsynaptamide, A8), on the mTBI-induced long-term optic tract histopathology and visual dysfunction using Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA), a clinically relevant model of mTBI. METHODS: The brain injury in wild-type (WT) and GPR110 knockout (KO) mice was induced by CHIMERA applied daily for 3 days, and GPR110 ligands were intraperitoneally injected immediately following each impact. The expression of GPR110 and proinflammatory mediator tumor necrosis factor (TNF) in the brain was measured by using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) in an acute phase. Chronic inflammatory responses in the optic tract and visual dysfunction were assessed by immunostaining for Iba-1 and GFAP and visual evoked potential (VEP), respectively. The effect of GPR110 ligands in vitro was evaluated by the cyclic adenosine monophosphate (cAMP) production in primary microglia isolated from adult WT or KO mouse brains. RESULTS: CHIMERA injury acutely upregulated the GPR110 and TNF gene level in mouse brain. Repetitive CHIMERA (rCHIMERA) increased the GFAP and Iba-1 immunostaining of glia cells and silver staining of degenerating axons in the optic tract with significant reduction of N1 amplitude of visual evoked potential at up to 3.5 months after injury. Both GPR110 ligands dose- and GPR110-dependently increased cAMP in cultured primary microglia with A8, a ligand with improved stability, being more effective than synaptamide. Intraperitoneal injection of A8 at 1 mg/kg or synaptamide at 5 mg/kg significantly reduced the acute expression of TNF mRNA in the brain and ameliorated chronic optic tract microgliosis, astrogliosis, and axonal degeneration as well as visual deficit caused by injury in WT but not in GPR110 KO mice. CONCLUSION: Our data demonstrate that ligand-induced activation of the GPR110/cAMP system upregulated after injury ameliorates the long-term optic tract histopathology and visual impairment caused by rCHIMERA. Based on the anti-inflammatory nature of GPR110 activation, we suggest that GPR110 ligands may have therapeutic potential for chronic visual dysfunction associated with mTBI.


Assuntos
Concussão Encefálica/complicações , Etanolaminas/metabolismo , Etanolaminas/farmacologia , Gliose/tratamento farmacológico , Gliose/metabolismo , Trato Óptico/efeitos dos fármacos , Trato Óptico/patologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Concussão Encefálica/patologia , Técnicas de Cultura de Células , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Eletrorretinografia , Potenciais Evocados Visuais , Gliose/complicações , Inflamação , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Trato Óptico/lesões , Fator de Necrose Tumoral alfa/metabolismo , Visão Ocular
2.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233525

RESUMO

We investigated the synthesis of N-docosahexaenoylethanolamine (synaptamide) in neuronal cells from unesterified docosahexaenoic acid (DHA) or DHA-lysophosphatidylcholine (DHA-lysoPC), the two major lipid forms that deliver DHA to the brain, in order to understand the formation of this neurotrophic and neuroprotective metabolite of DHA in the brain. Both substrates were taken up in Neuro2A cells and metabolized to N-docosahexaenoylphosphatidylethanolamine (NDoPE) and synaptamide in a time- and concentration-dependent manner, but unesterified DHA was 1.5 to 2.4 times more effective than DHA-lysoPC at equimolar concentrations. The plasmalogen NDoPE (pNDoPE) amounted more than 80% of NDoPE produced from DHA or DHA-lysoPC, with 16-carbon-pNDoPE being the most abundant species. Inhibition of N-acylphosphatidylethanolamine-phospholipase D (NAPE-PLD) by hexachlorophene or bithionol significantly decreased the synaptamide production, indicating that synaptamide synthesis is mediated at least in part via NDoPE hydrolysis. NDoPE formation occurred much more rapidly than synaptamide production, indicating a precursor-product relationship. Although NDoPE is an intermediate for synaptamide biosynthesis, only about 1% of newly synthesized NDoPE was converted to synaptamide, possibly suggesting additional biological function of NDoPE, particularly for pNDoPE, which is the major form of NDoPE produced.


Assuntos
Ácidos Araquidônicos/biossíntese , Ácidos Docosa-Hexaenoicos/metabolismo , Endocanabinoides/biossíntese , Etanolaminas/metabolismo , Lisofosfatidilcolinas/metabolismo , Neurônios/metabolismo , Animais , Ácidos Araquidônicos/antagonistas & inibidores , Ácidos Araquidônicos/isolamento & purificação , Bitionol/farmacologia , Isótopos de Carbono , Linhagem Celular Tumoral , Cromatografia Líquida , Endocanabinoides/antagonistas & inibidores , Endocanabinoides/isolamento & purificação , Etanolaminas/antagonistas & inibidores , Etanolaminas/isolamento & purificação , Hexaclorofeno/farmacologia , Cinética , Camundongos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Plasmalogênios/antagonistas & inibidores , Plasmalogênios/biossíntese , Plasmalogênios/isolamento & purificação , Alcamidas Poli-Insaturadas/antagonistas & inibidores , Alcamidas Poli-Insaturadas/isolamento & purificação , Espectrometria de Massas em Tandem
3.
Commun Biol ; 3(1): 109, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144388

RESUMO

Adhesion G protein-coupled receptors (aGPCR) are characterized by a large extracellular region containing a conserved GPCR-autoproteolysis-inducing (GAIN) domain. Despite their relevance to several disease conditions, we do not understand the molecular mechanism by which aGPCRs are physiologically activated. GPR110 (ADGRF1) was recently deorphanized as the functional receptor of N-docosahexaenoylethanolamine (synaptamide), a potent synaptogenic metabolite of docosahexaenoic acid. Thus far, synaptamide is the first and only small-molecule endogenous ligand of an aGPCR. Here, we demonstrate the molecular basis of synaptamide-induced activation of GPR110 in living cells. Using in-cell chemical cross-linking/mass spectrometry, computational modeling and mutagenesis-assisted functional assays, we discover that synaptamide specifically binds to the interface of GPR110 GAIN subdomains through interactions with residues Q511, N512 and Y513, causing an intracellular conformational change near TM6 that triggers downstream signaling. This ligand-induced GAIN-targeted activation mechanism provides a framework for understanding the physiological function of aGPCRs and therapeutic targeting in the GAIN domain.


Assuntos
Etanolaminas/farmacologia , Proteínas Oncogênicas/agonistas , Receptores Acoplados a Proteínas G/agonistas , Sítios de Ligação , Etanolaminas/metabolismo , Células HEK293 , Humanos , Ligantes , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Mutação , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Ligação Proteica , Domínios Proteicos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade
4.
Ann N Y Acad Sci ; 1456(1): 5-25, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31168816

RESUMO

The adhesion class of G protein-coupled receptors (GPCRs) is the second largest family of GPCRs (33 members in humans). Adhesion GPCRs (aGPCRs) are defined by a large extracellular N-terminal region that is linked to a C-terminal seven transmembrane (7TM) domain via a GPCR-autoproteolysis inducing (GAIN) domain containing a GPCR proteolytic site (GPS). Most aGPCRs undergo autoproteolysis at the GPS motif, but the cleaved fragments stay closely associated, with the N-terminal fragment (NTF) bound to the 7TM of the C-terminal fragment (CTF). The NTFs of most aGPCRs contain domains known to be involved in cell-cell adhesion, while the CTFs are involved in classical G protein signaling, as well as other intracellular signaling. In this workshop report, we review the most recent findings on the biology, signaling mechanisms, and physiological functions of aGPCRs.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Humanos , Receptores Acoplados a Proteínas G/química
5.
Mol Aspects Med ; 64: 34-44, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29572109

RESUMO

N-Docosahexaenoylethanolamine (synaptamide) is an endocannabinoid-like metabolite endogenously synthesized from docosahexaenoic acid (DHA, 22:6n-3), the major omega-3 polyunsaturated fatty acid present in the brain. Although its biosynthetic mechanism has yet to be established, there is a closely linked relationship between the levels of synaptamide and its precursor DHA in the brain. Synaptamide at nanomolar concentrations promotes neurogenesis, neurite outgrowth and synaptogenesis in developing neurons. Synaptamide also attenuates the lipopolysaccharide-induced neuroinflammatory response and reduces the deleterious effects of ethanol on neurogenic differentiation of neural stem cells (NSCs). These actions are mediated by a specific target receptor of synaptamide GPR110 (ADGRF1), a G-protein coupled receptor that is highly expressed in NSCs and the brain during development. Synaptamide binding to GPR110 induces cAMP production and phosphorylation of protein kinase A (PKA) and the cAMP response element binding protein (CREB). This signaling pathway leads to the expression of neurogenic and synaptogenic genes and suppresses the expression of proinflammatory genes. The GPR110-dependent cellular effects of synaptamide are recapitulated in animal models, suggesting that synaptamide-derived mechanisms may have translational implications. The synaptamide bioactivity transmitted by newly deorphanized GPR110 provides a novel target for neurodevelopmental and neuroprotective control as well as new insight into mechanisms for DHA's beneficial effects on the central nervous system.


Assuntos
Encéfalo/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Etanolaminas/metabolismo , Proteínas Oncogênicas/genética , Receptores Acoplados a Proteínas G/genética , Animais , Encéfalo/patologia , Diferenciação Celular/genética , AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Endocanabinoides/genética , Endocanabinoides/metabolismo , Etanolaminas/uso terapêutico , Ácidos Graxos Ômega-3/genética , Ácidos Graxos Ômega-3/metabolismo , Humanos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo
6.
Sci Rep ; 7(1): 11673, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28916818

RESUMO

Akt plays a major role in tumorigenesis and the development of specific Akt inhibitors as effective cancer therapeutics has been challenging. Here, we report the identification of a highly specific allosteric inhibitor of Akt through a FRET-based high-throughput screening, and characterization of its inhibitory mechanism. Out of 373,868 compounds screened, 4-phenylquinolin-2(1H)-one specifically decreased Akt phosphorylation at both T308 and S473, and inhibited Akt kinase activity (IC50 = 6 µM) and downstream signaling. 4-Phenylquinolin-2(1H)-one did not alter the activity of upstream kinases including PI3K, PDK1, and mTORC2 as well as closely related kinases that affect cell proliferation and survival such as SGK1, PKA, PKC, or ERK1/2. This compound inhibited the proliferation of cancer cells but displayed less toxicity compared to inhibitors of PI3K or mTOR. Kinase profiling efforts revealed that 4-phenylquinolin-2(1H)-one does not bind to the kinase active site of over 380 human kinases including Akt. However, 4-phenylquinolin-2(1H)-one interacted with the PH domain of Akt, apparently inducing a conformation that hinders S473 and T308 phosphorylation by mTORC2 and PDK1. In conclusion, we demonstrate that 4-phenylquinolin-2(1H)-one is an exquisitely selective Akt inhibitor with a distinctive molecular mechanism, and a promising lead compound for further optimization toward the development of novel cancer therapeutics.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Quinolonas/farmacologia , Regulação Alostérica , Animais , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/isolamento & purificação , Transferência Ressonante de Energia de Fluorescência , Ensaios de Triagem em Larga Escala , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ligação Proteica , Quinolonas/isolamento & purificação
7.
Neuropharmacology ; 125: 376-385, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28807677

RESUMO

It is increasingly evident that alcohol-induced, gut-mediated peripheral endotoxemia plays a significant role in glial cell activation and neuro-inflammation. Using a mouse model of chronic alcohol feeding, we examined the causal role of endotoxin- and cytokine-responsive Pde4 subfamily b (Pde4b) expression in alcohol-induced neuro-inflammation. Both pharmacologic and genetic approaches were used to determine the regulatory role of Pde4b. In C57Bl/6 wild type (WT) alcohol fed (WT-AF) animals, alcohol significantly induced peripheral endotoxemia and Pde4b expression in brain tissue, accompanied by a decrease in cAMP levels. Further, along with Pde4b, there was a robust activation of astrocytes and microglia accompanied by significant increases in the inflammatory cytokines (Tnfα, Il-1ß, Mcp-1 and Il-17) and the generalized inflammatory marker Cox-2. At the cellular level, alcohol and inflammatory mediators, particularly LPS, Tnfα and Hmgb1 significantly activated microglial cells (Iba-1 expression) and selectively induced Pde4b expression with a minimal to no change in Pde4a and d isoforms. In comparison, the alcohol-induced decrease in brain cAMP levels was completely inhibited in WT mice treated with the Pde4 specific pharmacologic inhibitor rolipram and in Pde4b-/- mice. Moreover, all the observed markers of alcohol-induced brain inflammation were markedly attenuated. Importantly, glial cell activation induced by systemic endotoxemia (LPS administration) was also markedly decreased in Pde4b-/- mice. Taken together, these findings strongly support the notion that Pde4b plays a critical role in coordinating alcohol-induced, peripheral endotoxemia mediated neuro-inflammation and could serve as a significant therapeutic target.


Assuntos
Transtornos Relacionados ao Uso de Álcool/enzimologia , Transtornos Relacionados ao Uso de Álcool/imunologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Inflamação/enzimologia , Transtornos Relacionados ao Uso de Álcool/patologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/enzimologia , Astrócitos/imunologia , Astrócitos/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/imunologia , Encéfalo/patologia , Células Cultivadas , Depressores do Sistema Nervoso Central/administração & dosagem , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Etanol/administração & dosagem , Expressão Gênica/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/enzimologia , Microglia/imunologia , Microglia/patologia , Inibidores da Fosfodiesterase 4/farmacologia , RNA Mensageiro/metabolismo , Rolipram/farmacologia
8.
J Neurotrauma ; 34(14): 2291-2302, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28288551

RESUMO

Repeated mild traumatic brain injury (rmTBI) has been identified by epidemiology as a high-risk factor for dementia at a later stage in life. Animal models to replicate complex features of human rmTBI and/or to evaluate long-term effects on brain function have not been established. In this study, we used a novel closed-head impact model of engineered rotational acceleration (CHIMERA) to investigate the long-term neuropathological and cognitive functional consequences of rmTBI. Adult C57BL/6 male mice were subjected to CHIMERA for 3 consecutive days 24 h apart. Functional outcomes were assessed by the beam walk and Morris water maze tests. Neuropathology was evaluated by immunostaining of glial fibrillary acidic protein (GFAP), amyloid precursor protein (APP), and ionizing calcium-binding adaptor molecule-1 (Iba-1), and by quantitative reverse transcription polymerase chain reaction (qRT-PCR) or Western blotting of GFAP, Iba-1, and tumor necrosis factor (TNF)-α. Repeated CHIMERA (rCHIMERA) resulted in motor deficits at 3 days, and in learning and memory impairments that were sustained up to 6 months post injury. GFAP and TNF-α gene expression was increased within a week, whereas astrogliosis and microgliosis were induced starting from day 1 up to 6.5 months after rCHIMERA with upregulated GFAP and Iba-1 protein levels. rCHIMERA also induced APP deposition from day 1 to day 7, but this diminished by 1 month. In conclusion, rCHIMERA produces long-lasting cognitive impairments with astrogliosis and microgliosis in mice, suggesting that rCHIMERA can be a useful animal model to study the long-term complications, as well as the cellular and molecular mechanisms, of human rmTBI.


Assuntos
Concussão Encefálica , Transtornos Cognitivos/fisiopatologia , Modelos Animais de Doenças , Gliose/metabolismo , Inflamação/metabolismo , Transtornos dos Movimentos/fisiopatologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Comportamento Animal/fisiologia , Concussão Encefálica/complicações , Concussão Encefálica/imunologia , Concussão Encefálica/metabolismo , Concussão Encefálica/fisiopatologia , Proteínas de Ligação ao Cálcio/metabolismo , Transtornos Cognitivos/etiologia , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/etiologia , Inflamação/etiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Transtornos dos Movimentos/etiologia , Fator de Necrose Tumoral alfa/metabolismo
9.
J Neuroinflammation ; 13(1): 284, 2016 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-27809877

RESUMO

BACKGROUND: Brain inflammation has been implicated as a critical mechanism responsible for the progression of neurodegeneration and characterized by glial cell activation accompanied by production of inflammation-related cytokines and chemokines. Growing evidence also suggests that metabolites derived from docosahexaenoic acid (DHA) have anti-inflammatory and pro-resolving effects; however, the possible role of N-docosahexaenoylethanolamine (synaptamide), an endogenous neurogenic and synaptogenic metabolite of DHA, in inflammation, is largely unknown. (The term "synaptamide" instead of "DHEA" was used for N-docosahexaenoylethanolamine since DHEA is a widely used and accepted term for the steroid, dehydroepiandrosterone.) In the present study, we tested this possibility using a lipopolysaccharide (LPS)-induced neuroinflammation model both in vitro and in vivo. METHODS: For in vitro studies, we used P3 primary rat microglia and immortalized murine microglia cells (BV2) to assess synaptamide effects on LPS-induced cytokine/chemokine/iNOS (inducible nitric oxide synthase) expression by quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA). To evaluate in vivo effects, mice were intraperitoneally (i.p.) injected with LPS followed by synaptamide, and expression of proinflammatory mediators was measured by qPCR and western blot analysis. Activation of microglia and astrocyte in the brain was examined by Iba-1 and GFAP immunostaining. RESULTS: Synaptamide significantly reduced LPS-induced production of TNF-α and NO in cultured microglia cells. Synaptamide increased intracellular cAMP levels, phosphorylation of PKA, and phosphorylation of CREB but suppressed LPS-induced nuclear translocation of NF-κB p65. Conversely, adenylyl cyclase or PKA inhibitors abolished the synaptamide effect on p65 translocation as well as TNF-α and iNOS expression. Administration of synaptamide following LPS injection (i.p.) significantly reduced neuroinflammatory responses, such as microglia activation and mRNA expression of inflammatory cytokines, chemokine, and iNOS in the brain. CONCLUSIONS: DHA-derived synaptamide is a potent suppressor of neuroinflammation in an LPS-induced model, by enhancing cAMP/PKA signaling and inhibiting NF-κB activation. The anti-inflammatory capability of synaptamide may provide a new therapeutic avenue to ameliorate the inflammation-associated neurodegenerative conditions.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Endocanabinoides/farmacologia , Microglia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Amidoidrolases/deficiência , Amidoidrolases/genética , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Inibidores Enzimáticos/farmacologia , Ácidos Graxos/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos , Ratos Wistar
10.
Nat Commun ; 7: 13123, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27759003

RESUMO

Docosahexaenoic acid (DHA, 22:6n-3) is an omega-3 fatty acid essential for proper brain development. N-docosahexaenoylethanolamine (synaptamide), an endogenous metabolite of DHA, potently promotes neurogenesis, neuritogenesis and synaptogenesis; however, the underlying molecular mechanism is not known. Here, we demonstrate orphan G-protein coupled receptor 110 (GPR110, ADGRF1) as the synaptamide receptor, mediating synaptamide-induced bioactivity in a cAMP-dependent manner. Mass spectrometry-based proteomic characterization and cellular fluorescence tracing with chemical analogues of synaptamide reveal specific binding of GPR110 to synaptamide, which triggers cAMP production with low nM potency. Disruption of this binding or GPR110 gene knockout abolishes while GPR110 overexpression enhances synaptamide-induced bioactivity. GPR110 is highly expressed in fetal brains but rapidly decreases after birth. GPR110 knockout mice show significant deficits in object recognition and spatial memory. GPR110 deorphanized as a functional synaptamide receptor provides a novel target for neurodevelopmental control and new insight into mechanisms by which DHA promotes brain development and function.


Assuntos
Cognição/fisiologia , Ácidos Docosa-Hexaenoicos/metabolismo , Endocanabinoides/fisiologia , Neurogênese/fisiologia , Proteínas Oncogênicas/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Encéfalo/citologia , Linhagem Celular , AMP Cíclico/metabolismo , Endocanabinoides/metabolismo , Feminino , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , Neurônios/fisiologia , Proteínas Oncogênicas/metabolismo , Cultura Primária de Células , Proteômica/métodos , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Reconhecimento Psicológico/fisiologia , Transdução de Sinais/fisiologia , Memória Espacial/fisiologia
11.
Neuropharmacology ; 102: 174-85, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26586023

RESUMO

Previous studies demonstrated that prenatal exposure to ethanol interferes with embryonic and fetal development, and causes abnormal neurodevelopment. Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid highly enriched in the brain, was shown to be essential for proper brain development and function. Recently, we found that N-docosahexenoyethanolamine (synaptamide), an endogenous metabolite of DHA, is a potent PKA-dependent neurogenic factor for neural stem cell (NSC) differentiation. In this study, we demonstrate that ethanol at pharmacologically relevant concentrations downregulates cAMP signaling in NSC and impairs neurogenic differentiation. In contrast, synaptamide reverses ethanol-impaired NSC neurogenic differentiation through counter-acting on the cAMP production system. NSC exposure to ethanol (25-50 mM) for 4 days dose-dependently decreased the number of Tuj-1 positive neurons and PKA/CREB phosphorylation with a concomitant reduction of cellular cAMP. Ethanol-induced cAMP reduction was accompanied by the inhibition of G-protein activation and expression of adenylyl cyclase (AC) 7 and AC8, as well as PDE4 upregulation. In contrast to ethanol, synaptamide increased cAMP production, GTPγS binding, and expression of AC7 and AC8 isoforms in a cAMP-dependent manner, offsetting the ethanol-induced impairment in neurogenic differentiation. These results indicate that synaptamide can reduce ethanol-induced impairment of neuronal differentiation by counter-affecting shared targets in G-protein coupled receptor (GPCR)/cAMP signaling. The synaptamide-mediated mechanism observed in this study may offer a possible avenue for ameliorating the adverse impact of fetal alcohol exposure on neurodevelopment.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Etanol/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
12.
Int J Biochem Cell Biol ; 64: 195-201, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25912234

RESUMO

Akt is a key mediator of cell proliferation, survival and metabolism. After translocation to the membrane and phosphorylation at T308 and S473, the activated Akt dissociates from the plasma membrane to cytoplasm, which is an important step to phosphorylate its downstream targets. In addition to its central role in regulating the kinase activity, phosphorylation of T308 in the kinase loop has been reported to be necessary for this dissociation process. However, it is not clear whether the membrane detachment requires further mechanisms. In the present report, we demonstrate that membrane dissociation of Akt requires phosphoinositide-dependent protein kinase 1 (PDK1) which directly phosphorylates not only T308 but also T34 in the pleckstrin homology (PH) domain. Like T308, T34 was phosphorylated in a phosphatidylinositol 3,4,5-trisphosphate- and phosphatidylserine-dependent manner. Phosphorylation of T34 also occurred in cells following growth factor stimulation, concurrently with T308 phosphorylation. Moreover, when T34 was mutated to aspartic acid (T34D) to mimic its phosphorylation, Akt-membrane association assessed by surface plasmon resonance spectroscopy was significantly reduced. In cells, this mutation impaired the IGF-induced Akt membrane translocation and subsequent phosphorylation at T308 and S473. Taken together, our results demonstrate that T34 phosphorylation by PDK1 promotes the membrane dissociation of activated Akt for its downstream action through attenuating membrane binding affinity. This membrane dissociation mechanism offers a new insight for Akt activation process and provides a potential new target for controlling the Akt-dependent cellular processes.


Assuntos
Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular Tumoral , Membrana Celular/enzimologia , Camundongos , Fosforilação , Ligação Proteica , Transporte Proteico , Piruvato Desidrogenase Quinase de Transferência de Acetil , Somatomedinas/fisiologia , Treonina/metabolismo
13.
Biochim Biophys Acta ; 1851(4): 356-65, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25093613

RESUMO

Polyunsaturated fatty acids (PUFA) are oxidized by cytochrome P450 epoxygenases to PUFA epoxides which function as potent lipid mediators. The major metabolic pathways of PUFA epoxides are incorporation into phospholipids and hydrolysis to the corresponding PUFA diols by soluble epoxide hydrolase. Inhibitors of soluble epoxide hydrolase stabilize PUFA epoxides and potentiate their functional effects. The epoxyeicosatrienoic acids (EETs) synthesized from arachidonic acid produce vasodilation, stimulate angiogenesis, have anti-inflammatory actions, and protect the heart against ischemia-reperfusion injury. EETs produce these functional effects by activating receptor-mediated signaling pathways and ion channels. The epoxyeicosatetraenoic acids synthesized from eicosapentaenoic acid and epoxydocosapentaenoic acids synthesized from docosahexaenoic acid are potent inhibitors of cardiac arrhythmias. Epoxydocosapentaenoic acids also inhibit angiogenesis, decrease inflammatory and neuropathic pain, and reduce tumor metastasis. These findings indicate that a number of the beneficial functions of PUFA may be due to their conversion to PUFA epoxides. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Compostos de Epóxi/metabolismo , Ácidos Graxos Insaturados/metabolismo , Animais , Ácido Araquidônico/metabolismo , Doença , Homeostase , Humanos , Isoenzimas , Transdução de Sinais
14.
PLoS One ; 8(4): e61430, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23613850

RESUMO

Akt is a critical protein for cell survival and known to interact with various proteins. However, Akt binding partners that modulate or regulate Akt activation have not been fully elucidated. Identification of Akt-interacting proteins has been customarily achieved by co-immunoprecipitation combined with western blot and/or MS analysis. An intrinsic problem of the method is loss of interacting proteins during procedures to remove non-specific proteins. Moreover, antibody contamination often interferes with the detection of less abundant proteins. Here, we developed a novel two-step chemical crosslinking strategy to overcome these problems which resulted in a dramatic improvement in identifying Akt interacting partners. Akt antibody was first immobilized on protein A/G beads using disuccinimidyl suberate and allowed to bind to cellular Akt along with its interacting proteins. Subsequently, dithiobis[succinimidylpropionate], a cleavable crosslinker, was introduced to produce stable complexes between Akt and binding partners prior to the SDS-PAGE and nanoLC-MS/MS analysis. This approach enabled identification of ten Akt partners from cell lysates containing as low as 1.5 mg proteins, including two new potential Akt interacting partners. None of these but one protein was detectable without crosslinking procedures. The present method provides a sensitive and effective tool to probe Akt-interacting proteins. This strategy should also prove useful for other protein interactions, particularly those involving less abundant or weakly associating partners.


Assuntos
Reagentes de Ligações Cruzadas/farmacologia , Imunoprecipitação/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Animais , Western Blotting , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/química , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/química , Somatomedinas/farmacologia
15.
J Neurochem ; 125(6): 869-84, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23570577

RESUMO

Docosahexaenoic acid (DHA) has been shown to promote neuronal differentiation of neural stem cells (NSCs) in vivo and in vitro. Previously, we found that N-docosahexaenoylethanolamine (synaptamide), an endogenous DHA metabolite with an endocannabinoid-like structure, promotes neurite growth, synaptogenesis, and synaptic function. In this study, we demonstrate that synaptamide potently induces neuronal differentiation of NSCs. Differentiating NSCs were capable of synthesizing synaptamide from DHA. Treatment of NSCs with synaptamide at low nanomolar concentrations significantly increased the number of MAP2 and Tuj-1-positive neurons with concomitant induction of protein kinase A (PKA)/cAMP response element binding protein (CREB) phosphorylation. Conversely, PKA inhibitors or PKA knockdown abolished the synaptamide-induced neuronal differentiation of NSCs. URB597, a fatty acid amide hydrolase (FAAH) inhibitor, elevated the level of DHA-derived synaptamide and further potentiated the DHA- or synaptamide-induced neuronal differentiation of NSCs. Similarly, NSCs obtained from FAAH KO mice exhibited greater capacity to induce neuronal differentiation in response to DHA or synaptamide compared to the wild type NSCs. Neither synaptamide nor DHA affected NSC differentiation into GFAP-positive glia cells. These results suggest that endogenously produced synaptamide is a potent mediator for neurogenic differentiation of NSCs acting through PKA/CREB activation.


Assuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Células-Tronco Embrionárias/citologia , Etanolaminas/metabolismo , Células-Tronco Neurais/citologia , Neurônios/citologia , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/genética , Amidoidrolases/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Células-Tronco Embrionárias/metabolismo , Endocanabinoides , Etanolaminas/farmacologia , Camundongos , Camundongos Knockout , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , RNA Interferente Pequeno/genética , Ratos , Ratos Wistar , Transdução de Sinais
16.
ACS Chem Biol ; 7(2): 387-94, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22129086

RESUMO

Although PI3K/Akt signaling that regulates neuronal survival has been implicated in the deleterious effects of ethanol on the central nervous system, underlying molecular mechanisms have not been fully elucidated. Akt-membrane interaction is a prerequisite step for Akt activation since it induces interdomain conformational changes to an open conformer that allows Akt phosphorylation by upstream kinases. In this study, we investigated the effect of ethanol on Akt activation by quantitatively probing Akt conformation using chemical cross-linking, (18)O labeling and mass spectrometry. We found that ethanol at pharmacologically relevant concentrations (20 or 170 mM) directly interacts with Akt and alters the local pleckstrin homology domain configuration near the PIP(3)-binding site. We also found that ethanol significantly impairs subsequent membrane-induced interdomain conformational changes needed for Akt activation. The observed alteration of Akt conformation caused by ethanol during the activation sequence provides a new molecular basis for the effects of ethanol on Akt signaling. The in vitro conformation-based approach employed in this study should also be useful in probing the molecular mechanisms for the action of ethanol or drugs on other signaling proteins, particularly for those undergoing dramatic conformational change during activation processes such as members of AGC kinase super family.


Assuntos
Etanol/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Membrana Celular/metabolismo , Reagentes de Ligações Cruzadas/química , Ativação Enzimática , Humanos , Espectrometria de Massas , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-akt/química , Lipossomas Unilamelares/metabolismo
17.
J Cell Biol ; 192(6): 979-92, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21402788

RESUMO

Akt activation relies on the binding of Akt to phosphatidylinositol-3,4,5-trisphosphate (PIP(3)) in the membrane. Here, we demonstrate that Akt activation requires not only PIP(3) but also membrane phosphatidylserine (PS). The extent of insulin-like growth factor-induced Akt activation and downstream signaling as well as cell survival under serum starvation conditions positively correlates with plasma membrane PS levels in living cells. PS promotes Akt-PIP(3) binding, participates in PIP(3)-induced Akt interdomain conformational changes for T308 phosphorylation, and causes an open conformation that allows for S473 phosphorylation by mTORC2. PS interacts with specific residues in the pleckstrin homology (PH) and regulatory (RD) domains of Akt. Disruption of PS-Akt interaction by mutation impairs Akt signaling and increases susceptibility to cell death. These data identify a critical function of PS for Akt activation and cell survival, particularly in conditions with limited PIP(3) availability. The novel molecular interaction mechanism for Akt activation suggests potential new targets for controlling Akt-dependent cell survival and proliferation.


Assuntos
Inositol 1,4,5-Trifosfato/metabolismo , Fosfatidilserinas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Apoptose/fisiologia , Células CHO , Membrana Celular/química , Sobrevivência Celular , Cricetinae , Cricetulus , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Camundongos , Modelos Moleculares , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-akt/química , Transdução de Sinais/fisiologia
18.
J Clin Invest ; 121(2): 683-94, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21245578

RESUMO

Type 1 or invariant NKT (iNKT) cell agonists, epitomized by α-galactosylceramide, protect against cancer largely by IFN-γ-dependent mechanisms. Here we describe what we believe to be a novel IFN-γ-independent mechanism induced by ß-mannosylceramide, which also defines a potentially new class of iNKT cell agonist, with an unusual ß-linked sugar. Like α-galactosylceramide, ß-mannosylceramide directly activates iNKT cells from both mice and humans. In contrast to α-galactosylceramide, protection by ß-mannosylceramide was completely dependent on NOS and TNF-α, neither of which was required to achieve protection with α-galactosylceramide. Moreover, at doses too low for either alone to protect, ß-mannosylceramide synergized with α-galactosylceramide to protect mice against tumors. These results suggest that treatment with ß-mannosylceramide provides a distinct mechanism of tumor protection that may allow efficacy where other agonists have failed. Furthermore, the ability of ß-mannosylceramide to synergize with α-galactosylceramide suggests treatment with this class of iNKT agonist may provide protection against tumors in humans.


Assuntos
Ceramidas/química , Ceramidas/imunologia , Tolerância Imunológica/imunologia , Células T Matadoras Naturais/imunologia , Neoplasias/imunologia , Animais , Linhagem Celular , Feminino , Galactosilceramidas/química , Galactosilceramidas/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Estrutura Molecular , Células T Matadoras Naturais/citologia , Transplante de Neoplasias
19.
Rapid Commun Mass Spectrom ; 23(13): 1885-91, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19462409

RESUMO

Amide hydrogen exchange coupled to nano-electrospray ionization mass spectrometry (nano-ESI-MS) has been used to identify and characterize localized conformational changes of Akt upon activation. Active or inactive Akt was incubated in D(2)O buffer, digested with pepsin, and analyzed by nano-ESI-MS to determine the deuterium incorporation. The hydrogen/deuterium (H/D) exchange profiles revealed that Akt undergoes considerable conformational changes in the core structures of all three individual domains after activation. In the PH domain, four beta-strand (beta1, beta2 beta5 and beta6) regions containing membrane-binding residues displayed higher solvent accessibility in the inactive state, suggesting that the PH domain is readily available for the binding to the plasma membrane for activation. In contrast, these beta-strands became less exposed or more folded in the active form, which is favored for the dissociation of Akt from the membrane. The beginning alpha-helix J region and the C-terminal locus (T450-470P) of the regulatory domain showed less folded structures that probably enable substrate entry. Our data also revealed detailed conformational changes of Akt in the kinase domain due to activation, some of which may be attributed to the interaction of the basic residues with phosphorylation sites. Our H/D exchange results indicating the conformational status of Akt at different activation states provided new insight for the regulation of this critical protein involved in cell survival.


Assuntos
Deutério/química , Hidrogênio/química , Proteínas Proto-Oncogênicas c-akt/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Amidas/química , Sequência de Aminoácidos , Ativação Enzimática , Dados de Sequência Molecular , Mapeamento de Peptídeos , Conformação Proteica , Estrutura Terciária de Proteína
20.
J Am Soc Mass Spectrom ; 20(8): 1504-13, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19446470

RESUMO

The serine/threonine kinase Akt is a critical enzyme that regulates cell survival. As high Akt activity has been shown to contribute to the pathogenesis of various human malignancies, inhibition of Akt activation is a promising therapeutic strategy for cancers. We have previously demonstrated that changes in Akt interdomain arrangements from a closed to open conformation occur upon Akt-membrane interaction, which in turn allows Akt phosphorylation/activation. In the present study, we demonstrate a novel strategy to discern mechanisms for Akt inhibition based on Akt conformational changes using chemical cross-linking and (18)O labeling mass spectrometry. By quantitative comparison of two interdomain cross-linked peptides, which represent the proximity of the domains involved, we found that the binding of Akt to an inhibitor (PI analog) caused the open interdomain conformation where the PH and regulatory domains moved away from the kinase domain, even before interacting with membranes, subsequently preventing translocation of Akt to the plasma membrane. In contrast, the interdomain conformation remained unchanged after incubating with another type of inhibitor (peptide TCL1). Subsequent interaction with unilamellar vesicles suggested that TCL1 impaired particularly the opening of the PH domain for exposing T308 for phosphorylation at the plasma membrane. This novel approach based on the conformation-based molecular interaction mechanism should be potentially useful for drug discovery efforts for specific Akt inhibitors or anti-tumor agents.


Assuntos
Espectrometria de Massas/métodos , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/ultraestrutura , Sítios de Ligação , Reagentes de Ligações Cruzadas/química , Ligação Proteica , Mapeamento de Interação de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA