Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Fungal Biol ; 128(7): 2094-2101, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39384279

RESUMO

Fusarium verticillioides is both an endophyte and pathogen of maize. During growth on maize, the fungus often synthesizes the mycotoxins fumonisins, which have been linked to a variety of diseases, including cancer in some animals. How F. verticillioides responds to other fungi, such as Fusarium proliferatum, Aspergillus flavus, Aspergillus niger, and Penicillium oxalicum, that coinfect maize, has potential to impact mycotoxin synthesis and disease. We hypothesize that low molecular weight acids produced by these fungi play a role in communication between the fungi in planta/nature. To address this hypothesis, we exposed 48-h maize kernel cultures of F. verticillioides to oxalic acid, citric acid, fusaric acid, or kojic acid and then compared transcriptomes after 30 min and 6 h. Transcription of some genes were affected by multiple chemicals and others were affected by only one chemical. The most significant positive response was observed after exposure to fusaric acid which resulted in >2-fold upregulation of 225 genes, including genes involved in fusaric acid synthesis. Exposure of cultures to the other three chemicals increased expression of only 3-15 genes. The predicted function and frequent co-localization of three sets of genes support a role in protecting the fungus from the chemical or a role in catabolism. These unique transcriptional responses support our hypothesis that these chemicals can act as signaling molecules. Studies with gene deletion mutants will further indicate if the initial transcriptional response to the chemicals benefit F. verticillioides.


Assuntos
Ácido Fusárico , Fusarium , Zea mays , Fusarium/genética , Fusarium/metabolismo , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Zea mays/microbiologia , Ácido Fusárico/farmacologia , Ácido Fusárico/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Pironas/farmacologia , Pironas/metabolismo , Ácido Cítrico/metabolismo , Ácido Cítrico/farmacologia , Ácido Oxálico/metabolismo , Perfilação da Expressão Gênica , Transcrição Gênica
2.
Nat Commun ; 15(1): 5117, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879551

RESUMO

Hepatocellular carcinoma frequently recurs after surgery, necessitating personalized clinical approaches based on tumor avatar models. However, location-dependent oxygen concentrations resulting from the dual hepatic vascular supply drive the inherent heterogeneity of the tumor microenvironment, which presents challenges in developing an avatar model. In this study, tissue samples from 12 patients with hepatocellular carcinoma are cultured directly on a chip and separated based on preference of oxygen concentration. Establishing a dual gradient system with drug perfusion perpendicular to the oxygen gradient enables the simultaneous separation of cells and evaluation of drug responsiveness. The results are further cross-validated by implanting the chips into mice at various oxygen levels using a patient-derived xenograft model. Hepatocellular carcinoma cells exposed to hypoxia exhibit invasive and recurrent characteristics that mirror clinical outcomes. This chip provides valuable insights into treatment prognosis by identifying the dominant hepatocellular carcinoma type in each patient, potentially guiding personalized therapeutic interventions.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Oxigênio , Microambiente Tumoral , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Animais , Camundongos , Oxigênio/metabolismo , Linhagem Celular Tumoral , Masculino , Feminino , Ensaios Antitumorais Modelo de Xenoenxerto , Pessoa de Meia-Idade , Dispositivos Lab-On-A-Chip
3.
Phytopathology ; 114(8): 1940-1949, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38717940

RESUMO

Phyllachora maydis is an ascomycete foliar fungal pathogen and the causal agent of tar spot in maize. Although P. maydis is considered an economically important foliar pathogen of maize, our general knowledge of the trophic lifestyle and functional role of effector proteins from this fungal pathogen remains limited. Here, we utilized a genome-informed approach to predict the trophic lifestyle of P. maydis and functionally characterized a subset of candidate effectors from this fungal pathogen. Leveraging the most recent P. maydis genome annotation and the CATAStrophy pipeline, we show that this fungal pathogen encodes a predicted carbohydrate-active enzymes (CAZymes) repertoire consistent with that of biotrophs. To investigate fungal pathogenicity, we selected 18 candidate effector proteins that were previously shown to be expressed during primary disease development. We assessed whether these putative effectors share predicted structural similarity with other characterized fungal effectors and determined whether any suppress plant immune responses. Using AlphaFold2 and Foldseek, we showed that one candidate effector, PM02_g1115, adopts a predicted protein structure similar to that of an effector from Verticillium dahlia. Furthermore, transient expression of candidate effector-fluorescent protein fusions in Nicotiana benthamiana revealed two putative effectors, PM02_g378 and PM02_g2610, accumulated predominantly in the cytosol, and three candidate effectors, PM02_g1115, PM02_g7882, and PM02_g8240, consistently attenuated chitin-mediated reactive oxygen species production. Collectively, the results presented herein provide insights into the predicted trophic lifestyle and putative functions of effectors from P. maydis and will likely stimulate continued research to elucidate the molecular mechanisms used by P. maydis to induce tar spot.


Assuntos
Ascomicetos , Proteínas Fúngicas , Doenças das Plantas , Zea mays , Zea mays/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Ascomicetos/genética , Ascomicetos/patogenicidade , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genoma Fúngico/genética , Virulência , Fatores de Virulência/genética , Nicotiana/microbiologia , Nicotiana/imunologia
4.
Sci Adv ; 9(12): eadd4210, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36947623

RESUMO

The stemness of bone marrow mesenchymal stem cells (BMSCs) is maintained by hypoxia. The oxygen level increases from vessel-free cartilage to hypoxic bone marrow and, furthermore, to vascularized bone, which might direct the chondrogenesis to osteogenesis and regenerate the skeletal system. Hence, oxygen was diffused from relatively low to high levels throughout a three-dimensional chip. When we cultured BMSCs in the chip and implanted them into the rabbit defect models of low-oxygen cartilage and high-oxygen calvaria bone, (i) the low oxygen level (base) promoted stemness and chondrogenesis of BMSCs with robust antioxidative potential; (ii) the middle level (two times ≥ low) pushed BMSCs to quiescence; and (iii) the high level (four times ≥ low) promoted osteogenesis by disturbing the redox balance and stemness. Last, endochondral or intramembranous osteogenesis upon transition from low to high oxygen in vivo suggests a developmental mechanism-driven solution to promote chondrogenesis to osteogenesis in the skeletal system by regulating the oxygen environment.


Assuntos
Medula Óssea , Cartilagem , Animais , Coelhos , Osteogênese , Oxigênio , Hipóxia , Células da Medula Óssea , Células Cultivadas , Diferenciação Celular
5.
Mol Plant Microbe Interact ; 36(8): 478-488, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36853197

RESUMO

Fusarium head blight (FHB) caused by Fusarium graminearum is one of the most devastating diseases of wheat and barley worldwide. Effectors suppress host immunity and promote disease development. The genome of F. graminearum contains hundreds of effectors with unknown function. Therefore, investigations of the functions of these effectors will facilitate developing novel strategies to enhance wheat resistance to FHB. We characterized a F. graminearum effector, FgNls1, containing a signal peptide and multiple eukaryotic nuclear localization signals. A fusion protein of green fluorescent protein and FgNls1 accumulated in plant cell nuclei when transiently expressed in Nicotiana benthamiana. FgNls1 suppressed Bax-induced cell death when co-expressed in N. benthamiana. We revealed that the expression of FgNLS1 was induced in wheat spikes infected with F. graminearum. The Fgnls1 mutants significantly reduced initial infection and FHB spread within a spike. The function of FgNLS1 was restored in the Fgnls1-complemented strains. Wheat histone 2B was identified as an interacting protein by FgNls1-affinity chromatography. Furthermore, transgenic wheat plants that silence FgNLS1 expression had significantly lower FHB severity than control plants. This study demonstrates a critical role of FgNls1 in F. graminearum pathogenesis and indicates that host-induced gene silencing targeting F. graminearum effectors is a promising approach to enhance FHB resistance. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Fusarium , Fusarium/genética , Triticum/genética , Plantas Geneticamente Modificadas , Núcleo Celular , Doenças das Plantas
6.
Fungal Genet Biol ; 160: 103696, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35470043

RESUMO

The genus Fusarium includes pathogens of global concern to animal and plant health. Natural products (NPs) synthesized by Fusarium can contribute to pathogenesis or competitiveness of the fungus in the environment and to animal diseases, including cancer and neural tube defects. Polyketide synthases (PKSs) are a family of large, multi-domain enzymes that are required for synthesis of most fungal NPs. To gain insight into the NP potential of Fusarium, we retrieved 2974 PKS gene sequences from the genomes of 206 Fusarium species. Phylogenetic analysis resolved these PKSs, along with 118 previously described PKSs from other fungi, into 123 clades. Based on results from previous studies, we propose that PKSs in the same clade generally synthesize the same polyketide, which is structurally distinct from polyketides synthesized by PKSs in other clades. We predict that the 123 clades potentially produce 113 structurally distinct families of polyketide-derived NPs because some NPs (e.g., zearalenone) require two PKSs for their synthesis. Collectively, the clades include PKSs required for synthesis of six NPs whose production has not previously been reported in Fusarium, including two NPs with significant pharmaceutical interest: chaetoviridin and a statin. Our results highlight the NP diversity of Fusarium and the potential of the genus to produce metabolites with medical and other applications.


Assuntos
Produtos Biológicos , Fusarium , Policetídeos , Animais , Produtos Biológicos/metabolismo , Filogenia , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo
7.
Bioact Mater ; 18: 433-445, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35415304

RESUMO

All-in-one treatments represent a paradigm shift in future medicine. For example, inflammatory bowel disease (IBD) is mainly diagnosed by endoscopy, which could be applied for not only on-site monitoring but also the intestinal lesion-targeted spray of injectable hydrogels. Furthermore, molecular conjugation to the hydrogels would program both lesion-specific adhesion and drug-free therapy. This study validated this concept of all-in-one treatment by first utilizing a well-known injectable hydrogel that underwent efficient solution-to-gel transition and nanomicelle formation as a translatable component. These properties enabled spraying of the hydrogel onto the intestinal walls during endoscopy. Next, peptide conjugation to the hydrogel guided endoscopic monitoring of IBD progress upon adhesive gelation with subsequent moisturization of inflammatory lesions, specifically by nanomicelles. The peptide was designed to mimic the major component that mediates intestinal interaction with Bacillus subtilis flagellin during IBD initiation. Hence, the peptide-guided efficient adhesion of the hydrogel nanomicelles onto Toll-like receptor 5 (TLR5) as the main target of flagellin binding and Notch-1. The peptide binding potently suppressed inflammatory signaling without drug loading, where TLR5 and Notch-1 operated collaboratively through downstream actions of tumor necrosis factor-alpha. The results were produced using a human colorectal cell line, clinical IBD patient cells, gut-on-a-chip, a mouse IBD model, and pig experiments to validate the translational utility.

8.
Korean J Intern Med ; 37(2): 444-454, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35272443

RESUMO

BACKGROUND/AIMS: Recent advances in the understanding of the pathophysiology of myeloproliferative neoplasms (MPN) were not paralleled with advances in treatment options; thus many questions regarding optimal MPN management remain unanswered. Here, we report the results of descriptive survey study of Korean MPN patients and their attending physicians. METHODS: A total of 105 Korean patients (myelofibrosis [MF], 39; polycythemia vera [PV], 25; essential thrombocythemia [ET], 41) and 30 physicians completed the Landmark Health Survey, then data from the survey were analyzed. RESULTS: Among the MPN-Symptom Assessment Form symptoms, the most severe symptom reported was 'fatigue or tiredness' in MF and ET patients and 'itching' in PV patients. The majority of the patients agreed that MPN reduced their quality of life (QoL). Interestingly, physicians gave higher scores regarding the impact of MPN on patient's daily and social life compared to patients themselves. For patients, the most important treatment goal was symptom improvement regardless of MPN subtype, while for physicians the highest priority for treatment was better QoL regardless of MPN subtype. Generally, both patients and physicians were satisfied with the overall treatment/management of MPN and communications. However, many patients felt there was not enough time during the appointment for discussion, while many physicians felt they lacked effective drugs to offer to their patients. CONCLUSION: Our study suggests there are room for better-standardized monitoring of symptoms and treatment options and those continuous efforts to bridge the gap between patients and physicians are necessary for better care of MPN patients.


Assuntos
Transtornos Mieloproliferativos , Médicos , Policitemia Vera , Mielofibrose Primária , Humanos , Motivação , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/terapia , Qualidade de Vida
9.
J Liver Cancer ; 22(1): 30-39, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37383532

RESUMO

Background/Aim: Hepatocellular carcinoma (HCC) is associated with poor prognosis, largely due to late detection. Highly accurate biomarkers are urgently needed to detect early-stage HCC. Our study aims to explore the diagnostic performance of serum exosomal microRNA (miR)-720 in HCC. Methods: Exosomal miRNA was measured via quantitative real-time PCR. A correlation analysis of exosomal miR-720 and tumor or clinico-demographic data of patients with HCC was performed. The receiver operating characteristic (ROC) curve was used to assess the diagnostic capacity of serum exosomal miR-720 for HCC, in comparison with α-fetoprotein (AFP) and prothrombin induced by vitamin K absence or antagonist-II (PIVKA-II). Results: MiR-720 was chosen as a potential HCC marker via miR microarray based on significant differential expression between tumor and non-tumor samples. Serum exosomal miR-720 was significantly upregulated in patients with HCC (n=114) versus other liver diseases (control, n=30), with a higher area under the ROC curve (AUC, 0.931) than the other markers. Particularly, serum exosomal miR-720 showed superior performance in diagnosing small HCC (<5 cm; AUC, 0.930) compared with AFP (AUC, 0.802) or PIVKA-II (AUC, 0.718). Exosomal miR-720 levels showed marginal correlation with tumor size. The proportion of elevated miR-720 also increased with intrahepatic tumor stage progression. Unlike AFP or PIVKA-II showing a significant correlation with aminotransferase levels, the exosomal miR-720 level was not affected by aminotransferase levels. Conclusions: Serum exosomal miR-720 is an excellent biomarker for the diagnosis of HCC, with better performance than AFP or PIVKA-II. Its diagnostic utility is maintained even in small HCC and is unaffected by aminotransferase levels.

10.
Adv Healthc Mater ; 11(8): e2102226, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34963195

RESUMO

Glioblastoma (GBM) is one of the most intractable tumor types due to the progressive drug resistance upon tumor mass expansion. Incremental hypoxia inside the growing tumor mass drives epigenetic drug resistance by activating nongenetic repair of antiapoptotic DNA, which could be impaired by drug treatment. Hence, rescuing intertumor hypoxia by oxygen-generating microparticles may promote susceptibility to antitumor drugs. Moreover, a tumor-on-a-chip model enables user-specified alternation of clinic-derived samples. This study utilizes patient-derived glioblastoma tissue to generate cell spheroids with size variations in a 3D microchannel network chip (GBM chip). As the spheroid size increases, epigenetic drug resistance is promoted with inward hypoxia severance, as supported by the spheroid size-proportional expression of hypoxia-inducible factor-1a in the chip. Loading antihypoxia microparticles onto the spheroid surface significantly reduces drug resistance by silencing the expression of critical epigenetic factor, resulting in significantly decreased cell invasiveness. The results are confirmed in vitro using cell line and patient samples in the chip as well as chip implantation into a hypoxic hindlimb ischemia model in mice, which is an unprecedented approach in the field.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Resistência a Medicamentos , Epigênese Genética , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Hipóxia , Camundongos
12.
Adv Sci (Weinh) ; 8(22): e2102640, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34664430

RESUMO

The current paradigm of cancer medicine focuses on patient- and/or cancer-specific treatments, which has led to continuous progress in the development of patient representatives (e.g., organoids) and cancer-targeting carriers for drug screening. As breakthrough concepts, i) living cancer tissues convey intact profiles of patient-specific microenvironmental signatures. ii) The growth mechanisms of cancer mass with intense cell-cell interactions can be harnessed to develop self-homing nano-targeting by using cancer cell-derived nanovesicles (CaNVs). Hence, a tissueoid model of ovarian cancer (OC) is developed by culturing OC patient tissues in a 3D gel chip, whose microchannel networks enable perfusion to maintain tissue viability. A novel model of systemic cancer responses is approached by xenografting OC tissueoids into ischaemic hindlimbs in nude mice. CaNVs are produced to carry general chemotherapeutics or new drugs under pre/clinical studies that target the BRCA mutation or energy metabolism, thereby increasing the test scope. This pioneer study cross-validates drug responses from the OC clinic, tissueoid, and animal model by demonstrating the alignment of results in drug type-specific efficiency, BRCA mutation-dependent drug efficiency, and metabolism inhibition-based anti-cancer effects. Hence, this study provides a directional foundation to accelerate the discovery of patient-specific drugs with CaNV application towards future precision medicine.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Ovarianas/tratamento farmacológico , Medicina de Precisão/métodos , Adulto , Idoso , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Portadores de Fármacos/administração & dosagem , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Organoides/efeitos dos fármacos
13.
Adv Mater ; 33(40): e2101558, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34431568

RESUMO

Cell-cell interactions regulate intracellular signaling via reciprocal contacts of cell membranes in tissue regeneration and cancer growth, indicating a critical need of membrane-derived tools in studying these processes. Hence, cell-membrane-derived nanoparticles (CMNPs) are produced using tonsil-derived mesenchymal stem cells (TMSCs) from children owing to their short doubling time. As target cell types, laryngeal cancer cells are compared to bone-marrow-derived MSCs (BMSCs) because of their cartilage damaging and chondrogenic characteristics, respectively. Treating spheroids of these cell types with CMNPs exacerbates interspheroid hypoxia with robust maintenance of the cell-cell interaction signature for 7 days. Both cell types prefer a hypoxic environment, as opposed to blood vessel formation that is absent in cartilage but is required for cancer growth. Hence, angiogenesis is inhibited by displaying the Notch-1 aptamer on CMNPs. Consequently, laryngeal cancer growth is suppressed efficiently in contrast to improved chondroprotection observed in a series of cell and animal experiments using a xenograft mouse model of laryngeal cancer. Altogether, CMNPs execute a two-edged sword function of inducing hypoxic cell-cell packing, followed by suppressing angiogenesis to promote laryngeal cancer death and chondrogenesis simultaneously. This study presents a previously unexplored therapeutic strategy for anti-cancer and chondroprotective treatment using CMNPs.


Assuntos
Membrana Celular/química , Nanopartículas/química , Receptor Notch1/química , Animais , Caderinas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Condrócitos/citologia , Portadores de Fármacos/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Nanopartículas/uso terapêutico , Nanopartículas/toxicidade , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Tonsila Palatina/citologia , Receptor Notch1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transplante Heterólogo
14.
Front Oncol ; 11: 637247, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34386414

RESUMO

BACKGROUND & AIMS: Cancer metastasis is responsible for the majority of cancer-related deaths. Exosomal miRNAs have emerged as promising biomarkers for cancer, serving as signaling molecules that can regulate tumor growth and metastasis. This study examined circulating exosomal miRNAs that could predict hepatocellular carcinoma (HCC) metastasis. METHODS: Exosomal miRNA was measured by quantitative real-time PCR (qRT-PCR) in a large set of patients (n = 284). To investigate the role of exosomal miRNA in HCC, we performed a series of in vitro tests, such as exosome labeling, qRT-PCR, reverse transcription PCR, wound healing assay, transwell assay, and Western blot assay. RESULTS: Exosomal miR-125b was drastically downregulated in HCC patients with metastasis than in those without metastasis. In vitro, we observed the uptake of miR-125b by exosome in recipient cells. Exosome-mediated miR-125b significantly inhibited migration and invasion abilities and downregulated the mRNA expressions of MMP-2, MMP-9, and MMP-14 in recipient cells via intercellular communication. Further investigation revealed that miR-125b suppressed SMAD2 protein expression in recipient cells by binding to its 3' untranslated regions. Exosome-mediated miR-125b transfer also disrupted TGF-ß1-induced epithelial-mesenchymal transition and TGF-ß1/SMAD signaling pathway in recipient cells by leading to a decrease of SMAD2 protein expression. Moreover, exosomal miR-125b was downregulated after metastasis compared with that at baseline in patients with serial measurements before and after metastasis. CONCLUSIONS: The results imply that exosome-mediated miR-125b exerts anti-metastatic properties in HCC. These findings highlight that circulating exosomal miR-125b might represent a reliable biomarker with diagnostic and therapeutic implications for extrahepatic metastasis from HCC.

15.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209079

RESUMO

Although hepatitis B virus (HBV) integration into the cellular genome is well known in HCC (hepatocellular carcinoma) patients, its biological role still remains uncertain. This study investigated the patterns of HBV integration and correlated them with TERT (telomerase reverse transcriptase) alterations in paired tumor and non-tumor tissues. Compared to those in non-tumors, tumoral integrations occurred less frequently but with higher read counts and were more preferentially observed in genic regions with significant enrichment of integration into promoters. In HBV-related tumors, TERT promoter was identified as the most frequent site (38.5% (10/26)) of HBV integration. TERT promoter mutation was observed only in tumors (24.2% (8/33)), but not in non-tumors. Only 3.00% (34/1133) of HBV integration sites were shared between tumors and non-tumors. Within the HBV genome, HBV breakpoints were distributed preferentially in the 3' end of HBx, with more tumoral integrations detected in the preS/S region. The major genes that were recurrently affected by HBV integration included TERT and MLL4 for tumors and FN1 for non-tumors. Functional enrichment analysis of tumoral genes with integrations showed enrichment of cancer-associated genes. The patterns and functions of HBV integration are distinct between tumors and non-tumors. Tumoral integration is often enriched into both human-virus regions with oncogenic regulatory function. The characteristic genomic features of HBV integration together with TERT alteration may dysregulate the affected gene function, thereby contributing to hepatocarcinogenesis.


Assuntos
Carcinoma Hepatocelular/virologia , Vírus da Hepatite B/fisiologia , Hepatite B/genética , Neoplasias Hepáticas/virologia , Mutação , Telomerase/genética , Adulto , Idoso , Carcinoma Hepatocelular/genética , Estudos de Casos e Controles , DNA Viral/genética , Feminino , Fibronectinas/genética , Hepatite B/complicações , Histona-Lisina N-Metiltransferase/genética , Humanos , Neoplasias Hepáticas/genética , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Transativadores/genética , Proteínas Virais Reguladoras e Acessórias/genética , Integração Viral
16.
Cancers (Basel) ; 13(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946181

RESUMO

Telomerase reverse transcriptase (TERT) mutations are reportedly the most frequent somatic genetic alterations in hepatocellular carcinoma (HCC). An integrative analysis of TERT-telomere signaling during hepatocarcinogenesis is lacking. This study aimed to investigate the clinicopathological association and prognostic value of TERT gene alterations and telomere length in HCC patients undergoing hepatectomy as well as transarterial chemotherapy (TACE). TERT promoter mutation, expression, and telomere length were analyzed by Sanger sequencing and real-time PCR in 305 tissue samples. Protein-protein interaction (PPI) analysis was performed to identify a set of genes that physically interact with TERT. The PPI analysis identified eight key TERT-interacting genes, namely CCT5, TUBA1B, mTOR, RPS6KB1, AKT1, WHAZ, YWHAQ, and TERT. Among these, TERT was the most strongly differentially expressed gene. TERT promoter mutations were more frequent, TERT expression was significantly higher, and telomere length was longer in tumors versus non-tumors. TERT promoter mutations were most frequent in HCV-related HCCs and less frequent in HBV-related HCCs. TERT promoter mutations were associated with higher TERT levels and longer telomere length and were an independent predictor of worse overall survival after hepatectomy. TERT expression was positively correlated with tumor differentiation and stage progression, and independently predicted shorter time to progression after TACE. The TERT-telomere network may have a crucial role in the development and progression of HCC. TERT-telomere abnormalities might serve as useful biomarkers for HCC, but the prognostic values may differ with tumor characteristics and treatment.

17.
Sci Rep ; 11(1): 11206, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045608

RESUMO

This study evaluated whether early pulmonary hypertension (PH) in extremely preterm infants (EPIs) at 22-27 weeks of gestation detected clinically with echocardiography at 4-7 postnatal days (PND) is a risk factor for death before 36 weeks post-menstrual age (PMA) or late PH in moderate or severe (m/s) bronchopulmonary dysplasia (BPD) (BPD-PH). We analyzed risk factors for death before 36 weeks PMA or BPD-PH. Among 247 EPIs enrolled, 74 (30.0%) had early PH. Twenty-one (28.4%) infants with early PH and 18 (10.4%) without early PH died before 36 weeks PMA; 14 (18.9%) infants with early PH and 9 (5.2%) without early PH had BPD-PH at 36-38 weeks PMA. Multivariate analysis revealed that early PH (adjusted odds ratio, 6.55; 95% confidence interval, 3.10-13.82, P < 0.05), clinical chorioamnionitis (2.50; 1.18-5.31), intraventricular hemorrhage (grade 3-4) (3.43; 1.26-9.37), and late sepsis (6.76; 3.20-14.28) independently increased the risk of development of death before 36 weeks PMA or BPD-PH. Subgroup analysis among m/s BPD patients revealed that early PH (4.50; 1.61-12.58) and prolonged invasive ventilator care (> 28 days) (4.91; 1.02-23.68) increased the risk for late PH independently. In conclusion, EPIs with early PH at 4-7 PND should be monitored for BPD-associated late PH development.


Assuntos
Displasia Broncopulmonar/etiologia , Hipertensão Pulmonar/complicações , Displasia Broncopulmonar/diagnóstico por imagem , Ecocardiografia , Feminino , Idade Gestacional , Humanos , Hipertensão Pulmonar/diagnóstico por imagem , Lactente , Lactente Extremamente Prematuro , Recém-Nascido , Masculino , Fatores de Risco
18.
Sci Adv ; 7(18)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33910892

RESUMO

The regeneration potential of implantable organ model hydrogels is applied to treat a loss of ovarian endocrine function in women experiencing menopause and/or cancer therapy. A rat ovariectomy model is used to harvest autologous ovary cells while subsequently producing a layer-by-layer form of follicle spheroids. Implantation of a microchannel network hydrogel with cell spheroids [vascularized hydrogel with ovarian spheroids (VHOS)] into an ischemic hindlimb of ovariectomized rats significantly aids the recovery of endocrine function with hormone release, leading to full endometrium regeneration. The VHOS implantation effectively suppresses the side effects observed with synthetic hormone treatment (i.e., tissue overgrowth, hyperplasia, cancer progression, deep vein thrombosis) to the normal levels, while effectively preventing the representative aftereffects of menopause (i.e., gaining fatty weight, inducing osteoporosis). These results highlight the unprecedented therapeutic potential of an implantable VHOS against menopause and suggest that it may be used as an alternative approach to standard hormone therapy.


Assuntos
Hidrogéis , Ovário , Animais , Feminino , Hormônios , Humanos , Ovariectomia , Ratos , Esferoides Celulares
19.
Clin Mol Hepatol ; 27(1): 207-218, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33317255

RESUMO

BACKGROUND/AIMS: The role of hepatitis B virus (HBV) integration into the host genome in hepatocarcinogenesis following hepatitis B surface antigen (HBsAg) seroclearance remains unknown. Our study aimed to investigate and characterize HBV integration events in chronic hepatitis B (CHB) patients who developed hepatocellular carcinoma (HCC) after HBsAg seroclearance. METHODS: Using probe-based HBV capturing followed by next-generation sequencing technology, HBV integration was examined in 10 samples (seven tumors and three non-tumor tissues) from seven chronic carriers who developed HCC after HBsAg loss. Genomic locations and patterns of HBV integration were investigated. RESULTS: HBV integration was observed in six patients (85.7%) and eight (80.0%) of 10 tested samples. HBV integration breakpoints were detected in all of the non-tumor (3/3, 100%) and five of the seven (71.4%) tumor samples, with an average number of breakpoints of 4.00 and 2.43, respectively. Despite the lower total number of tumoral integration breakpoints, HBV integration sites in the tumors were more enriched within the genic area. In contrast, non-tumor tissues more often showed intergenic integration. Regarding functions of the affected genes, tumoral genes with HBV integration were mostly associated with carcinogenesis. At enrollment, patients who did not remain under regular HCC surveillance after HBsAg seroclearance had a large HCC, while those on regular surveillance had a small HCC. CONCLUSION: The biological functions of HBV integration are almost comparable between HBsAg-positive and HBsAgserocleared HCCs, with continuing pro-oncogenic effects of HBV integration. Thus, ongoing HCC surveillance and clinical management should continue even after HBsAg seroclearance in patients with CHB.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Hepatite B , Neoplasias Hepáticas , Adulto , Idoso , Carcinoma Hepatocelular/etiologia , DNA Viral , Antígenos de Superfície da Hepatite B , Vírus da Hepatite B/genética , Hepatite B Crônica/complicações , Humanos , Neoplasias Hepáticas/etiologia , Masculino , Pessoa de Meia-Idade
20.
Small ; 16(16): e2000012, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32239653

RESUMO

Atherosclerosis development leads to irreversible cascades, highlighting the unmet need for improved methods of early diagnosis and prevention. Disturbed flow formation is one of the earliest atherogenic events, resulting in increased endothelial permeability and subsequent monocyte recruitment. Here, a mesenchymal stem cell (MSC)-derived nanovesicle (NV) that can target disturbed flow sites with the peptide GSPREYTSYMPH (PREY) (PMSC-NVs) is presented which is selected through phage display screening of a hundred million peptides. The PMSC-NVs are effectively produced from human MSCs (hMSCs) using plasmid DNA designed to functionalize the cell membrane with PREY. The potent anti-inflammatory and pro-endothelial recovery effects are confirmed, similar to those of hMSCs, employing mouse and porcine partial carotid artery ligation models as well as a microfluidic disturbed flow model with human carotid artery-derived endothelial cells. This nanoscale platform is expected to contribute to the development of new theragnostic strategies for preventing the progression of atherosclerosis.


Assuntos
Aterosclerose/terapia , Células-Tronco Mesenquimais , Nanopartículas , Animais , Artérias Carótidas , Células Endoteliais , Humanos , Ligadura , Camundongos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA