Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 73: 103199, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38810423

RESUMO

Intracellular redox homeostasis in the airway epithelium is closely regulated through adaptive signaling and metabolic pathways. However, inhalational exposure to xenobiotic stressors such as secondary organic aerosols (SOA) can alter intracellular redox homeostasis. Isoprene hydroxy hydroperoxide (ISOPOOH), a ubiquitous volatile organic compound derived from the atmospheric photooxidation of biogenic isoprene, is a major contributor to SOA. We have previously demonstrated that exposure of human airway epithelial cells (HAEC) to ISOPOOH induces oxidative stress through multiple mechanisms including lipid peroxidation, glutathione oxidation, and alterations of glycolytic metabolism. Using dimedone-based reagents and copper catalyzed azo-alkynyl cycloaddition to tag intracellular protein thiol oxidation, we demonstrate that exposure of HAEC to micromolar levels of ISOPOOH induces reversible oxidation of cysteinyl thiols in multiple intracellular proteins, including GAPDH, that was accompanied by a dose-dependent loss of GAPDH enzymatic activity. These results demonstrate that ISOPOOH induces an oxidative modification of intracellular proteins that results in loss of GAPDH activity, which ultimately impacts the dynamic regulation of the intracellular redox homeostatic landscape in HAEC.


Assuntos
Células Epiteliais , Oxirredução , Estresse Oxidativo , Compostos de Sulfidrila , Humanos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Compostos de Sulfidrila/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Hemiterpenos/metabolismo , Peróxidos/metabolismo
2.
Chem Res Toxicol ; 36(4): 565-569, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36999736

RESUMO

Cannabidiol (CBD) vaping products have become widely available in the U.S. since their legalization in 2018. However, little is known about their respiratory health effects. Here we show that aerosolization of commercial CBD vaping products generates a reactive CBD quinone (CBDQ) which forms adducts with protein cysteine residues. Using click chemistry and a novel in vitro vaping product exposure system (VaPES), we further demonstrate that CBDQ forms adducts with human bronchial epithelial cell proteins including Keap1 and activates KEAP1-Nrf2 stress response pathway genes. These results suggest that vaping CBD alters protein function and induces cellular stress pathways in the lung.


Assuntos
Canabidiol , Vaping , Humanos , Benzoquinonas , Canabidiol/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução
3.
Prostate ; 82(14): 1378-1388, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35821619

RESUMO

BACKGROUND: The development of benign prostatic hyperplasia (BPH) and medication-refractory lower urinary tract symptoms (LUTS) remain poorly understood. This study attempted to characterize the pathways associated with failure of medical therapy for BPH/LUTS. METHODS: Transitional zone tissue levels of cholesterol and steroids were measured in patients who failed medical therapy for BPH/LUTS and controls. Prostatic gene expression was measured using qPCR and BPH cells were used in organoid culture to study prostatic branching. RESULTS: BPH patients on 5-α-reductase inhibitor (5ARI) showed low levels of tissue dihydrotestosterone (DHT), increased levels of steroid 5-α-reductase type II (SRD5A2), and diminished levels of androgen receptor (AR) target genes, prostate-specific antigen (PSA), and transmembrane serine protease 2 (TMPRSS2). 5ARI raised prostatic tissue levels of glucocorticoids (GC), whereas alpha-adrenergic receptor antagonists (α-blockers) did not. Nuclear localization of GR in prostatic epithelium and stroma appeared in all patient samples. Treatment of four BPH organoid cell lines with dexamethasone, a synthetic GC, resulted in budding and branching. CONCLUSIONS: After failure of medical therapy for BPH/LUTS, 5ARI therapy continued to inhibit androgenesis but a 5ARI-induced pathway increased tissue levels of GC not seen in patients on α-blockers. GC stimulation of organoids indicated that the GC receptors are a trigger for controlling growth of prostate glands. A 5ARI-induced pathway revealed GC activation can serve as a master regulator of prostatic branching and growth.


Assuntos
Sintomas do Trato Urinário Inferior , Hiperplasia Prostática , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase , Inibidores de 5-alfa Redutase/farmacologia , Di-Hidrotestosterona/metabolismo , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Humanos , Hiperplasia/metabolismo , Hiperplasia/patologia , Sintomas do Trato Urinário Inferior/patologia , Masculino , Proteínas de Membrana/metabolismo , Próstata/patologia , Hiperplasia Prostática/genética
4.
Am J Respir Cell Mol Biol ; 65(5): 500-512, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34126877

RESUMO

Ozone (O3) is a prevalent air pollutant causing lung inflammation. Previous studies demonstrate that O3 oxidizes lipids, such as cholesterol, in the airway to produce oxysterols, such as secosterol A (SecoA), which are electrophiles that are capable of forming covalent linkages preferentially with lysine residues and that consequently modify protein function. The breadth of proteins modified by this oxysterol as well as the biological consequences in the lung are unknown. By using an alkynyl-tagged form of SecoA and shotgun proteomics, we identified 135 proteins as being modified in bronchial epithelial cells. Among them was NLRP2 (NLR family pyrin domain-containing protein 2), which forms an alkynyl-tagged SecoA-protein adduct at lysine residue 1019 (K1019) in the terminal leucine-rich repeat region, a known regulatory region for NLR proteins. NLRP2 expression in airway epithelial cells was characterized, and CRISPR-Cas9 knockout (KO) and shRNA knockdown of NLRP2 were used to determine its function in O3-induced inflammation. No evidence for NLPR2 inflammasome formation or an NLRP2-dependent increase in caspase-1 activity in response to O3 was observed. O3-induced proinflammatory gene expression for CXCL2 and CXCL8/IL8 was further enhanced in NLRP2-KO cells, suggesting a negative regulatory role. Reconstitution of NLRP2-KO cells with the NLRP2 K1019 mutated to arginine partially blocked SecoA adduction and enhanced O3-induced IL-8 release as compared with wild-type NLRP2. Together, our findings uncover NLRP2 as a highly abundant, key component of proinflammatory signaling pathways in airway epithelial cells and as a novel mediator of O3-induced inflammation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Inflamação/metabolismo , Oxisteróis/metabolismo , Ozônio/efeitos adversos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Substituição de Aminoácidos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/imunologia , Brônquios/citologia , Células Epiteliais , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Immunoblotting , Inflamassomos/metabolismo , Inflamação/induzido quimicamente , Inflamação/patologia , Interleucina-8/metabolismo , Oxisteróis/química
5.
J Biol Chem ; 295(36): 12727-12738, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32690608

RESUMO

Inhalation of the ambient air pollutant ozone causes lung inflammation and can suppress host defense mechanisms, including impairing macrophage phagocytosis. Ozone reacts with cholesterol in the lung to form oxysterols, like secosterol A and secosterol B (SecoA and SecoB), which can form covalent adducts on cellular proteins. How oxysterol-protein adduction modifies the function of lung macrophages is unknown. Herein, we used a proteomic screen to identify lung macrophage proteins that form adducts with ozone-derived oxysterols. Functional ontology analysis of the adductome indicated that protein binding was a major function of adducted proteins. Further analysis of specific proteins forming adducts with SecoA identified the phagocytic receptors CD206 and CD64. Adduction of these receptors with ozone-derived oxysterols impaired ligand binding and corresponded with reduced macrophage phagocytosis. This work suggests a novel mechanism for the suppression of macrophage phagocytosis following ozone exposure through the generation of oxysterols and the formation of oxysterol-protein adducts on phagocytic receptors.


Assuntos
Pulmão/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Oxisteróis/metabolismo , Ozônio/metabolismo , Fagocitose , Receptores de IgG/metabolismo , Receptores Imunológicos/metabolismo , Colesterol/análogos & derivados , Colesterol/metabolismo , Humanos , Pulmão/citologia , Macrófagos/citologia , Células THP-1
6.
Environ Health Perspect ; 128(1): 17014, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31985273

RESUMO

BACKGROUND: Changes in cholesterol metabolism are common hallmarks of neurodevelopmental pathologies. A diverse array of genetic disorders of cholesterol metabolism support this claim as do multiple lines of research that demonstrate chemical inhibition of cholesterol biosynthesis compromises neurodevelopment. Recent work has revealed that a number of commonly used pharmaceuticals induce changes in cholesterol metabolism that are similar to changes induced by genetic disorders with devastating neurodevelopmental deficiencies. OBJECTIVES: We tested the hypothesis that common environmental toxicants may also impair cholesterol metabolism and thereby possibly contribute to neurodevelopmental toxicity. METHODS: Using high-throughput screening with a targeted lipidomic analysis and the mouse neuroblastoma cell line, Neuro-2a, the ToxCast™ chemical library was screened for compounds that impact sterol metabolism. Validation of chemical effects was conducted by assessing cholesterol biosynthesis in human induced pluripotent stem cell (hiPSC)-derived neuroprogenitors using an isotopically labeled cholesterol precursor and by monitoring product formation with UPLC-MS/MS. RESULTS: Twenty-nine compounds were identified as validated lead-hits, and four were prioritized for further study (endosulfan sulfate, tributyltin chloride, fenpropimorph, and spiroxamine). All four compounds were validated to cause hypocholesterolemia in Neuro-2a cells. The morpholine-like fungicides, fenpropimorph and spiroxamine, mirrored their Neuro-2a activity in four immortalized human cell lines and in a human neuroprogenitor model derived from hiPSCs, but endosulfan sulfate and tributyltin chloride did not. CONCLUSIONS: These data reveal the existence of environmental compounds that interrupt cholesterol biosynthesis and that methodologically hiPSC neuroprogenitor cells provide a particularly sensitive system to monitor the effect of small molecules on de novo cholesterol formation. https://doi.org/10.1289/EHP5053.


Assuntos
Poluentes Ambientais/toxicidade , Testes de Toxicidade , Animais , Colesterol/biossíntese , Humanos , Células-Tronco Pluripotentes Induzidas , Camundongos , Células-Tronco
7.
Chem Res Toxicol ; 32(10): 1997-2005, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31476115

RESUMO

Inhaled ground level ozone (O3) has well described adverse health effects, which may be augmented in susceptible populations. While conditions, such as pre-existing respiratory disease, have been identified as factors enhancing susceptibility to O3-induced health effects, the potential for chemical interactions in the lung to sensitize populations to pollutant-induced responses has not yet been studied. In the airways, inhaled O3 reacts with lipids, such as cholesterol, to generate reactive and electrophilic oxysterol species, capable of causing cellular dysfunction and inflammation. The enzyme regulating the final step of cholesterol biosynthesis, 7-dehydrocholesterol reductase (DHCR7), converts 7-dehydrocholesterol (7-DHC) to cholesterol. Inhibition of DHCR7 increases the levels of 7-DHC, which is much more susceptible to oxidation than cholesterol. Chemical analysis established the capacity for a variety of small molecule antipsychotic drugs, like Aripiprazole (APZ), to inhibit DHCR7 and elevate circulating 7-DHC. Our results show that APZ and the known DHCR7 inhibitor, AY9944, increase 7-DHC levels in airway epithelial cells and potentiate O3-induced IL-6 and IL-8 expression and cytokine release. Targeted immune-related gene array analysis demonstrates that APZ significantly modified O3-induced expression of 16 genes, causing dysregulation in expression of genes associated with leukocyte recruitment and inflammatory response. Additionally, we find that APZ increases O3-induced IL-6 and IL-8 expression in human nasal epithelial cells from male but not female donors. Overall, the evidence we provide describes a novel molecular mechanism by which chemicals, such as APZ, that perturb cholesterol biosynthesis affect O3-induced biological responses.


Assuntos
Antipsicóticos/toxicidade , Aripiprazol/toxicidade , Células Epiteliais/efeitos dos fármacos , Inflamação/induzido quimicamente , Ozônio/toxicidade , Mucosa Respiratória/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/toxicidade , Antipsicóticos/química , Aripiprazol/química , Células Cultivadas , Células Epiteliais/metabolismo , Humanos , Inflamação/metabolismo , Estrutura Molecular , Mucosa Respiratória/metabolismo , Bibliotecas de Moléculas Pequenas/química , Dicloridrato de trans-1,4-Bis(2-clorobenzaminometil)ciclo-hexano/química , Dicloridrato de trans-1,4-Bis(2-clorobenzaminometil)ciclo-hexano/toxicidade
8.
J Lipid Res ; 59(10): 1916-1926, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30087204

RESUMO

Regulating blood cholesterol (Chol) levels by pharmacotherapy has successfully improved cardiovascular health. There is growing interest in the role of Chol precursors in the treatment of diseases. One sterol precursor, desmosterol (Des), is a potential pharmacological target for inflammatory and neurodegenerative disorders. However, elevating levels of the precursor 7-dehydrocholesterol (7-DHC) by inhibiting the enzyme 7-dehydrocholesterol reductase is linked to teratogenic outcomes. Thus, altering the sterol profile may either increase risk toward an adverse outcome or confer therapeutic benefit depending on the metabolite affected by the pharmacophore. In order to characterize any unknown activity of drugs on Chol biosynthesis, a chemical library of Food and Drug Administration-approved drugs was screened for the potential to modulate 7-DHC or Des levels in a neural cell line. Over 20% of the collection was shown to impact Chol biosynthesis, including 75 compounds that alter 7-DHC levels and 49 that modulate Des levels. Evidence is provided that three tyrosine kinase inhibitors, imatinib, ponatinib, and masitinib, elevate Des levels as well as other substrates of 24-dehydrocholesterol reductase, the enzyme responsible for converting Des to Chol. Additionally, the mechanism of action for ponatinib and masitinib was explored, demonstrating that protein levels are decreased as a result of treatment with these drugs.


Assuntos
Desidrocolesteróis/metabolismo , Desmosterol/metabolismo , Medicamentos sob Prescrição , Benzamidas , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Imidazóis/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Piperidinas , Piridazinas/farmacologia , Piridinas , Tiazóis/farmacologia , Estados Unidos , United States Food and Drug Administration
9.
Chem Res Toxicol ; 27(10): 1757-68, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25185119

RESUMO

Cholesterol undergoes ozonolysis to afford a variety of oxysterol products, including cholesterol-5,6-epoxide (CholEp) and the isomeric aldehydes secosterol A (seco A) and secosterol B (seco B). These oxysterols display numerous important biological activities, including protein adduction; however, much remains to be learned about the identity of the reactive species and the range of proteins modified by these oxysterols. Here, we synthesized alkynyl derivatives of cholesterol-derived oxysterols and employed a straightforward detection method to establish secosterols A and B as the most protein-reactive of the oxysterols tested. Model adduction studies with an amino acid, peptides, and proteins provide evidence for the potential role of secosterol dehydration products in protein adduction. Hydrophobic separation methods-Folch extraction and solid phase extraction (SPE)-were successfully applied to enrich oxysterol-adducted peptide species, and LC-MS/MS analysis of a model peptide-seco adduct revealed a unique fragmentation pattern (neutral loss of 390 Da) for that species. Coupling a hydrophobic enrichment method with proteomic analysis utilizing characteristic fragmentation patterns facilitates the identification of secosterol-modified peptides and proteins in an adducted protein. More broadly, these improved enrichment methods may give insight into the role of oxysterols and ozone exposure in the pathogenesis of a variety of diseases, including atherosclerosis, Alzheimer's disease, Parkinson's disease, and asthma.


Assuntos
Colesterol/química , Ozônio/química , Peptídeos/química , Proteínas/química , Aldeídos/química , Sequência de Aminoácidos , Biotina/química , Colesterol/análogos & derivados , Cromatografia Líquida de Alta Pressão , Química Click , Citocromos c/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Isomerismo , Dados de Sequência Molecular , Peptídeos/análise , Albumina Sérica/química , Extração em Fase Sólida , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estreptavidina/química
10.
J Lipid Res ; 54(10): 2842-50, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23828810

RESUMO

Lipid modifications aid in regulating (and misregulating) protein function and localization. However, efficient methods to screen for a lipid's ability to modify proteins are not readily available. We present a strategy to identify protein-reactive lipids and apply it to a neurodevelopmental disorder, Smith-Lemli-Opitz syndrome (SLOS). Alkynyl surrogates were synthesized for polyunsaturated fatty acids, phospholipids, cholesterol, 7-dehydrocholesterol (7-DHC), and a 7-DHC-derived oxysterol. To probe for protein-reactive lipids, we used click chemistry to biotinylate the alkynyl tag and detected the lipid-adducted proteins with streptavidin Western blotting. In Neuro2a cells, the trend in amount of protein adduction followed known rates of lipid peroxidation (7-DHC >> arachidonic acid > linoleic acid >> cholesterol), with alkynyl-7-DHC producing the most adduction among alkynyl lipids. 7-DHC reductase-deficient cells, which cannot properly metabolize 7-DHC, exhibited significantly more alkynyl-7-DHC-protein adduction than control cells. Model studies demonstrated that a 7-DHC peroxidation product covalently modifies proteins. We hypothesize that 7-DHC generates electrophiles that can modify the proteome, contributing to SLOS's complex pathology. These probes and methods would allow for analysis of lipid-modified proteomes in SLOS and other disorders exhibiting 7-DHC accumulation. More broadly, the alkynyl lipid library would facilitate exploration of lipid peroxidation's role in specific biological processes in numerous diseases.


Assuntos
Processamento de Proteína Pós-Traducional , Síndrome de Smith-Lemli-Opitz/metabolismo , Linhagem Celular Tumoral , Citocromos c/química , Citocromos c/metabolismo , Desidrocolesteróis/química , Desidrocolesteróis/metabolismo , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/metabolismo , Humanos , Lipoilação , Oxirredução , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Proteoma/metabolismo , Síndrome de Smith-Lemli-Opitz/diagnóstico
11.
J Am Chem Soc ; 134(40): 16773-80, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-22989205

RESUMO

Tyrosine-derived hydroperoxides are formed in peptides and proteins exposed to enzymatic or cellular sources of superoxide and oxidizing species as a result of the nearly diffusion-limited reaction between tyrosyl radical and superoxide. However, the structure of these products, which informs their reactivity in biology, has not been unequivocally established. We report here the complete characterization of the products formed in the addition of superoxide, generated from xanthine oxidase, to several peptide-derived tyrosyl radicals, formed from horseradish peroxidase. RP-HPLC, LC-MS, and NMR experiments indicate that the primary stable products of superoxide addition to tyrosyl radical are para-hydroperoxide derivatives (para relative to the position of the OH in tyrosine) that can be reduced to the corresponding para-alcohol. In the case of glycyl-tyrosine, a stable 3-(1-hydroperoxy-4-oxocyclohexa-2,5-dien-1-yl)-L-alanine was formed. In tyrosyl-glycine and Leu-enkephalin, which have N-terminal tyrosines, bicyclic indolic para-hydroperoxide derivatives were formed ((2S,3aR,7aR)-3a-hydroperoxy-6-oxo-2,3,3a,6,7,7a-hexahydro-1H-indole-2-carboxylic acid) by the conjugate addition of the free amine to the cyclohexadienone. It was also found that significant amounts of the para-OH derivative were generated from the hydroxyl radical, formed on exposure of tyrosine-containing peptides to Fenton conditions. The para-OOH and para-OH derivatives are much more reactive than other tyrosine oxidation products and may play important roles in physiology and disease.


Assuntos
Armoracia/enzimologia , Peroxidase do Rábano Silvestre/metabolismo , Peróxido de Hidrogênio/metabolismo , Superóxidos/metabolismo , Tirosina/análogos & derivados , Xantina Oxidase/metabolismo , Animais , Bovinos , Encefalina Leucina/química , Encefalina Leucina/metabolismo , Peróxido de Hidrogênio/química , Modelos Moleculares , Oxirredução , Peptídeos/química , Peptídeos/metabolismo , Superóxido Dismutase/metabolismo , Superóxidos/química , Tirosina/metabolismo
12.
Methods Mol Biol ; 803: 77-95, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22065220

RESUMO

Formation of covalent protein adducts by lipid electrophiles contributes to diseases and toxicities linked to oxidative stress, but analysis of the adducts presents a challenging analytical problem. We describe selective adduct capture using biotin affinity probes to enrich protein and peptide adducts for analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS). One approach employs biotinamidohexanoic acid hydrazide to covalently label residual carbonyl groups on adducts. The other employs alkynyl analogs of lipid electrophiles, which form adducts that can be postlabeled with azidobiotin tags by Cu(+)-catalyzed cycloaddition (Click chemistry). To enhance the selectivity of adduct capture, we use an azidobiotin reagent with a photocleavable linker, which allows recovery of adducted proteins and peptides under mild conditions. This approach allows both the identification of protein targets of lipid electrophiles and sequence mapping of the adducts.


Assuntos
Bioquímica/métodos , Sondas Moleculares/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Aldeídos/metabolismo , Sequência de Aminoácidos , Biotina/metabolismo , Biotinilação , Proteínas Sanguíneas/metabolismo , Western Blotting , Extratos Celulares , Linhagem Celular Tumoral , Bases de Dados de Proteínas , Humanos , Immunoblotting , Indicadores e Reagentes , Espectrometria de Massas , Dados de Sequência Molecular , Peptídeos/química , Estreptavidina/metabolismo , Tripsina/metabolismo
13.
Mol Cell Proteomics ; 8(9): 2080-9, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19483245

RESUMO

HNE (4-hydroxynonenal), a byproduct of lipid peroxidation, reacts with nucleophilic centers on proteins. A terminal alkynyl analog of HNE (alkynyl HNE, aHNE) serves as a surrogate for HNE itself, both compounds reacting with protein amine and thiol functional groups by similar chemistry. Proteins modified with aHNE undergo reaction with a click reagent that bears azido and biotin groups separated by a photocleavable linker. Peptides and proteins modified in this way are affinity purified on streptavidin beads. Photolysis of the beads with a low intensity UV light releases bound biotinylated proteins or peptides, i.e. proteins or peptides modified by aHNE. Two strategies, (a) protein catch and photorelease and (b) peptide catch and photorelease, are employed to enrich adducted proteins or peptide mixtures highly enriched in adducts. Proteomics analysis of the streptavidin-purified peptides by LC-MS/MS permits identification of the adduction site. Identification of 30 separate peptides from human serum albumin by peptide catch and photorelease reveals 18 different aHNE adduction sites on the protein. Protein catch and photorelease shows that both HSA and ApoA1 in human plasma undergo significant modification by aHNE.


Assuntos
Azidas/química , Biotina/análogos & derivados , Biotina/química , Lipídeos/química , Proteínas/isolamento & purificação , Estreptavidina/metabolismo , Aldeídos/metabolismo , Sequência de Aminoácidos , Azidas/síntese química , Biotina/síntese química , Biotinilação , Proteínas Sanguíneas/análise , Western Blotting , Humanos , Indicadores e Reagentes , Luz , Espectrometria de Massas , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/isolamento & purificação , Proteômica
14.
Chem Res Toxicol ; 19(8): 1074-9, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16918247

RESUMO

4-Oxo-2(E)-nonenal, a lipid peroxidation-derived product, reacts with dG, dA, and dC in DNA to form heptanone (H)-etheno (epsilon) adducts. Among the three adducts, H-epsilondC is formed in the greatest abundance in in vitro reactions, and it has been detected in the C57BL/6JAPC(min) mouse model of colorectal cancer. To establish the genotoxic properties of this adduct, a site-specifically modified oligonucleotide was synthesized and incorporated into a shuttle vector. The modified vector was replicated in Escherichia coli and human cells. Analysis of the progeny plasmid has revealed that H-epsilondC strongly blocks DNA synthesis and markedly miscodes in both hosts. The miscoding frequency was 40-50% in bacteria and more than 90% in three human cell lines (xeroderma pigmentosum A and variant cells, and DNA repair wild-type cells). There was a drastic difference in coding events in these two hosts: dG and dC were almost exclusively inserted opposite the lesion in E. coli, while dA and dT were the preferential choices in human cells. These results indicate that this endogenous DNA adduct is very genotoxic to both organisms.


Assuntos
Adutos de DNA/metabolismo , Dano ao DNA , Replicação do DNA , DNA/biossíntese , Desoxicitidina/análogos & derivados , Desoxicitidina/metabolismo , Linhagem Celular , DNA/genética , DNA Bacteriano/biossíntese , DNA Bacteriano/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Vetores Genéticos , Humanos , Peroxidação de Lipídeos , Plasmídeos , Transformação Genética
15.
Rapid Commun Mass Spectrom ; 20(8): 1369-80, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16557497

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants found in car exhausts, charbroiled food, and tobacco smoke. Three pathways for the metabolic activation of B[a]P to ultimate carcinogens have been proposed. The most widely accepted pathway involves cytochrome-P450 (CYP) 1A1- and/or 1B1-mediated formation of B[a]P-7,8-oxide, which undergoes epoxide hydrolase-mediated metabolism to the proximate carcinogen B[a]P-7,8-dihydro-7,8-diol. Further CYP1A1- and/or CYP1B1-mediated activation of the dihydrodiol results in the formation of 7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (B[a]PDE), the ultimate carcinogen. In previous studies, it was demonstrated that (+)-anti-B[a]PDE was the most potent tumorigen of the CYP-derived B[a]PDE diastereomers. We have developed a stable isotope dilution, liquid chromatography multiple reaction monitoring/mass spectrometry (LC-MRM/MS) assay for all eight (+/-)-anti-B[a]PDE-derived dGuo and dAdo DNA-adducts. The LC-MRM/MS assay was rigorously validated and used to show that (+)-anti-trans-B[a]PDE-dGuo was the major adduct formed when naked DNA and human bronchoalveolar adenocarcinoma H358 cells were treated with (+/-)-anti-B[a]PDE. The preference for DNA-adducts derived from (+)-anti-B[a]PDE was even more apparent in cellular DNA. Thus, the increased potency of (+)-anti-B[a]PDE as a tumorigen is most likely due its ability to preferentially form DNA-adducts when compared with (-)-anti-B[a]PDE. Also, the adduct profile suggests that this occurs by binding of (+)-anti-B[a]PDE to DNA in a manner that facilitates covalent binding to dGuo rather than dAdo residues.


Assuntos
Benzopirenos/química , Adutos de DNA/análise , Adenosina/química , Animais , Benzopirenos/síntese química , Líquido da Lavagem Broncoalveolar/citologia , Calibragem , Bovinos , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Guanosina/química , Humanos , Hidrólise , Conformação Molecular , Controle de Qualidade , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem , Timo/química
16.
Biochemistry ; 42(8): 2328-38, 2003 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-12600200

RESUMO

The conformation of the trans-anti-(1S,2R,3S,4R)-N(2)-[1-(1,2,3,4-tetrahydro-2,3,4-trihydroxybenz[a]anthracenyl)]-2'-deoxyguanosyl adduct in d(G(1)G(2)C(3)A(4)G(5)X(6)T(7)G(8)G(9)T(10)G(11)).d(C(12)A(13)C(14)C(15)A(16)C(17)C(18)T(19)G(20)C(21)C(22)), bearing codon 12 of the human N-ras protooncogene (underlined), was determined. This adduct had S stereochemistry at the benzylic carbon. Its occurrence in DNA is a consequence of trans opening by the deoxyguanosine amino group of (1R,2S,3S,4R)-1,2-epoxy-1,2,3,4-tetrahydrobenz[a]anthracenyl-3,4-diol. The resonance frequencies, relative to the unmodified DNA, of the X(6) H1' and H6 protons were shifted downfield, whereas those of the C(18) and T(19) H1', H2', H2' ', and H3' deoxyribose protons were shifted upfield. The imino and amino resonances exhibited the expected sequential connectivities, suggesting no interruption of Watson-Crick pairing. A total of 426 interproton distances, including nine uniquely assigned BA-DNA distances, were used in the restrained molecular dynamics calculations. The refined structure showed that the benz[a]anthracene moiety bound in the minor groove, in the 5'-direction from the modified site. This was similar to the (+)-trans-anti-benzo[a]pyrene-N(2)-dG adduct having S stereochemistry at the benzylic carbon [Cosman, M., De Los Santos, C., Fiala, R., Hingerty, B. E., Singh, S. B., Ibanez, V., Margulis, L. A., Live, D., Geacintov, N. E., Broyde, S., and Patel, D. J. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 1914-1918]. It differed from the (-)-trans-anti-benzo[c]phenanthrene-N(2)-dG adduct having S stereochemistry at the benzylic carbon, which intercalated in the 5'-direction [Lin, C. H., Huang, X., Kolbanovskii, A., Hingerty, B. E., Amin, S., Broyde, S., Geacintov, N. E., and Patel, D. J. (2001) J. Mol. Biol. 306, 1059-1080]. The results provided insight into how PAH molecular topology modulates adduct structure in duplex DNA.


Assuntos
Benzo(a)Antracenos/química , Códon/química , Adutos de DNA/química , Desoxiguanosina/química , Genes ras , Polidesoxirribonucleotídeos/química , Humanos , Substâncias Intercalantes/química , Mutagênicos/química , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação de Ácido Nucleico , Oligodesoxirribonucleotídeos/química , Prótons , Estereoisomerismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA