Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Planta Med ; 90(1): 25-37, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37848042

RESUMO

This study aims to explore the anti-inflammatory mechanisms of sargachromenol in both RAW 264.7 cells and lipopolysaccharide (LPS)-treated mice, as previous reports have suggested that sargachromenol possesses anti-aging, anti-inflammatory, antioxidant, and neuroprotective properties. Although the precise mechanism behind its anti-inflammatory activity remains unclear, pretreatment with sargachromenol effectively reduced the production of nitric oxide, prostaglandin E2, and interleukin (IL)-1ß in LPS-stimulated RAW 264.7 cells by inhibiting cyclooxygenase-2. Moreover, sargachromenol inhibited the activation of nuclear factor-κB (NF-κB) by preventing the degradation of the inhibitor of κB-α (IκB-α) and inhibiting protein kinase B (Akt) phosphorylation in LPS-stimulated cells. We also found that sargachromenol induced the production of heme oxygenase-1 (HO-1) by activating the nuclear transcription factor erythroid-2-related factor 2 (Nrf2). In LPS-treated mice, oral administration of sargachromenol effectively reduced the levels of IL-1ß, IL-6, and tumor necrosis factor-α (TNF-α) in the serum, suggesting its ability to suppress the production of inflammatory mediators by inhibiting the Akt/NF-κB pathway and upregulating the Nrf2/HO-1 pathway.


Assuntos
Lipopolissacarídeos , NF-kappa B , Animais , Camundongos , NF-kappa B/metabolismo , Células RAW 264.7 , Lipopolissacarídeos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Anti-Inflamatórios/farmacologia , Heme Oxigenase-1/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ciclo-Oxigenase 2/metabolismo
2.
Foods ; 11(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35159480

RESUMO

Colitis is a colon mucosal disorder characterized by intestinal damage and inflammation. This current study aimed to evaluate the effect of meroterpenoid-rich ethanoic extract of a brown algae, Sargassum macrocarpum (MES) on dextran sulfate sodium (DSS)-induced colitis in mice and explore the possible mechanisms. Mice were given 4% DSS in drinking water for 7 days to induce colitis, followed by 3 days of regular water. MES (12 mg/kg body weight) or celecoxib (10 mg/kg body weight) was administrated orally to mice on a daily basis during these 10 days. Both MES and celecoxib supplementations significantly attenuated DSS-induced weight loss, shortening of colon length, elevated myeloperoxidase activity as well as histomorphological changes of colon. MES and celecoxib reduced the inflammation level of colon tissue, as indicated by its suppression on a panel of pro-inflammatory cytokines, including interleukin (IL)-1ß, IL-17, tumor necrosis factor α, and interferon γ, and a group of inflammatory proteins, including intracellular adhesion molecule 1, vascular adhesion molecule 1, matrix metalloproteinase (MMP)-2, MMP-9, MMP-13, and inducible nitric oxidase. In addition, their administration down-regulated pro-inflammatory cytokines in serum. Moreover, the supplementation of MES suppressed the DSS-induced hyperactivation of Akt, JNK, and NF-κB signaling pathways. Taken together, our results demonstrate that MES ameliorates DSS-induced colitis in mice, suggesting that MES may have therapeutic implications for the treatment of colitis.

3.
Foods ; 10(10)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34681303

RESUMO

Hyperpigmentation diseases of the skin require topical treatment with depigmenting agents. We investigated the hypopigmented mechanisms of sargahydroquinoic acid (SHQA) in alpha-melanocyte-stimulating hormone (α-MSH)-stimulated B16F10 cells. SHQA reduced cellular tyrosinase (TYR) activity and melanin content in a concentration-dependent manner and attenuated the expression of TYR and tyrosinase-related protein 1 (TRP1), along with their transcriptional regulator, microphthalmia-associated transcription factor (MITF). SHQA also suppressed α-MSH-induced cellular production of cyclic adenosine monophosphate (cAMP), which inhibited protein kinase A (PKA)-dependent cAMP-responsive element-binding protein (CREB) activation. Docking simulation data showed a potential binding affinity of SHQA to the regulatory subunit RIIß of PKA, which may also adversely affect PKA and CREB activation. Moreover, SHQA activated ERK1/2 signaling in B16F10 cells, stimulating the proteasomal degradation of MITF. These data suggest that SHQA ameliorated hyperpigmentation in α-MSH-stimulated B16F10 cells by downregulating MITF via PKA inactivation and ERK1/2 phosphorylation, indicating that SHQA is a potent therapeutic agent against skin hyperpigmentation disorders.

4.
Redox Biol ; 46: 102101, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34418600

RESUMO

Forkhead box, class O (FoxO) family members are multifunctional transcription factors that are involved in several metabolic processes, including energy metabolism, apoptosis, DNA repair, and oxidative stress. However, their roles in skin health have not been well-documented. Recent studies have indicated that FoxOs are important factors to control skin homeostasis and health. The activation or deactivation of some FoxO family members is closely related to melanogenesis, wound healing, acne, and melanoma. In this review, we have discussed the recent findings that demonstrate the relationship between FoxOs and skin health as well as the underlying mechanisms associated with their functions.


Assuntos
Fatores de Transcrição Forkhead , Envelhecimento da Pele , Apoptose , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Estresse Oxidativo , Pele/metabolismo
5.
Exp Gerontol ; 151: 111406, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34022274

RESUMO

AIM: The effects of sargahydroquinoic acid (SHQA) on cellular senescence and the underlying mechanisms were investigated using human umbilical vascular endothelial cells (HUVECs). METHODS: SHQA or DMSO was supplemented into the medium. Low dose of H2O2 was used to induce premature senescence. Replicative senescence was achieved by continuously culturing cells until they reached a plateau phase. Senescence biomarkers, including p53, p21, and p16 proteins, and SA-ß-Gal activity were measured. RESULTS: Pretreatment of SHQA significantly suppressed the oxidative stress-induced protein expression of p53, p21, and p16, as well as the activity of SA-ß-Gal. Additionally, SHQA also delayed the replicative senescence as indicated by an increased population doubling number, reduced protein expression of p53, p21, and p16, as well as a decreased SA-ß-Gal activity. SHQA inhibited the phosphorylation of Akt, mTOR, and downstream targets of mTOR, such as p-S6K, which was elevated by premature senescence and replicative senescence. In the absence of senescence stimuli, SHQA also inhibited the Akt/mTOR signaling pathway and promoted autophagy. CONCLUSIONS: SHQA suppressed senescence induced by oxidative stress and replication through inhibiting the Akt/mTOR pathway. With the potential of acting as an Akt/mTOR inhibitor, SHQA might be useful for developing anti-ageing therapy.


Assuntos
Células Endoteliais , Proteínas Proto-Oncogênicas c-akt , Alcenos , Benzoquinonas , Células Cultivadas , Senescência Celular , Células Endoteliais/metabolismo , Humanos , Peróxido de Hidrogênio , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53
6.
Mar Drugs ; 19(3)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804171

RESUMO

The proteolytic processing of amyloid precursor protein (APP) by ß-secretase (BACE1) and γ-secretase releases amyloid-ß peptide (Aß), which deposits in amyloid plaques and contributes to the initial causative events of Alzheimer's disease (AD). In the present study, the regulatory mechanism of APP processing of three phlorotannins was elucidated in Swedish mutant APP overexpressed N2a (SweAPP N2a) cells. Among the tested compounds, dieckol exhibited the highest inhibitory effect on both intra- and extracellular Aß accumulation. In addition, dieckol regulated the APP processing enzymes, such as α-secretase (ADAM10), ß-secretase, and γ-secretase, presenilin-1 (PS1), and their proteolytic products, sAPPα and sAPPß, implying that the compound acts on both the amyloidogenic and non-amyloidogenic pathways. In addition, dieckol increased the phosphorylation of protein kinase B (Akt) at Ser473 and GSK-3ß at Ser9, suggesting dieckol induced the activation of Akt, which phosphorylated GSK-3ß. The specific phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 triggered GSK-3ß activation and Aß expression. In addition, co-treatment with LY294002 noticeably blocked the effect of dieckol on Aß production, demonstrating that dieckol promoted the PI3K/Akt signaling pathway, which in turn inactivated GSK-3ß, resulting in the reduction in Aß levels.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Benzofuranos/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/fisiopatologia , Animais , Linhagem Celular , Cromonas/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Taninos/farmacologia
7.
Mar Drugs ; 18(11)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218066

RESUMO

Aging is a major risk factor for many chronic diseases, such as cancer, cardiovascular disease, and diabetes. The exact mechanisms underlying the aging process are not fully elucidated. However, a growing body of evidence suggests that several pathways, such as sirtuin, AMP-activated protein kinase, insulin-like growth factor, autophagy, and nuclear factor erythroid 2-related factor 2 play critical roles in regulating aging. Furthermore, genetic or dietary interventions of these pathways can extend lifespan by delaying the aging process. Seaweeds are a food source rich in many nutrients, including fibers, polyunsaturated fatty acids, vitamins, minerals, and other bioactive compounds. The health benefits of seaweeds include, but are not limited to, antioxidant, anti-inflammatory, and anti-obese activities. Interestingly, a body of studies shows that some seaweed-derived extracts or isolated compounds, can modulate these aging-regulating pathways or even extend lifespans of various animal models. However, few such studies have been conducted on higher animals or even humans. In this review, we focused on potential anti-aging bioactive substances in seaweeds that have been studied in cells and animals mainly based on their anti-aging cellular and molecular mechanisms.


Assuntos
Envelhecimento/efeitos dos fármacos , Produtos Biológicos/farmacologia , Senescência Celular/efeitos dos fármacos , Alga Marinha/metabolismo , Envelhecimento/metabolismo , Animais , Produtos Biológicos/isolamento & purificação , Humanos , Transdução de Sinais
8.
Materials (Basel) ; 13(12)2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630421

RESUMO

In this article, a drug delivery system with a near-infrared (NIR) light-responsive feature was successfully prepared using a block copolymer poly(ethylene oxide)-b-poly(glycidyl methacrylate)-azide (PEO-b-PGMA-N3) and a cross-linker containing a Se-Se bond through "click" chemistry. Doxorubicin (DOX) was loaded into the core-cross-linked (CCL) micelles of the block copolymer along with indocyanine green (ICG) as a generator of reactive oxygen species (ROS). During NIR light exposure, ROS were generated by ICG and attacked the Se-Se bond of the cross-linker, leading to de-crosslinking of the CCL micelles. After NIR irradiation, the CCL micelles were continuously disrupted, which can be a good indication for effective drug release. Photothermal analysis showed that the temperature elevation during NIR exposure was negligible, thus safe for normal cells. In vitro drug release tests demonstrated that the drug release from diselenide CCL micelles could be controlled by NIR irradiation and affected by the acidity of the environment.

9.
Mol Nutr Food Res ; 64(3): e1900373, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31900972

RESUMO

SCOPE: Rheumatoid arthritis (RA) is an autoimmune disorder related to the inflammation of cartilage due to the infiltration of inflammatory cells. Sargassum serratifolium, a brown alga, possesses strong anti-inflammatory activities. METHODS AND RESULTS: The effect of meroterpenoid-rich fraction from the ethanol extract of S. serratifolium (MES) on RA and its underlying mechanisms on the inhibition of RA using a collagen-induced arthritis (CIA) mouse model are examined. The results show that MES ameliorates paw swelling and reduces the arthritis score. MES considerably decreases the secretion of pro-inflammatory cytokines in the serum and joint tissue of mice. Histopathological analysis demonstrates that MES strongly inhibited bone damage and inflammatory cell intrusion in the joint tissue. The expression of inflammatory enzymes and adhesion molecules is significantly inhibited in the serum and joint tissue of MES-fed mice. In addition, MES downregulates the nuclear factor κB (NF-κB) signaling pathway by suppressing the phosphorylation of protein kinase B, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinases. CONCLUSIONS: MES supplementation remarkably reduces inflammatory response in CIA mouse model. These results indicate that MES can be used as a pharmaceutical agent against RA.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Sargassum/química , Terpenos/farmacologia , Alcenos/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Benzopiranos/farmacologia , Benzoquinonas/farmacologia , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/patologia , Ciclo-Oxigenase 2/metabolismo , Citocinas/sangue , Citocinas/metabolismo , Etanol/química , Interleucina-6/metabolismo , Articulações/efeitos dos fármacos , Articulações/patologia , Masculino , Camundongos Endogâmicos DBA , NF-kappa B/metabolismo , Terpenos/química
10.
Antioxidants (Basel) ; 8(8)2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31344959

RESUMO

Compounds were isolated from Ecklonia stolonifera Okamura, a marine brown alga widely consumed as food. Among the isolated compounds, 974-A was demonstrated for the first time to be a potent competitive inhibitor of mushroom tyrosinase activity towards l-tyrosine and l-DOPA (IC50 values = 1.57 ± 0.08 and 3.56 ± 0.22 µM, respectively). Molecular docking simulations clarified that the hydroxyl residues of the isolated compounds formed hydrogen bonds with residues at the catalytic and allosteric sites of tyrosinase, while other residues participated in hydrophobic interactions. Moreover, 974-A, phlorofucofuroeckol-A and eckol reduced the cellular melanin content and tyrosinase activity, and downregulated the expression of melanogenesis enzymes including tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 in B16F10 melanoma cells. These compounds also effectively scavenged radicals at the cellular level. Thus, our results revealed that compounds isolated from E. stolonifera are potent tyrosinase inhibitors with potential applications in the cosmetic industry for treatment of hyperpigmentation and for the anti-browning effect in the agricultural field.

11.
Food Chem ; 278: 178-184, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-30583359

RESUMO

Sargassum serratifolium has been known to contain a high level of meroterpenoids as antioxidant components. We investigated antioxidant activities and active components in various solvent extracts from S. serratifolium. Ethyl acetate, ethanol, and methanol extracts showed relatively strong DPPH, ABTs, and superoxide radical scavenging activities. Hexane and ethyl acetate extract showed the strongest hydroxyl radical and reactive oxygen species (ROS), respectively, scavenging activities. Sargahydroquinoic acid (SHQA), sargachromanol (SCM) and sargaquinoic acid (SQA) were main antioxidant components in S. serratifolium. Ethanol extract showed the highest levels of SHQA, SCM, and SQA which comprised to be 227 ±â€¯6.31 mg/g. SHQA and SCM exhibited stronger antioxidant capacities than SQA based on lower IC50 values in ROS, DPPH, ABTs, and superoxide radical scavenging assays. The result showed that ethanol is the most efficient extracting solvent for the active components from S. serratifolium and the plant has the potential as a natural antioxidant.


Assuntos
Antioxidantes/análise , Antioxidantes/metabolismo , Sargassum/química , Acetatos/química , Alcenos/análise , Alcenos/metabolismo , Animais , Antioxidantes/farmacologia , Benzoquinonas/análise , Benzoquinonas/metabolismo , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Hexanos/química , Metanol/química , Camundongos , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Alga Marinha/química , Solventes/química
12.
Mar Drugs ; 16(10)2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30304831

RESUMO

Sargassum species have been reported to be a source of phytochemicals, with a wide range of biological activities. In this study, we evaluated the hepatoprotective effect of a meroterpenoid-rich fraction of the ethanolic extract from Sargassum serratifolium (MES) against tert-butyl hydroperoxide (t-BHP)-treated HepG2 cells. Treatment with MES recovered the cell viability from the t-BHP-induced oxidative damage in a dose-dependent manner. It suppressed the reactive oxygen species production, lipid peroxidation, and glutathione depletion in the t-BHP-treated HepG2 cells. The activity of the antioxidants induced by t-BHP, including superoxide dismutase (SOD) and catalase, was reduced by the MES treatment. Moreover, it increased the nuclear translocation of nuclear factor erythroid 2-related factor 2, leading to the enhanced activity of glutathione S transferase, and the increased production of heme oxygenase-1 and NAD(P)H:quinine oxidoreductase 1 in t-BHP-treated HepG2 cells. These results demonstrate that the antioxidant activity of MES substituted the activity of the SOD and catalase, and induced the production of detoxifying enzymes, indicating that MES might be used as a hepatoprotectant against t-BHP-induced oxidative stress.


Assuntos
Etanol/química , Estresse Oxidativo/efeitos dos fármacos , Sargassum/química , Terpenos/química , Terpenos/farmacologia , terc-Butil Hidroperóxido/farmacologia , Antioxidantes/metabolismo , Catalase/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glutationa/metabolismo , Heme Oxigenase-1/metabolismo , Células Hep G2 , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , NADP/metabolismo , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
13.
Biomed Pharmacother ; 104: 582-589, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29803170

RESUMO

Hyperpigmentation disorders of the skin adversely influence the quality of life. We previously demonstrated the hypopigmenting properties of the ethanolic extract from Sargassum serratifolium and identified sargaquinoic acid (SQA) as an active component. The current study aims to investigate the hypopigmenting action of SQA in α-melanocyte stimulating hormone (α-MSH)-stimulated B16F10 cells. SQA attenuated cellular melanin synthesis by inhibiting the expression of the melanogenic enzymes, including tyrosinase (TYR), tyrosinase-related protein 1 (TRP1), and TRP2. SQA also inhibited cellular TYR activity in a dose-dependent manner. Reduced intracellular cAMP accumulation by SQA treatment resulted in the suppressed phosphorylation of cAMP-responsive element-binding protein (CREB), leading to the downregulation of microphthalmia-associated transcription factor (MITF) in α-MSH-stimulated B16F10 cells. SQA increased the phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and MITF (Ser73), inducing proteasomal degradation of MITF. SQA showed high binding affinity to the cAMP binding domain of PKA; the direct binding of SQA to PKA may exert an additional inhibitory effect on the PKA-dependent CREB activation. Our data demonstrated that SQA suppressed melanin production through the cAMP/CREB- and ERK1/2-mediated downregulation of MITF in α-MSH-stimulated B16F10 cells and SQA has a potential therapeutic agent for the treatment of skin hyperpigmentation disorders.


Assuntos
Alcenos/farmacologia , Benzoquinonas/farmacologia , AMP Cíclico/metabolismo , Regulação para Baixo/efeitos dos fármacos , Hiperpigmentação/induzido quimicamente , Fator de Transcrição Associado à Microftalmia/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , alfa-MSH/metabolismo , Animais , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hiperpigmentação/metabolismo , Oxirredutases Intramoleculares/metabolismo , Melaninas/metabolismo , Melanoma Experimental/metabolismo , Camundongos , Monofenol Mono-Oxigenase/metabolismo , Oxirredutases/metabolismo , Fosforilação/efeitos dos fármacos , Qualidade de Vida , Transdução de Sinais/fisiologia
14.
Mar Drugs ; 15(12)2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29194348

RESUMO

Sargassum serratifolium C. Agardh (Phaeophyceae, Fucales) is a marine brown alga that belongs to the family Sargassaceae. It is widely distributed throughout coastal areas of Korea and Japan. S. serratifolium has been found to contain high concentrations of plastoquinones, which have strong anti-cancer, anti-inflammatory, antioxidant, and neuroprotective activity. This study aims to investigate the anti-diabetic activity of S. serratifolium and its major constituents through inhibition of protein tyrosine phosphatase 1B (PTP1B), α-glucosidase, and ONOO--mediated albumin nitration. S. serratifolium ethanolic extract and fractions exhibited broad PTP1B and α-glucosidase inhibitory activity (IC50, 1.83~7.04 and 3.16~24.16 µg/mL for PTP1B and α-glucosidase, respectively). In an attempt to identify bioactive compounds, three plastoquinones (sargahydroquinoic acid, sargachromenol and sargaquinoic acid) were isolated from the active n-hexane fraction of S. serratifolium. All three plastoquinones exhibited dose-dependent inhibitory activity against PTP1B in the IC50 range of 5.14-14.15 µM, while sargachromenol and sargaquinoic acid showed dose-dependent inhibitory activity against α-glucosidase (IC50 42.41 ± 3.09 and 96.17 ± 3.48 µM, respectively). In the kinetic study of PTP1B enzyme inhibition, sargahydroquinoic acid and sargaquinoic acid led to mixed-type inhibition, whereas sargachromenol displayed noncompetitive-type inhibition. Moreover, plastoquinones dose-dependently inhibited ONOO--mediated albumin nitration. Docking simulations of these plastoquinones demonstrated negative binding energies and close proximity to residues in the binding pocket of PTP1B and α-glucosidase, indicating that these plastoquinones have high affinity and tight binding capacity towards the active site of the enzymes. These results demonstrate that S. serratifolium and its major plastoquinones may have the potential as functional food ingredients for the prevention and treatment of type 2 diabetes.


Assuntos
Inibidores Enzimáticos/química , Hipoglicemiantes/química , Extratos Vegetais/química , Plastoquinona/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Sargassum/química , Animais , Organismos Aquáticos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/farmacologia , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Plastoquinona/farmacologia
15.
J Ethnopharmacol ; 209: 62-72, 2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28735729

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Milk thistle leaves and flowers have been traditionally used as herbal remedy to alleviate liver diseases for decades. Korean milk thistle, Cirsium japonicum var. maackii (Maxim.) Matsum has been employed in traditional folk medicine as diuretic, antiphlogistic, hemostatic, and detoxifying agents. AIM OF THE STUDY: The aim of current investigation was to evaluate hepatoprotective properties of the MeOH extract of the roots, stems, leaves and flowers of Korean milk thistle as well as four isolated flavonoids, luteolin, luteolin 5-O-glucoside, apigenin and apigenin 7-O-glucuronide during t-BHP-induced oxidative stress in HepG2 cells. MATERIALS AND METHODS: Hepatoprotective potential of the MeOH extracts and flavonoids derived from Korean milk thistle against t-BHP-induced oxidative stress in HepG2 cells were evaluated following MTT method. Incubating HepG2 cells with t-BHP markedly decreased the cell viability and increased the intracellular ROS generation accompanied by depleted GSH levels. Protein expression of heme oxygenase (HO-1) and nuclear factor-E2-related factor 2 (Nrf-2) was determined by Western blot. RESULTS: Our findings revealed that pretreating HepG2 cells with MeOH extracts and bioactive flavonoids significantly attenuated the t-BHP-induced oxidative damage, followed by increased cell viability in a dose-dependent manner. The results illustrate that excess ROS generation was reduced and GSH levels increased dose-dependently when HepG2 cells were pretreated with four flavonoids. Moreover, Western blotting analysis demonstrated that protein expressions of Nrf-2 and HO-1 were also up-regulated by flavonoids treatment. CONCLUSIONS: These results clearly demonstrate that the MeOH extracts and flavonoids from Korean milk thistle protected HepG2 cells against oxidative damage triggered by t-BHP principally by modulating ROS generation and restoring depleted GSH levels in addition to the increased Nrf-2/HO-1 signaling cascade. These flavonoids are potential natural antioxidative biomarkers against oxidative stress-induced hepatotoxicity.


Assuntos
Cirsium/química , Flavonoides/farmacologia , Extratos Vegetais/farmacologia , terc-Butil Hidroperóxido/toxicidade , Flavonoides/química , Glutationa/metabolismo , Células Hep G2 , Humanos , Estrutura Molecular , Extratos Vegetais/química , Espécies Reativas de Oxigênio , República da Coreia
16.
Int Immunopharmacol ; 42: 81-89, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27902962

RESUMO

Vascular inflammation is a key factor in the pathogenesis of atherosclerosis. The purpose of this study was to investigate the protective effects of sargachromenol (SCM) against tumor necrosis factor (TNF)-α-induced vascular inflammation. SCM decreased the expression of cell adhesion molecules, including intracellular adhesion molecule-1 and vascular cell adhesion molecule-1, in TNF-α-stimulated human umbilical vein endothelial cells (HUVECs), resulted in reduced adhesion of monocytes to HUVECs. SCM also decreased the production of monocyte chemoattractant protein-1 and matrix metalloproteinase-9 in TNF-α-induced HUVECs. Additionally, SCM inhibited activation of nuclear factor kappa B (NF-κB) induced by TNF-α through preventing the degradation of inhibitor kappa B. Moreover, SCM reduced the production of reactive oxygen species in TNF-α-treated HUVECs. Overall, SCM alleviated vascular inflammation through the regulation of NF-κB activation and through its intrinsic antioxidant activity in TNF-α-induced HUVECs. These results indicate that SCM may have potential application as a therapeutic agent against vascular inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Benzopiranos/farmacologia , Endotélio Vascular/efeitos dos fármacos , Monócitos/efeitos dos fármacos , NF-kappa B/metabolismo , Sargassum/imunologia , Adesão Celular/efeitos dos fármacos , Quimiocina CCL2/metabolismo , Endotélio Vascular/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Monócitos/imunologia , Cultura Primária de Células , Espécies Reativas de Oxigênio , Transdução de Sinais/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
17.
J Med Food ; 19(11): 1023-1031, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27845863

RESUMO

Sargassum serratifolium was found to contain high concentrations of meroterpenoids, having strong antioxidant, anti-inflammatory, and neuroprotective activities. This study aims to investigate the anti-inflammatory mechanisms of an ethanolic extract of S. serratifolium (ESS) using lipopolysaccharide (LPS)-stimulated BV2 microglial cells and to identify the anti-inflammatory components in ESS. The level of proinflammatory cytokines was measured by enzyme-linked immunosorbent assay. The expression of inflammation-related proteins and mRNA was evaluated by Western blot and reverse transcription-polymerase chain reaction analysis, respectively. Anti-inflammatory activities of isolated components from ESS were analyzed in LPS-stimulated BV2 cells. ESS inhibited LPS-induced nitric oxide (NO) and prostaglandin E2 and the expression of inducible NO synthase and cyclooxygenase-2. ESS also decreased the release of proinflammatory cytokines in a dose-dependent manner. LPS-induced nuclear factor-kappa B (κB) transcriptional activity and translocation into the nucleus were remarkably suppressed by ESS through the prevention of inhibitor κB-α degradation. The main anti-inflammatory components in ESS were identified as sargahydroquinoic acid, sargachromenol, and sargaquinoic acid based on the inhibition of NO production using LPS-stimulated BV2 cells. Furthermore, treatment with ESS significantly reduced levels of tumor necrosis factor-α and interleukin-1ß stimulated with LPS in mouse hippocampus. Our results indicate that ESS can be used as a functional food or therapeutic agent for the treatment of neuroinflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Lipopolissacarídeos/farmacologia , Microglia/efeitos dos fármacos , Extratos Vegetais/farmacologia , Sargassum/química , Alcenos/farmacologia , Animais , Anti-Inflamatórios/química , Benzopiranos/farmacologia , Benzoquinonas/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Microglia/citologia , Microglia/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , RNA Mensageiro/biossíntese , RNA Mensageiro/efeitos dos fármacos , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos
18.
Prev Nutr Food Sci ; 21(3): 208-220, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27752497

RESUMO

The aim of this study was to investigate the protective effects of juice powders from sweet orange [Citrus sinensis (L.) Osbeck], unshiu mikan (Citrus unshiu Marcow), and mini tomato (Solanum lycopersicum L.), and their major flavonoids, hesperidin, narirutin, and rutin in tert-butyl hydroperoxide (t-BHP)-induced oxidative stress in HepG2 cells. The increased reactive oxygen species and decreased glutathione levels observed in t-BHP-treated HepG2 cells were ameliorated by pretreatment with juice powders, indicating that the hepatoprotective effects of juice powders and their major flavonoids are mediated by induction of cellular defense against oxidative stress. Moreover, pretreatment with juice powders up-regulated phase-II genes such as heme oxygenase-1 (HO-1), thereby preventing cellular damage and the resultant increase in HO-1 expression. The high-performance liquid chromatography profiles of the juice powders confirmed that hesperidin, narirutin, and rutin were the key flavonoids present. Our results suggest that these fruit juice powders and their major flavonoids provide a significant cytoprotective effect against oxidative stress, which is most likely due to the flavonoid-related bioactive compounds present, leading to the normal redox status of cells. Therefore, these fruit juice powders could be advantageous as bioactive sources for the prevention of oxidative injury in hepatoma cells.

19.
Immunopharmacol Immunotoxicol ; 38(3): 244-52, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27121731

RESUMO

OBJECTIVE: Microglial activation has been implicated in many neurological disorders for its inflammatory and neurotrophic effects. In this study, we investigated the pharmaceutical properties of 6,6'-bieckol on the regulation of nuclear factor-κB (NF-κB) activation responsible to the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 using lipopolysaccharide (LPS)-stimulated BV2 and murine primary microglial cells. Meterials and methods: The levels of nitric oxide (NO), prostaglandin E2 (PGE)2, and pro-inflammatory cytokines were measured by Griess assay and enzyme-linked immunosorbent assay. The levels of iNOS, COX-2, mitogen-activated protein kinases (MAPKs), and Akt were measured using Western blot. Nuclear translocation and transcriptional activation of NF-κB were determined by immunofluorescence and reporter gene assay, respectively. RESULTS: We found that 6,6'-bieckol decreased the expression of iNOS and COX-2 as well as pro-inflammatory cytokines in LPS-stimulated BV2 and primary microglial cells in a dose-dependent manner. 6,6'-Bieckol inhibited activation of NF-κB by preventing the degradation of inhibitor κB (IκB)-α and led to prevent the nuclear translocation of NF-κB/p65 subunit. Moreover, 6,6'-bieckol inhibited the phosphorylation of Akt, JNK, and p38 MAPK. DISCUSSION AND CONCLUSION: These results indicate that the anti-inflammatory effect of 6,6'-bieckol on LPS-stimulated microglial cells is mainly regulated by the inhibition of IκB-α/NF-κB and JNK/p38 MAPK/Akt pathways, supporting biochemical characteristics of the compound for therapeutic agent against neuroinflammatory diseases caused by microglial activation.


Assuntos
Anti-Inflamatórios/farmacologia , Regulação para Baixo/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , MAP Quinase Quinase 4/imunologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Microglia/imunologia , NF-kappa B/imunologia , Proteínas Proto-Oncogênicas c-akt/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Animais , Anti-Inflamatórios/química , Regulação para Baixo/imunologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Camundongos , Ratos , Ratos Sprague-Dawley
20.
J Agric Food Chem ; 63(41): 9053-61, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26437568

RESUMO

Sargaquinoic acid (SQA) has been known for its antioxidant and anti-inflammatory properties. This study investigated the effects of SQA isolated from Sargassum serratifolium on the inhibition of tumor necrosis factor (TNF)-α-induced monocyte adhesion to human umbilical vein endothelial cells (HUVECs). SQA decreased the expression of cell adhesion molecules such as intracellular adhesion molecule-1 and vascular cell adhesion molecule-1 as well as chemotactic cytokines such as interleukin-8 and monocyte chemoattractant protein-1 in TNF-α-treated HUVECs. As a result, SQA prevented monocyte adhesion to TNF-α-induced adhesion. SQA also inhibited TNF-α-induced nuclear factor kappa B (NF-κB) translocation into the nucleus by preventing proteolytic degradation of inhibitor κB-α. Overall, SQA protects against TNF-α-induced vascular inflammation through inhibition of the NF-κB pathway in HUVECs. These data suggest that SQA may be used as a therapeutic agent for vascular inflammatory diseases such as atherosclerosis.


Assuntos
Alcenos/farmacologia , Benzoquinonas/farmacologia , Adesão Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/citologia , Monócitos/citologia , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Sargassum/química , Fator de Necrose Tumoral alfa/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Molécula 1 de Adesão de Célula Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA