Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 32(7): 2190-2206, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38796705

RESUMO

X-linked adrenoleukodystrophy (ALD), an inherited neurometabolic disorder caused by mutations in ABCD1, which encodes the peroxisomal ABC transporter, mainly affects the brain, spinal cord, adrenal glands, and testes. In ALD patients, very-long-chain fatty acids (VLCFAs) fail to enter the peroxisome and undergo subsequent ß-oxidation, resulting in their accumulation in the body. It has not been tested whether in vivo base editing or prime editing can be harnessed to ameliorate ALD. We developed a humanized mouse model of ALD by inserting a human cDNA containing the pathogenic variant into the mouse Abcd1 locus. The humanized ALD model showed increased levels of VLCFAs. To correct the mutation, we tested both base editing and prime editing and found that base editing using ABE8e(V106W) could correct the mutation in patient-derived fibroblasts at an efficiency of 7.4%. Adeno-associated virus (AAV)-mediated systemic delivery of NG-ABE8e(V106W) enabled robust correction of the pathogenic variant in the mouse brain (correction efficiency: ∼5.5%), spinal cord (∼5.1%), and adrenal gland (∼2%), leading to a significant reduction in the plasma levels of C26:0/C22:0. This established humanized mouse model and the successful correction of the pathogenic variant using a base editor serve as a significant step toward treating human ALD disease.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Adrenoleucodistrofia , Dependovirus , Modelos Animais de Doenças , Edição de Genes , Terapia Genética , Animais , Adrenoleucodistrofia/terapia , Adrenoleucodistrofia/genética , Camundongos , Humanos , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Adenina , Mutação , Fibroblastos/metabolismo , Ácidos Graxos/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia
2.
Prog Retin Eye Res ; 94: 101132, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36241547

RESUMO

Inherited retinal diseases (IRDs) are vision-threatening retinal disorders caused by pathogenic variants of genes related to visual functions. Genomic analyses in patients with IRDs have revealed pathogenic variants which affect vision. However, treatment options for IRDs are limited to nutritional supplements regardless of genetic variants or gene-targeting approaches based on antisense oligonucleotides and adeno-associated virus vectors limited to targeting few genes. Genome editing, particularly that involving clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 technologies, can correct pathogenic variants and provide additional treatment opportunities. Recently developed base and prime editing platforms based on CRISPR-Cas9 technologies are promising for therapeutic genome editing because they do not employ double-stranded breaks (DSBs), which are associated with P53 activation, large deletions, and chromosomal translocations. Instead, using attached deaminases and reverse transcriptases, base and prime editing efficiently induces specific base substitutions and intended genetic changes (substitutions, deletions, or insertions), respectively, without DSBs. In this review, we will discuss the recent in vivo application of CRISPR-Cas9 technologies, focusing on base and prime editing, in animal models of IRDs.


Assuntos
Sistemas CRISPR-Cas , Doenças Retinianas , Animais , Sistemas CRISPR-Cas/genética , Edição de Genes , Genoma , Doenças Retinianas/genética , Doenças Retinianas/terapia
3.
Nat Biotechnol ; 40(6): 874-884, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35411116

RESUMO

Comprehensive phenotypic characterization of the many mutations found in cancer tissues is one of the biggest challenges in cancer genomics. In this study, we evaluated the functional effects of 29,060 cancer-related transition mutations that result in protein variants on the survival and proliferation of non-tumorigenic lung cells using cytosine and adenine base editors and single guide RNA (sgRNA) libraries. By monitoring base editing efficiencies and outcomes using surrogate target sequences paired with sgRNA-encoding sequences on the lentiviral delivery construct, we identified sgRNAs that induced a single primary protein variant per sgRNA, enabling linking those mutations to the cellular phenotypes caused by base editing. The functions of the vast majority of the protein variants (28,458 variants, 98%) were classified as neutral or likely neutral; only 18 (0.06%) and 157 (0.5%) variants caused outgrowing and likely outgrowing phenotypes, respectively. We expect that our approach can be extended to more variants of unknown significance and other tumor types.


Assuntos
Edição de Genes , Neoplasias , Sistemas CRISPR-Cas , Humanos , Mutação/genética , Neoplasias/genética , RNA Guia de Cinetoplastídeos/genética
4.
Theranostics ; 12(5): 2465-2482, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265220

RESUMO

Outer hair cell (OHC) degeneration is a major cause of progressive hearing loss and presbycusis. Despite the high prevalence of these disorders, targeted therapy is currently not available. Methods: We generated a mouse model harboring Kcnq4W276S/+ to recapitulate DFNA2, a common genetic form of progressive hearing loss accompanied by OHC degeneration. After comprehensive optimization of guide RNAs, Cas9s, vehicles, and delivery routes, we applied in vivo gene editing strategy to disrupt the dominant-negative allele in Kcnq4 and prevent progressive hearing loss. Results:In vivo gene editing using a dual adeno-associated virus package targeting OHCs significantly improved auditory thresholds in auditory brainstem response and distortion-product otoacoustic emission. In addition, we developed a new live-cell imaging technique using thallium ions to investigate the membrane potential of OHCs and successfully demonstrated that mutant allele disruption resulted in more hyperpolarized OHCs, indicating elevated KCNQ4 channel activity. Conclusion: These findings can facilitate the development of targeted therapies for DFNA2 and support the use of CRISPR-based gene therapy to rectify defects in OHCs.


Assuntos
Edição de Genes , Perda Auditiva , Animais , Modelos Animais de Doenças , Células Ciliadas Auditivas Externas/metabolismo , Perda Auditiva/genética , Perda Auditiva/metabolismo , Perda Auditiva/terapia , Canais de Potássio KCNQ/genética , Canais de Potássio KCNQ/metabolismo , Potenciais da Membrana , Camundongos
5.
Nat Biomed Eng ; 6(2): 181-194, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34446856

RESUMO

The use of prime editing-a gene-editing technique that induces small genetic changes without the need for donor DNA and without causing double strand breaks-to correct pathogenic mutations and phenotypes needs to be tested in animal models of human genetic diseases. Here we report the use of prime editors 2 and 3, delivered by hydrodynamic injection, in mice with the genetic liver disease hereditary tyrosinemia, and of prime editor 2, delivered by an adeno-associated virus vector, in mice with the genetic eye disease Leber congenital amaurosis. For each pathogenic mutation, we identified an optimal prime-editing guide RNA by using cells transduced with lentiviral libraries of guide-RNA-encoding sequences paired with the corresponding target sequences. The prime editors precisely corrected the disease-causing mutations and led to the amelioration of the disease phenotypes in the mice, without detectable off-target edits. Prime editing should be tested further in more animal models of genetic diseases.


Assuntos
Oftalmopatias , Edição de Genes , Animais , Edição de Genes/métodos , Fígado , Camundongos , Mutação , Fenótipo
6.
Nat Commun ; 12(1): 183, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420039

RESUMO

We have reported that autophagy is crucial for clearance of amyloidogenic human IAPP (hIAPP) oligomer, suggesting that an autophagy enhancer could be a therapeutic modality against human diabetes with amyloid accumulation. Here, we show that a recently identified autophagy enhancer (MSL-7) reduces hIAPP oligomer accumulation in human induced pluripotent stem cell-derived ß-cells (hiPSC-ß-cells) and diminishes oligomer-mediated apoptosis of ß-cells. Protective effects of MSL-7 against hIAPP oligomer accumulation and hIAPP oligomer-mediated ß-cell death are significantly reduced in cells with knockout of MiTF/TFE family members such as Tfeb or Tfe3. MSL-7 improves glucose tolerance and ß-cell function of hIAPP+ mice on high-fat diet, accompanied by reduced hIAPP oligomer/amyloid accumulation and ß-cell apoptosis. Protective effects of MSL-7 against hIAPP oligomer-mediated ß-cell death and the development of diabetes are also significantly reduced by ß-cell-specific knockout of Tfeb. These results suggest that an autophagy enhancer could have therapeutic potential against human diabetes characterized by islet amyloid accumulation.


Assuntos
Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Autofagia/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Animais , Apoptose/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Técnicas de Inativação de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Secretoras de Insulina , Macroautofagia/fisiologia , Camundongos , Camundongos Transgênicos
7.
Nat Biotechnol ; 39(2): 198-206, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32958957

RESUMO

Prime editing enables the introduction of virtually any small-sized genetic change without requiring donor DNA or double-strand breaks. However, evaluation of prime editing efficiency requires time-consuming experiments, and the factors that affect efficiency have not been extensively investigated. In this study, we performed high-throughput evaluation of prime editor 2 (PE2) activities in human cells using 54,836 pairs of prime editing guide RNAs (pegRNAs) and their target sequences. The resulting data sets allowed us to identify factors affecting PE2 efficiency and to develop three computational models to predict pegRNA efficiency. For a given target sequence, the computational models predict efficiencies of pegRNAs with different lengths of primer binding sites and reverse transcriptase templates for edits of various types and positions. Testing the accuracy of the predictions using test data sets that were not used for training, we found Spearman's correlations between 0.47 and 0.81. Our computational models and information about factors affecting PE2 efficiency will facilitate practical application of prime editing.


Assuntos
Edição de Genes , RNA Guia de Cinetoplastídeos/genética , Algoritmos , Proteína 9 Associada à CRISPR/metabolismo , Linhagem Celular Tumoral , Simulação por Computador , Células HEK293 , Humanos , Aprendizado de Máquina
8.
Cell Death Differ ; 27(11): 3004-3020, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32415280

RESUMO

Conventional screening methods for deubiquitinating enzymes (DUBs) have important limitations. A loss-of-function study based on the knockout of DUB genes in mammalian cells can provide an excellent model for exploring DUB function. Here, we used CRISPR-Cas9 to perform genome-scale knockout of the entire set of genes encoding ubiquitin-specific proteases (USPs), a DUB subfamily, and then systematically screened for DUBs that stabilize the Cdc25A oncoprotein. USP3 was identified as a deubiquitinase of Cdc25A. USP3 depletion reduces the Cdc25A protein level, resulting in a significant delay in cell-cycle progression, and reduces the growth of cervical tumor xenografts in nude mice. Clinically, USP3 expression is positively correlated with Cdc25A protein expression and the poorest survival in breast cancer. We envision that our DUB knockout library kit will facilitate genome-scale screening of functional DUBs for target proteins of interest in a wide range of biomedical fields.


Assuntos
Ciclo Celular/genética , Proteases Específicas de Ubiquitina/genética , Ubiquitinação , Neoplasias do Colo do Útero/metabolismo , Fosfatases cdc25/genética , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Análise de Sobrevida , Proteases Específicas de Ubiquitina/metabolismo , Neoplasias do Colo do Útero/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Fosfatases cdc25/metabolismo
9.
Mol Ther Oncolytics ; 14: 253-265, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31463366

RESUMO

Here, we found two genomic safe harbor (GSH) candidates from chromosomes 3 and 8, based on large-scale population-based cohort data from 4,694 Koreans by CNV analysis. Furthermore, estimated genotype of these CNVRs was validated by quantitative real-time PCR, and epidemiological data examined no significant genetic association between diseases or traits and two CNVRs. After screening the GSH candidates by in silico approaches, we designed TALEN pairs to integrate EGFP expression cassette into human cell lines in order to confirm the functionality of GSH candidates in an in vitro setting. As a result, transgene insertion into one of the two loci using TALEN showed robust transgene expression comparable to that with an AAVS1 site without significantly perturbing neighboring genes. Changing the promoter or cell type did not noticeably disturb this trend. Thus, we could validate two CNVRs as a site for effective and safe transgene insertion in human cells.

10.
Neuron ; 99(1): 83-97.e7, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29937275

RESUMO

Focal malformations of cortical development (FMCDs), including focal cortical dysplasia (FCD) and hemimegalencephaly (HME), are major etiologies of pediatric intractable epilepsies exhibiting cortical dyslamination. Brain somatic mutations in MTOR have recently been identified as a major genetic cause of FMCDs. However, the molecular mechanism by which these mutations lead to cortical dyslamination remains poorly understood. Here, using patient tissue, genome-edited cells, and mouse models with brain somatic mutations in MTOR, we discovered that disruption of neuronal ciliogenesis by the mutations underlies cortical dyslamination in FMCDs. We found that abnormal accumulation of OFD1 at centriolar satellites due to perturbed autophagy was responsible for the defective neuronal ciliogenesis. Additionally, we found that disrupted neuronal ciliogenesis accounted for cortical dyslamination in FMCDs by compromising Wnt signals essential for neuronal polarization. Altogether, this study describes a molecular mechanism by which brain somatic mutations in MTOR contribute to the pathogenesis of cortical dyslamination in FMCDs.


Assuntos
Autofagia/genética , Córtex Cerebral/metabolismo , Cílios , Malformações do Desenvolvimento Cortical/genética , Neurônios/metabolismo , Serina-Treonina Quinases TOR/genética , Adolescente , Animais , Polaridade Celular/genética , Centríolos/metabolismo , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/patologia , Criança , Pré-Escolar , Feminino , Edição de Genes , Células HEK293 , Hemimegalencefalia/embriologia , Hemimegalencefalia/genética , Hemimegalencefalia/patologia , Humanos , Lactente , Masculino , Malformações do Desenvolvimento Cortical/embriologia , Malformações do Desenvolvimento Cortical/patologia , Camundongos , Mutação , Proteínas/metabolismo , Esclerose Tuberosa/embriologia , Esclerose Tuberosa/genética , Esclerose Tuberosa/patologia , Via de Sinalização Wnt
11.
Biochem Biophys Res Commun ; 502(1): 116-122, 2018 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-29787760

RESUMO

Genome editing technology using programmable nucleases has rapidly evolved in recent years. The primary mechanism to achieve precise integration of a transgene is mainly based on homology-directed repair (HDR). However, an HDR-based genome-editing approach is less efficient than non-homologous end-joining (NHEJ). Recently, a microhomology-mediated end-joining (MMEJ)-based transgene integration approach was developed, showing feasibility both in vitro and in vivo. We expanded this method to achieve targeted sequence substitution (TSS) of mutated sequences with normal sequences using double-guide RNAs (gRNAs), and a donor template flanking the microhomologies and target sequence of the gRNAs in vitro and in vivo. Our method could realize more efficient sequence substitution than the HDR-based method in vitro using a reporter cell line, and led to the survival of a hereditary tyrosinemia mouse model in vivo. The proposed MMEJ-based TSS approach could provide a novel therapeutic strategy, in addition to HDR, to achieve gene correction from a mutated sequence to a normal sequence.


Assuntos
Reparo do DNA por Junção de Extremidades , Terapia Genética/métodos , Hidrolases/genética , Tirosinemias/genética , Tirosinemias/terapia , Animais , Modelos Animais de Doenças , Células HEK293 , Humanos , Camundongos , Mutação , RNA Guia de Cinetoplastídeos/genética , RNA Mensageiro/genética , Tirosinemias/patologia
12.
Genome Res ; 2018 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-29326299

RESUMO

KRAS is the most frequently mutated oncogene in human tumors, and its activating mutations represent important therapeutic targets. The combination of Cas9 and guide RNA from the CRISPR-Cas system recognizes a specific DNA sequence and makes a double-strand break, which enables editing of the relevant genes. Here, we harnessed CRISPR to specifically target mutant KRAS alleles in cancer cells. We screened guide RNAs using a reporter system and validated them in cancer cells after lentiviral delivery of Cas9 and guide RNA. The survival, proliferation, and tumorigenicity of cancer cells in vitro and the growth of tumors in vivo were determined after delivery of Cas9 and guide RNA. We identified guide RNAs that efficiently target mutant KRAS without significant alterations of the wild-type allele. Doxycycline-inducible expression of this guide RNA in KRAS-mutant cancer cells transduced with a lentiviral vector encoding Cas9 disrupted the mutant KRAS gene, leading to inhibition of cancer cell proliferation both in vitro and in vivo. Intra-tumoral injection of lentivirus and adeno-associated virus expressing Cas9 and sgRNA suppressed tumor growth in vivo, albeit incompletely, in immunodeficient mice. Expression of Cas9 and the guide RNA in cells containing wild-type KRAS did not alter cell survival or proliferation either in vitro and in vivo. Our study provides a proof-of-concept that CRISPR can be utilized to target driver mutations of cancers in vitro and in vivo.

13.
Drug Discov Today ; 22(12): 1816-1824, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28847759

RESUMO

The Ran-binding protein microtubule-organizing center (RanBPM) is a highly conserved nucleocytoplasmic protein involved in a variety of intracellular signaling pathways that control diverse cellular functions. RanBPM interacts with proteins that are linked to various diseases, including Alzheimer's disease (AD), schizophrenia (SCZ), and cancer. In this article, we define the characteristics of the scaffolding protein RanBPM and focus on its interaction partners in diverse physiological disorders, such as neurological diseases, fertility disorders, and cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Animais , Encefalopatias/metabolismo , Proteínas do Citoesqueleto/química , Humanos , Neoplasias/metabolismo , Proteínas Nucleares/química , Reprodução/fisiologia
14.
Stem Cells Transl Med ; 6(3): 1040-1051, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28186692

RESUMO

Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) exhibit potency for the regeneration of infarcted hearts. Vascular endothelial growth factor (VEGF) is capable of inducing angiogenesis and can boost stem cell-based therapeutic effects. However, high levels of VEGF can cause abnormal blood vessel growth and hemangiomas. Thus, a controllable system to induce therapeutic levels of VEGF is required for cell therapy. We generated an inducible VEGF-secreting stem cell (VEGF/hUCB-MSC) that controls the expression of VEGF and tested the therapeutic efficacy in rat myocardial infarction (MI) model to apply functional stem cells to MI. To introduce the inducible VEGF gene cassette into a safe harbor site of the hUCB-MSC chromosome, the transcription activator-like effector nucleases system was used. After confirming the integration of the cassette into the locus, VEGF secretion in physiological concentration from VEGF/hUCB-MSCs after doxycycline (Dox) induction was proved in conditioned media. VEGF secretion was detected in mice implanted with VEGF/hUCB-MSCs grown via a cell sheet system. Vessel formation was induced in mice transplanted with Matrigel containing VEGF/hUCB-MSCs treated with Dox. Moreover, seeding of the VEGF/hUCB-MSCs onto the cardiac patch significantly improved the left ventricle ejection fraction and fractional shortening in a rat MI model upon VEGF induction. Induced VEGF/hUCB-MSC patches significantly decreased the MI size and fibrosis and increased muscle thickness, suggesting improved survival of cardiomyocytes and protection from MI damage. These results suggest that our inducible VEGF-secreting stem cell system is an effective therapeutic approach for the treatment of MI. Stem Cells Translational Medicine 2017;6:1040-1051.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Infarto do Miocárdio/terapia , Animais , Feminino , Humanos , Células-Tronco Mesenquimais/fisiologia , Camundongos , Neovascularização Fisiológica/fisiologia , Fator A de Crescimento do Endotélio Vascular
15.
Am J Hum Genet ; 100(3): 454-472, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28215400

RESUMO

Focal cortical dysplasia (FCD) is a major cause of the sporadic form of intractable focal epilepsies that require surgical treatment. It has recently been reported that brain somatic mutations in MTOR account for 15%-25% of FCD type II (FCDII), characterized by cortical dyslamination and dysmorphic neurons. However, the genetic etiologies of FCDII-affected individuals who lack the MTOR mutation remain unclear. Here, we performed deep hybrid capture and amplicon sequencing (read depth of 100×-20,012×) of five important mTOR pathway genes-PIK3CA, PIK3R2, AKT3, TSC1, and TSC2-by using paired brain and saliva samples from 40 FCDII individuals negative for MTOR mutations. We found that 5 of 40 individuals (12.5%) had brain somatic mutations in TSC1 (c.64C>T [p.Arg22Trp] and c.610C>T [p.Arg204Cys]) and TSC2 (c.4639G>A [p.Val1547Ile]), and these results were reproducible on two different sequencing platforms. All identified mutations induced hyperactivation of the mTOR pathway by disrupting the formation or function of the TSC1-TSC2 complex. Furthermore, in utero CRISPR-Cas9-mediated genome editing of Tsc1 or Tsc2 induced the development of spontaneous behavioral seizures, as well as cytomegalic neurons and cortical dyslamination. These results show that brain somatic mutations in TSC1 and TSC2 cause FCD and that in utero application of the CRISPR-Cas9 system is useful for generating neurodevelopmental disease models of somatic mutations in the brain.


Assuntos
Epilepsia/genética , Malformações do Desenvolvimento Cortical do Grupo I/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Animais , Encéfalo/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Criança , Classe I de Fosfatidilinositol 3-Quinases , Clonagem Molecular , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Mutação , Neurônios , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Saliva/química , Análise de Sequência de DNA , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/genética , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa
16.
Int J Mol Sci ; 17(9)2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27649153

RESUMO

Transplantation of mesenchymal stem cells (MSCs) has paracrine effects; however, the effects are known to be largely limited. Here we investigated the combination effects of cell transplantation and enriched environment (EE) in a model of hypoxic-ischemic brain injury. Brain damage was induced in seven-day-old mice by unilateral carotid artery ligation and exposure to hypoxia (8% O2 for 90 min). At six weeks of age, the mice were randomly assigned to four groups: phosphate-buffered saline (PBS)-control (CON), PBS-EE, MSC-CON, and MSC-EE. Rotarod and grip strength tests were performed to evaluate neurobehavioral functions. Histologic evaluations were also performed to confirm the extent of astrocyte activation and endogenous angiogenesis. An array-based multiplex ELISA and Western blot were used to identify growth factors in vivo and in vitro. Two weeks after treatment, levels of astrocyte density and angiogenic factors were increased in MSC-EE mice, but glial scarring was not increased. Eight weeks after treatment, angiogenesis was increased, and behavioral outcomes were synergistically improved in the MSC-EE group. Astrocytes co-cultured with MSCs expressed higher levels of angiogenic factors than astrocytes cultured alone. The mechanisms of this synergistic effect included enhanced repair processes, such as increased endogenous angiogenesis and upregulation of angiogenic factors released from activated astrocytes.


Assuntos
Astrócitos/fisiologia , Vasos Sanguíneos/fisiopatologia , Lesões Encefálicas/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/fisiologia , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Western Blotting , Lesões Encefálicas/etiologia , Lesões Encefálicas/fisiopatologia , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Feminino , Hipóxia-Isquemia Encefálica/complicações , Hipóxia-Isquemia Encefálica/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos Endogâmicos ICR , Microscopia Confocal , Atividade Motora/fisiologia , Neuroglia/citologia , Neuroglia/metabolismo , Neuroglia/fisiologia , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
Mol Ther ; 24(9): 1538-49, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27455881

RESUMO

Recovery from ischemic tissue injury can be promoted by cell proliferation and neovascularization. Transient expression of four pluripotency factors (Pou5f1, Sox2, Myc, and Klf4) has been used to convert cell types but never been tested as a means to promote functional recovery from ischemic injury. Here we aimed to determine whether transient in situ pluripotency factor expression can improve neurobehavioral function. Cerebral ischemia was induced by transient bilateral common carotid artery occlusion, after which the four pluripotency factors were expressed through either doxycycline administration into the lateral ventricle in transgenic mice in which the four factors are expressed in a doxycycline-inducible manner. Histologic evaluation showed that this transient expression induced the proliferative generation of astrocytes and/or neural progenitors, but not neurons or glial scar, and increased neovascularization with upregulation of angiogenic factors. Furthermore, in vivo pluripotency factor expression caused neuroprotective effects such as increased numbers of mature neurons and levels of synaptic markers in the striatum. Dysplasia or tumor development was not observed. Importantly, neurobehavioral evaluations such as rotarod and ladder walking tests showed that the expression of the four factors dramatically promoted functional restoration from ischemic injury. These results provide a basis for novel therapeutic modality development for cerebral ischemia.


Assuntos
Isquemia Encefálica/genética , Isquemia Encefálica/fisiopatologia , Expressão Gênica , Recuperação de Função Fisiológica/genética , Animais , Astrócitos/metabolismo , Contagem de Células , Linhagem Celular , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Genes myc , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Ventrículos Laterais/metabolismo , Ventrículos Laterais/patologia , Camundongos , Camundongos Transgênicos , Neovascularização Patológica/genética , Células-Tronco Neurais/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fatores de Transcrição SOXB1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA