Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Biomed Pharmacother ; 165: 115232, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37523986

RESUMO

Doxorubicin, a member of the anthracycline family, is a widely prescribed anticancer chemotherapy drug. Unfortunately, cumulative doses of doxorubicin can cause mitochondrial dysfunction, leading to acute or chronic cardiotoxicity. This study demonstrated that Neopetroside-B (NPS-B) protects cardiomyocytes in the presence of doxorubicin. NPS-B improved mitochondrial function in cardiomyocytes by increasing ATP production and oxygen consumption rates. On the other hand, NPS-B negatively influenced cancer cell lines by increasing reactive oxygen species. We analyzed NPS-B-influenced metabolites (VIP > 1.0; AUC>0.7; p < 0.05) and proteins (FC > 2.0) and constructed metabolite-protein enrichment, which showed that NPS-B affected uracil metabolism and NAD-binding proteins (e.g., aldehyde dehydrogenase and glutathione reductase) in cardiomyocytes. However, for the cancer cells, NPS-B decreased the NAD+/NADH balance, impairing cell viability. In a xenograft mouse model treated with doxorubicin, NPS-B reduced cardiac fibrosis and improved cardiac function. NPS-B may be a beneficial intervention to reducing doxorubicin-induced cardiotoxicity with anticancer effects.


Assuntos
Antineoplásicos , Cardiotoxicidade , Humanos , Camundongos , Animais , Cardiotoxicidade/metabolismo , NAD/metabolismo , Doxorrubicina , Antibióticos Antineoplásicos , Antineoplásicos/farmacologia , Miócitos Cardíacos , Mitocôndrias/metabolismo
2.
Biomed Pharmacother ; 162: 114589, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37004327

RESUMO

Echinochrome A, a natural naphthoquinone pigment found in sea urchins, is increasingly being investigated for its nutritional and therapeutic value associated with antioxidant, anticancer, antiviral, antidiabetic, and cardioprotective activities. Although several studies have demonstrated the biological effects and therapeutic potential of echinochrome A, little is known regarding its biopharmaceutical behaviors. Here, we aimed to investigate the physicochemical properties and metabolic profiles of echinochrome A and establish a physiologically-based pharmacokinetic (PBPK) model as a useful tool to support its clinical applications. We found that the lipophilicity, color variability, ultraviolet/visible spectrometry, and stability of echinochrome A were markedly affected by pH conditions. Moreover, metabolic and pharmacokinetic profiling studies demonstrated that echinochrome A is eliminated primarily by hepatic metabolism and that four possible metabolites, i.e., two glucuronidated and two methylated conjugates, are formed in rat and human liver preparations. A whole-body PBPK model incorporating the newly identified hepatic phase II metabolic process was constructed and optimized with respect to chemical-specific parameters. Furthermore, model simulations suggested that echinochrome A could exhibit linear disposition profiles without systemic and local tissue accumulation in clinical settings. Our proposed PBPK model of echinochrome A could be a valuable tool for predicting drug interactions in previously unexplored scenarios and for optimizing dosage regimens and drug formulations.


Assuntos
Naftoquinonas , Humanos , Ratos , Animais , Naftoquinonas/uso terapêutico , Antioxidantes , Interações Medicamentosas , Ouriços-do-Mar/metabolismo , Modelos Biológicos
3.
Mar Drugs ; 20(12)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36547876

RESUMO

Post-menopausal dry mouth or xerostomia is caused by reduced salivary secretion. This study aimed to investigate the efficacy of echinochrome A (Ech A) in alleviating submandibular gland dysfunctions in ovariectomized rats that mimic menopause. Female rats that were eight-weeks-old were randomly divided into SHAM-6, -12; OVX-6, -12; and ECH-6, -12 groups (consisting of 6- and 12-weeks post-sham-operated, ovariectomized, and Ech A-treated ovariectomized rats, respectively). The ECH groups had lower body weight than OVX but similar food intake and estradiol or estrogen receptor ß expression. However, the ECH groups had lower mRNA expression of sterol-regulatory element binding protein-1c (Srebp-1c), acetyl-CoA carboxylase (Acc), fatty acid synthase (Fasn), cluster of differentiation 36 (Cd36), and lipid vacuole deposition than OVX mice. Moreover, reactive oxygen species (ROS), malondialdehyde (MDA), and iron accumulation were lower in the ECH than in the OVX groups. Fibrosis markers, transforming growth factor ß (Tgf-ßI and Tgf-ßII mRNA) increased in the OVX than SHAM groups but decreased in the ECH groups. Aquaporin (Aqp-1 and Aqp-5 mRNA) and mucin expressions were downregulated in the OVX groups but improved with Ech A. In addition, Ech A prevented post-menopausal salivary gland dysfunction by inhibiting lipogenesis and ferroptosis. These findings suggest Ech A as an effective remedy for treating menopausal dry mouth.


Assuntos
Estrogênios , Xerostomia , Animais , Feminino , Camundongos , Ratos , Estradiol , Estrogênios/farmacologia , Ovariectomia , Ratos Sprague-Dawley , RNA Mensageiro , Glândula Submandibular
4.
Mar Drugs ; 20(9)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36135744

RESUMO

Excessive increase in melanin pigment in the skin can be caused by a variety of environmental factors, including UV radiation, and can result in spots, freckles, and skin cancer. Therefore, it is important to develop functional whitening cosmetic reagents that regulate melanogenesis. In this study, we investigated the effects of echinochrome A (Ech A) on melanogenesis in the B16F10 murine melanoma cell line. We triggered B16F10 cells using α-MSH under Ech A treatment to observe melanin synthesis and analyze expression changes in melanogenesis-related enzymes (tyrosinase, tyrosinase-related protein 1 (TYRP1), and tyrosinase-related protein 2 (TYRP2)) at the mRNA and protein levels. Furthermore, we measured expression changes in the microphthalmia-associated transcription factor (MITF), CREB, and pCREB proteins. Melanin synthesis in the cells stimulated by α-MSH was significantly reduced by Ech A. The expression of the tyrosinase, TYRP1, and TYRP2 mRNA and proteins was significantly decreased by Ech A, as was that of the MITF, CREB, and pCREB proteins. These results show that Ech A suppresses melanin synthesis by regulating melanogenesis-related enzymes through the CREB signaling pathway and suggest the potential of Ech A as a functional agent to prevent pigmentation and promote skin whitening.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Melanoma Experimental , Naftoquinonas , Animais , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Melaninas , Camundongos , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Naftoquinonas/farmacologia , RNA Mensageiro , Transdução de Sinais , alfa-MSH/farmacologia
5.
JACC Basic Transl Sci ; 7(11): 1102-1116, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36687267

RESUMO

Recent trends suggest novel natural compounds as promising treatments for cardiovascular disease. The authors examined how neopetroside A, a natural pyridine nucleoside containing an α-glycoside bond, regulates mitochondrial metabolism and heart function and investigated its cardioprotective role against ischemia/reperfusion injury. Neopetroside A treatment maintained cardiac hemodynamic status and mitochondrial respiration capacity and significantly prevented cardiac fibrosis in murine models. These effects can be attributed to preserved cellular and mitochondrial function caused by the inhibition of glycogen synthase kinase-3 beta, which regulates the ratio of nicotinamide adenine dinucleotide to nicotinamide adenine dinucleotide, reduced, through activation of the nuclear factor erythroid 2-related factor 2/NAD(P)H quinone oxidoreductase 1 axis in a phosphorylation-independent manner.

6.
Int J Oncol ; 60(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34913076

RESUMO

Myeloid cell leukemia sequence 1 (MCL­1), an anti­apoptotic B­cell lymphoma 2 (BCL­2) family molecule frequently amplified in various human cancer cells, is known to be critical for cancer cell survival. MCL­1 has been recognized as a target molecule for cancer treatment. While various agents have emerged as potential MCL­1 blockers, the present study presented acriflavine (ACF) as a novel MCL­1 inhibitor in triple­negative breast cancer (TNBC). Further evaluation of its treatment potential on lung adenocarcinoma and glioblastoma multiforme (GBM) was also investigated. The anticancer effect of ACF on TNBC cells was demonstrated when MDA­MB­231 and HS578T cells were treated with ACF. ACF significantly induced typical intrinsic apoptosis in TNBCs in a dose­ and time­dependent manner via MCL­1 downregulation. MCL­1 downregulation by ACF treatment was revealed at each phase of protein expression. Initially, transcriptional regulation via reverse transcription­quantitative PCR was validated. Then, post­translational regulation was explained by utilizing an inhibitor against protein biosynthesis and proteasome. Lastly, immunoprecipitation of ubiquitinated MCL­1 confirmed the post­translational downregulation of MCL­1. In addition, the synergistic treatment efficacy of ACF with the well­known MCL­1 inhibitor ABT­263 against the TNBC cells was explored [combination index (CI)<1]. Conjointly, the anticancer effect of ACF was assessed in GBM (U87, U251 and U343), and lung cancer (A549 and NCI­H69) cell lines as well, using immunoblotting, cytotoxicity assay and FACS. The effect of the combination treatment using ACF and ABT­263 was estimated in GBM (U87, U343 and U251), and non­small cell lung cancer (A549) cells likewise. The present study suggested a novel MCL­1 inhibitory function of ACF and the synergistic antitumor effect with ABT­263.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Acriflavina/farmacologia , Acriflavina/uso terapêutico , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Linhagem Celular Tumoral/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Combinação de Medicamentos , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/uso terapêutico , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico
7.
J Med Food ; 24(11): 1222-1229, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34714126

RESUMO

Reoxygenation of hypoxic cardiac myocytes can paradoxically induce myocardial injury and affect the recovery processes. Pharmacological postconditioning is an efficient strategy used in clinical practice that protects cardiomyocytes from hypoxia/reoxygenation (HR) injury. Natural products or foods have been known to possess effective cardioprotective properties. Majonoside-R2 (MR2) is a dominant saponin component of Vietnamese ginseng that has several biological effects. In this study, we evaluated the protective effect of MR2 on HR-stimulated cardiomyocytes and investigated the related molecular mechanisms. H9C2 cardiomyocytes were exposed to HR conditions with or without MR2 supplementation. Samples from experimental groups were used to analyze the expression of apoptosis- and activating reperfusion injury salvage kinase (RISK)-related factors in response to HR injury by using enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and Western blotting. Post-treatment, MR2 enhanced cell viability under HR conditions. We found that MR2 suppressed the expression of hypoxia-inducible factor 1-alpha (HIF1α) and transforming growth factor beta 1 (TGFß1), modulated Akt/GSK3ß/cAMP response element-binding signaling, and regulated gene expression related to apoptosis (B cell lymphoma-extra-large [Bcl-xl], Bcl-2 homologous killer [Bak], Bcl-2 associated X [Bax], and connexin 43 [Cnx43]). Thus, the present findings demonstrate that MR2 protects cardiomyocytes against HR injury by suppressing the expression of HIF1α and activating the RISK pathway.


Assuntos
Ginsenosídeos , Traumatismo por Reperfusão Miocárdica , Apoptose , Sobrevivência Celular , Humanos , Hipóxia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos
8.
BMB Rep ; 54(11): 575-580, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34674798

RESUMO

Cisplatin is widely known as an anti-cancer drug. However, the effects of cisplatin on mitochondrial function and autophagyrelated proteins levels in the skeletal muscle are unclear. The purpose of this study was to investigate the effect of different doses of cisplatin on mitochondrial function and autophagy-related protein levels in the skeletal muscle of rats. Eight-weekold male Wistar rats (n = 24) were assigned to one of three groups; the first group was administered a saline placebo (CON, n = 10), and the second and third groups were given 0.1 mg/kg body weight (BW) (n = 6), and 0.5 mg/kg BW (n = 8) of cisplatin, respectively. The group that had been administered 0.5 mg cisplatin exhibited a reduced BW, skeletal muscle tissue weight, and mitochondrial function and upregulated levels of autophagy-related proteins, including LC3II, Beclin 1, and BNIP3. Moreover, this group had a high LC3 II/I ratio in the skeletal muscle; i.e., the administration of a high dose of cisplatin decreased the muscle mass and mitochondrial function and increased the levels of autophagy-related proteins. These results, thus, suggest that reducing mitochondrial dysfunction and autophagy pathways may be important for preventing skeletal muscle atrophy following cisplatin administration. [BMB Reports 2021; 54(11): 575-580].


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Cisplatino/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Proteínas Relacionadas à Autofagia/genética , Masculino , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Fosforilação , Ratos , Ratos Wistar
9.
Mar Drugs ; 19(8)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34436251

RESUMO

The marine drug histochrome is a special natural antioxidant. The active substance of the drug is echinochrome A (Ech A, 7-ethyl-2,3,5,6,8-pentahydroxy-1,4-naphthoquinone), the most abundant quinonoid pigment in sea urchins. The medicine is clinically used in cardiology and ophthalmology based on the unique properties of Ech A, which simultaneously block various links of free radical reactions. In the last decade, numerous studies have demonstrated the effectiveness of histochrome in various disease models without adverse effects. Here, we review the data on the various clinical effects and modes of action of Ech A in ophthalmic, cardiovascular, cerebrovascular, inflammatory, metabolic, and malignant diseases.


Assuntos
Antioxidantes/farmacologia , Naftoquinonas/farmacologia , Naftoquinonas/uso terapêutico , Organismos Aquáticos , Humanos
10.
J Lipid Atheroscler ; 10(2): 223-239, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34095014

RESUMO

OBJECTIVE: Ischemic cardiomyopathy (ICM) is the leading cause of heart failure. Proteomic and genomic studies have demonstrated ischemic preconditioning (IPC) can assert cardioprotection against ICM through mitochondrial function regulation. Considering IPC is conducted in a relatively brief period, regulation of protein expression also occurs very rapidly, highlighting the importance of protein function modulation by post-translational modifications. This study aimed to identify and analyze novel phosphorylated mitochondrial proteins that can be harnessed for therapeutic strategies for preventing ischemia/reperfusion (I/R) injury. METHODS: Sprague-Dawley rat hearts were used in an ex vivo Langendorff system to simulate normal perfusion, I/R, and IPC condition, after which the samples were prepared for phosphoproteomic analysis. Employing human cardiomyocyte AC16 cells, we investigated the cardioprotective role of CKMT2 through overexpression and how site-directed mutagenesis of putative CKMT2 phosphorylation sites (Y159A, Y255A, and Y368A) can affect cardioprotection by measuring CKMT2 protein activity, mitochondrial function and protein expression changes. RESULTS: The phosphoproteomic analysis revealed dephosphorylation of mitochondrial creatine kinase (CKMT2) during ischemia and I/R, while preserving its phosphorylated state during IPC. CKMT2 overexpression conferred cardioprotection against hypoxia/reoxygenation (H/R) by increasing cell viability and mitochondrial adenosine triphosphate level, preserving mitochondrial membrane potential, and reduced reactive oxygen species (ROS) generation, while phosphomutations, especially in Y368, nullified cardioprotection by significantly reducing cell viability and increasing ROS production during H/R. CKMT2 overexpression increased mitochondrial function by mediating the proliferator-activated receptor γ coactivator-1α/estrogen-related receptor-α pathway, and these effects were mostly inhibited by Y368A mutation. CONCLUSION: These results suggest that regulation of quantitative expression and phosphorylation site Y368 of CKMT2 offers a unique mechanism in future ICM therapeutics.

11.
Mar Drugs ; 19(5)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922418

RESUMO

Scleroderma is an autoimmune disease caused by the abnormal regulation of extracellular matrix synthesis and is activated by non-regulated inflammatory cells and cytokines. Echinochrome A (EchA), a natural pigment isolated from sea urchins, has been demonstrated to have antioxidant activities and beneficial effects in various disease models. The present study demonstrates for the first time that EchA treatment alleviates bleomycin-induced scleroderma by normalizing dermal thickness and suppressing collagen deposition in vivo. EchA treatment reduces the number of activated myofibroblasts expressing α-SMA, vimentin, and phosphorylated Smad3 in bleomycin-induced scleroderma. In addition, it decreased the number of macrophages, including M1 and M2 types in the affected skin, suggesting the induction of an anti-inflammatory effect. Furthermore, EchA treatment markedly attenuated serum levels of inflammatory cytokines, such as tumor necrosis factor-α and interferon-γ, in a murine scleroderma model. Taken together, these results suggest that EchA is highly useful for the treatment of scleroderma, exerting anti-fibrosis and anti-inflammatory effects.


Assuntos
Anti-Inflamatórios/farmacologia , Macrófagos/efeitos dos fármacos , Miofibroblastos/efeitos dos fármacos , Naftoquinonas/farmacologia , Escleroderma Sistêmico/prevenção & controle , Pele/efeitos dos fármacos , Actinas/metabolismo , Animais , Bleomicina , Colágeno/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Fibrose , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/imunologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Fosforilação , Células RAW 264.7 , Escleroderma Sistêmico/induzido quimicamente , Escleroderma Sistêmico/imunologia , Escleroderma Sistêmico/metabolismo , Pele/imunologia , Pele/metabolismo , Pele/patologia , Proteína Smad3/metabolismo , Vimentina/metabolismo
12.
Mar Drugs ; 18(2)2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31991543

RESUMO

Here, we investigated the effects of sex hormones on extracellular matrix (ECM)-related gene expression in the vocal fold lamina propria of ovariectomized (after ovary removal) rats and verified whether echinochrome A (ECH) exerts any therapeutic effects on ECM reconstitution after estrogen deficiency in ovariectomized rats. Sprague-Dawley female rats (9 weeks old) were acclimatized for a week and randomly divided into three groups (n = 15 each group) as follows: group I (sham-operated rats, SHAM), group II (ovariectomized rats, OVX), group III (ovariectomized rats treated with ECH, OVX + ECH). Rats from the OVX + ECH group were intraperitoneally injected with ECH at 10 mg/kg thrice a week after surgery for 6 weeks. And rats were sacrificed 6 weeks after ovariectomy. Estradiol levels decreased in OVX group compared with the SHAM group. ECH treatment had no effect on the levels of estradiol and expression of estrogen receptor ß (ERß). The evaluation of ECM components showed no significant changes in elastin and hyaluronic acid levels between the different groups. Collagen I and III levels were lower in OVX group than in SHAM group but increased in OVX + ECH group. The mRNA levels of matrix metalloproteinase (MMP)-1, -2, -8, and -9 were significantly higher in the OVX group than in the SHAM group, but decreased in the OVX + ECH group. Thus, changes were observed in ECM-related genes in the OVX group upon estradiol deficiency that were ameliorated by ECH administration. Thus, the vocal fold is an estradiol-sensitive target organ and ECH may have protective effects on the ECM of vocal folds in ovariectomized rats.


Assuntos
Estradiol/deficiência , Matriz Extracelular/efeitos dos fármacos , Naftoquinonas/administração & dosagem , Prega Vocal/efeitos dos fármacos , Vocalização Animal/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Feminino , Humanos , Ovariectomia/efeitos adversos , Ratos , Ratos Sprague-Dawley , Prega Vocal/citologia , Prega Vocal/fisiologia , Vocalização Animal/fisiologia
13.
Mar Drugs ; 17(11)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683521

RESUMO

Echinochrome A (Ech A), a natural pigment extracted from sea urchins, is the active ingredient of a marine-derived pharmaceutical called 'histochrome'. Since it exhibits several biological activities including anti-oxidative and anti-inflammatory effects, it has been applied to the management of cardiac injury and ocular degenerative disorders in Russia and its protective role has been studied for other pathologic conditions. In the present study, we sought to investigate the therapeutic potential of Ech A for inflammatory bowel disease (IBD) using a murine model of experimental colitis. We found that intravenous injection of Ech A significantly prevented body weight loss and subsequent lethality in colitis-induced mice. Interestingly, T cell proliferation was significantly inhibited upon Ech A treatment in vitro. During the helper T (Th) cell differentiation process, Ech A stimulated the generation regulatory T (Treg) cells that modulate the inflammatory response and immune homeostasis. Moreover, Ech A treatment suppressed the in vitro activation of pro-inflammatory M1 type macrophages, while inducing the production of M2 type macrophages that promote the resolution of inflammation and initiate tissue repair. Based on these results, we suggest that Ech A could provide a beneficial impact on IBD by correcting the imbalance in the intestinal immune system.


Assuntos
Anti-Inflamatórios/farmacologia , Colite/tratamento farmacológico , Naftoquinonas/farmacologia , Naftoquinonas/farmacocinética , Animais , Colite/induzido quimicamente , Citocinas/metabolismo , Humanos , Inflamação , Leucócitos Mononucleares , Macrófagos/efeitos dos fármacos , Camundongos
14.
Biomed Pharmacother ; 116: 109050, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31170662

RESUMO

The genes of Gekkonidae, a lizard, are known to be very similar to human genes. According to previous research, lizard extracts inhibit angiogenesis and show anticancer activity against various cancers. In this regard, this study assessed whether lizard tail extracts (LTE) cause anticancer activity against lung cancer in mouse and human lung cancer cell lines. The results showed that LTE exhibited anticancer activity against lung cancer in vitro and in vivo. In vitro, cell viability and proliferation decreased in two lung cancer cell lines, while annexin V and single-stranded DNA both increased, showing apoptotic activity caused by LTE. We also found that LTE induced apoptosis in a caspase-3/7 cascade-dependent manner and inhibited the phosphorylation of Akt by participating in the PI3k/Akt pathway. In vivo, LTE decreased tumor volume in LLC bearing mice. Our results demonstrate the potential of LTE as a natural-derived anticancer drug to overcome the chemotherapy side effects during cancer treatment and contribute to the discovery of candidate substances.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Lagartos/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Extratos de Tecidos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Clonais , Ativação Enzimática/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/enzimologia , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Cauda , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Mar Drugs ; 17(1)2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30577438

RESUMO

Doxorubicin, an anthracycline from Streptomyces peucetius, exhibits antitumor activity against various cancers. However, doxorubicin is cardiotoxic at cumulative doses, causing increases in intracellular reactive oxygen species in the heart. Spinochrome D (SpD) has a structure of 2,3,5,6,8-pentahydroxy-1,4-naphthoquinone and is a structural analogue of well-known sea urchin pigment echinochrome A. We previously reported that echinochrome A is cardioprotective against doxorubicin toxicity. In the present study, we assessed the cardioprotective effects of SpD against doxorubicin and determined the underlying mechanism. ¹H-NMR-based metabolomics and mass spectrometry-based proteomics were utilized to characterize the metabolites and proteins induced by SpD in a human cardiomyocyte cell line (AC16) and human breast cancer cell line (MCF-7). Multivariate analyses identified 12 discriminating metabolites (variable importance in projection > 1.0) and 1814 proteins from SpD-treated AC16 cells. Proteomics and metabolomics analyses showed that glutathione metabolism was significantly influenced by SpD treatment in AC16 cells. SpD treatment increased ATP production and the oxygen consumption rate in D-galactose-treated AC16 cells. SpD protected AC16 cells from doxorubicin cytotoxicity, but it did not affect the anticancer properties. With SpD treatment, the mitochondrial membrane potential and mitochondrial calcium localization were significantly different between cardiomyocytes and cancer cell lines. Our findings suggest that SpD could be cardioprotective against the cytotoxicity of doxorubicin.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Cardiotônicos/farmacologia , Cardiotoxicidade/prevenção & controle , Doxorrubicina/efeitos adversos , Miócitos Cardíacos/efeitos dos fármacos , Naftoquinonas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Cardiotônicos/isolamento & purificação , Cardiotoxicidade/etiologia , Sobrevivência Celular/efeitos dos fármacos , Feminino , Glutationa/metabolismo , Células HeLa , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Metabolômica/métodos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Naftoquinonas/isolamento & purificação , Neoplasias/tratamento farmacológico , Ressonância Magnética Nuclear Biomolecular/métodos , Estresse Oxidativo/efeitos dos fármacos , Proteômica/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Ouriços-do-Mar
16.
Biochem Biophys Res Commun ; 505(3): 768-774, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30297109

RESUMO

Unlike stable and immobile cell line conditions, animal hearts contract and relax to pump blood throughout the body. Mitochondria play an essential role by producing biological energy molecules to maintain heart function. In this study, we assessed the effect of heart mimetic cyclic stretch on mitochondria in a cardiac cell line. To mimic the geometric and biomechanical conditions surrounding cells in vivo, cyclic stretching was performed on HL-1 murine cardiomyocytes seeded onto an elastic micropatterned substrate (10% elongation, 0.5 Hz, 4 h/day). Cell viability, semi-quantitative Q-PCR, and western blot analyses were performed in non-stimulated control and cyclic stretch stimulated HL-1 cell lines. Cyclic stretch significantly increased the expression of mitochondria biogenesis-related genes (TUFM, TFAM, ERRα, and PGC1-α) and mitochondria oxidative phosphorylation-related genes (PHB1 and CYTB). Western blot analysis confirmed that cyclic stretch increased protein levels of mitochondria biogenesis-related proteins (TFAM, and ERRα) and oxidative phosphorylation-related proteins (NDUFS1, UQCRC, and PHB1). Consequently, cyclic stretch increased mitochondrial mass and ATP production in treated cells. Our results suggest that cyclic stretch transcriptionally enhanced mitochondria biogenesis and oxidative phosphorylation without detrimental effects in a cultured cardiac cell line.


Assuntos
Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Biogênese de Organelas , Estresse Mecânico , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Expressão Gênica , Camundongos , Mitocôndrias Cardíacas/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Miócitos Cardíacos/citologia , Fosforilação Oxidativa
17.
Cancer Lett ; 432: 205-215, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-29933047

RESUMO

Multiple myeloma (MM) is a neoplastic plasma cell disorder with high disease recurrence rates. Novel therapeutic approaches capable of improving outcomes in patients with MM are urgently required. The AKT signalling plays a critical regulatory role in MM pathophysiology, including survival, proliferation, metabolism, and has emerged as a key therapeutic target. Here, we identified a novel AKT inhibitor, HS1793, and defined its mechanism of action and clinical significance in MM. HS1793 disrupted the interaction between AKT and heat shock protein 90, resulting in protein phosphatase 2A-modulated phosphorylated-AKT (p-AKT) reduction. Moreover, we observed reductions in the kinase activity of the AKT downstream target, IκB kinase alpha, and the transcriptional activity of nuclear factor kappa B, which induced mitochondria-mediated cell death in MM cells exclusively. We confirmed the cytotoxicity and specificity of HS1793 via PET-CT imaging of a metastatic mouse model generated using human MM cells. We also evaluated the cytotoxic effects of HS1793 in primary and relapsed MM cells isolated from patients. Thus, HS1793 offers great promise in eliminating MM cells and improving therapeutic responses in primary and relapsed/refractory MM patients.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mieloma Múltiplo/patologia , Naftóis/farmacologia , Recidiva Local de Neoplasia/patologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Resorcinóis/farmacologia , Idoso , Animais , Apoptose , Proliferação de Células , Feminino , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Pflugers Arch ; 470(7): 995-1016, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29536164

RESUMO

Alternative splicing (AS) of protein-coding messenger RNAs is an essential regulatory mechanism in eukaryotic gene expression that controls the proper function of proteins. It is also implicated in the physiological regulation of mitochondria and various ion channels. Considering that mis-splicing can result in various human diseases by modifying or abrogating important physiological protein functions, a fine-tuned balance of AS is essential for human health. Accumulated data highlight the importance of alternatively spliced isoforms in various diseases, including neurodegenerative disorders, cancer, immune and infectious diseases, cardiovascular diseases, and metabolic conditions. However, basic understanding of disease mechanisms and development of clinical applications still require the integration and interpretation of physiological roles of AS. This review discusses the roles of AS in health and various diseases, while highlighting potential AS-targeting therapeutic applications.


Assuntos
Processamento Alternativo/genética , Doença/genética , Isoformas de Proteínas/genética , Animais , Humanos , RNA Mensageiro/genética
19.
Korean J Physiol Pharmacol ; 21(5): 531-546, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28883757

RESUMO

Activation of Toll-like receptor-4 (TLR-4) in articular chondrocytes increases the catabolic compartment and leads to matrix degradation during the development of osteoarthritis. In this study, we determined the proteomic and genomic alterations in human chondrocytes during lipopolysaccharide (LPS)-induced inflammation to elucidate the underlying mechanisms and consequences of TLR-4 activation. Human chondrocytes were cultured with LPS for 12, 24, and 36 h to induce TLR-4 activation. The TLR-4-induced inflammatory response was confirmed by real-time PCR analysis of increased interleukin-1 beta (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α) expression levels. In TLR-4-activated chondrocytes, proteomic changes were determined by two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-mass spectroscopy analysis, and genomic changes were determined by microarray and gene ontology analyses. Proteomics analysis identified 26 proteins with significantly altered expression levels; these proteins were related to the cytoskeleton and oxidative stress responses. Gene ontology analysis indicated that LPS treatment altered specific functional pathways including 'chemotaxis', 'hematopoietic organ development', 'positive regulation of cell proliferation', and 'regulation of cytokine biosynthetic process'. Nine of the 26 identified proteins displayed the same increased expression patterns in both proteomics and genomics analyses. Western blot analysis confirmed the LPS-induced increases in expression levels of lamin A/C and annexins 4/5/6. In conclusion, this study identified the time-dependent genomic, proteomic, and functional pathway alterations that occur in chondrocytes during LPS-induced TLR-4 activation. These results provide valuable new insights into the underlying mechanisms that control the development and progression of osteoarthritis.

20.
Integr Med Res ; 6(2): 165-178, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28664140

RESUMO

BACKGROUND: Traditional Korean Sasang constitutional (SC) medicine categorizes individuals into four constitutional types [Tae-eum (TE), So-eum (SE), Tae-yang (TY), or So-yang (SY)] based on biological and physiological characteristics. As these characteristics are closely related to the bioenergetics of the human body, we assessed the correlation between SC type and energy metabolism features. METHODS: Forty healthy, young (22.3 ± 1.4 years) males volunteered to participate in this study. Participants answered an SC questionnaire, and their face shape, voice tone, and body shape were assessed using an SC analysis tool. Thirty-one participants (10 TE, 10 SE, 3 TY, and 8 SY) were selected for further analysis. Collected blood samples were subjected to blood composition analysis, mitochondrial function analysis, and whole-exome sequencing. RESULTS: The SY type showed significantly lower total cholesterol and high-density lipoprotein cholesterol levels than the SE type. Cellular and mitochondrial Adenosine triphosphate (ATP) levels were similar across types. All types showed similar basal mitochondrial oxygen consumption rates, whereas the TE type showed a significantly lower ATP-linked oxygen consumption rate than the other types. Whole-exome sequencing identified several genes variants that were exclusively detected in particular SC types, including 19 for SE, seven for SY, 11 for TE, and six for TY. CONCLUSION: SC type-specific differences in mitochondrial function and gene mutations were detected in a small group of healthy, young Korean males. These results are expected to greatly improve the accurate screening and utilization of SC medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA