Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542078

RESUMO

Tumors intricately shape a highly immunosuppressive microenvironment, hampering effective antitumor immune responses through diverse mechanisms. Consequently, achieving optimal efficacy in cancer immunotherapy necessitates the reorganization of the tumor microenvironment and restoration of immune responses. Bladder cancer, ranking as the second most prevalent malignant tumor of the urinary tract, presents a formidable challenge. Immunotherapeutic interventions including intravesical BCG and immune checkpoint inhibitors such as atezolizumab, avelumab, and pembrolizumab have been implemented. However, a substantial unmet need persists as a majority of bladder cancer patients across all stages do not respond adequately to immunotherapy. Bladder cancer establishes a microenvironment that can actively hinder an efficient anti-tumor immune response. A deeper understanding of immune evasion mechanisms in bladder cancer will aid in suppressing recurrence and identifying viable therapeutic targets. This review seeks to elucidate mechanisms of immune evasion specific to bladder cancer and explore novel pathways and molecular targets that might circumvent resistance to immunotherapy.


Assuntos
Evasão da Resposta Imune , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/patologia , Imunoterapia , Microambiente Tumoral
2.
J Hazard Mater ; 464: 132966, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-37976851

RESUMO

Exposure to ambient ultrafine particulate matter (UPM) causes respiratory disorders; however, the underlying molecular mechanisms remain unclear. In this study, we synthesized simulated UPM (sUPM) with controlled physicochemical properties using the spark-discharge method. Subsequently, we investigated the biological effects of sUPM using BEAS-2B human bronchial epithelial cells (HBECs) and a mouse intratracheal instillation model. High throughput RNA-sequencing and bioinformatics analyses revealed that dysregulation of the glycolytic metabolism is involved in the inhibited proliferation and survival of HBECs by sUPM treatment. Furthermore, signaling pathway and enzymatic analyses showed that the treatment of BEAS-2B cells with sUPM induces the inactivation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB, also known as AKT), resulting in the downregulation of phosphofructokinase 2 (PFK2) S483 phosphorylation, PFK enzyme activity, and aerobic glycolysis in HBECs in an oxidative stress-independent manner. Additionally, intratracheal instillation of sUPM reduced the phosphorylation of ERK, AKT, and PFK2, decreased proliferation, and increased the apoptosis of bronchial epithelial cells in mice. The findings of this study imply that UPM induces pulmonary toxicity by disrupting aerobic glycolytic metabolism in lung epithelial cells, which can provide novel insights into the toxicity mechanisms of UPM and strategies to prevent their toxic effects.


Assuntos
Poluentes Atmosféricos , Material Particulado , Humanos , Animais , Camundongos , Material Particulado/análise , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosforilação , Células Epiteliais , Glicólise , Fosfofrutoquinases/análise , Fosfofrutoquinases/metabolismo , Poluentes Atmosféricos/análise
3.
Sci Rep ; 13(1): 22694, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123643

RESUMO

Contact urticaria (CU) is an inflammatory skin disorder triggered by specific substances upon skin contact, leading to immediate acute or chronic manifestations characterized by swelling and redness. While mesenchymal stem cells (MSCs) are increasingly recognized for their therapeutic potential in immune diseases, research on the efficacy and mechanisms of stem cell therapy for urticaria remains scarce. This study investigates the regulatory role of embryonic-stem-cell-derived multipotent MSCs (M-MSCs) administered in a CU mouse model. Therapeutic effects of M-MSC administration were assessed in a Trimellitic anhydride-induced contact urticaria model, revealing significant inhibition of urticarial reactions, including ear swelling, itchiness, and skin lesion. Moreover, M-MSC administration exerted control over effector T cell activities in major lymphoid and peripheral tissues, while also suppressing mast cell degranulation in peripheral tissues. Notably, the inhibitory effects mediated by M-MSCs were found to be TGF-ß-dependent. Our study demonstrates the capacity of M-MSCs to regulate contact urticaria in a murine model, harmonizing the activation of inflammatory T cells and mast cells. Additionally, we suggest that TGF-ß derived from M-MSCs could play a pivotal role as an inhibitory mechanism in contact urticaria.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Urticária , Animais , Camundongos , Linfócitos T , Mastócitos , Urticária/induzido quimicamente , Urticária/terapia , Fator de Crescimento Transformador beta
4.
J Med Case Rep ; 17(1): 341, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37501211

RESUMO

BACKGROUND: Panic disorder and panic attacks are two of the most common problems in psychiatry. A psychoimmunological correlation between allergic diseases and panic disorder has been strongly suggested. Histamine H1 receptor antagonists have been suggested as alternative drugs for the treatment of panic disorder. Chronic spontaneous urticaria (CSU) and panic disorder improved simultaneously with selective serotonin reuptake inhibitor antidepressants. Panic disorder has also been treated with the antihistamine chlorpheniramine. The immunoglobulin/histamine complex is a histamine-fixed immunoglobulin preparation that was reported to be effective in treating CSU. This case report describes the successful treatment of a patient with concomitant panic disorder and CSU for 23 years using immunoglobulin/histamine complex therapy. CASE PRESENTATION: This report describes a 52-year-old female Korean patient who suffered from CSU with panic disorder for 23 years. Basic allergy tests (blood tests and skin prick tests) were conducted before and after treatment for the evaluation of allergic conditions. A multiple allergosorbent test (MAST) for the detection of allergen-specific IgE levels was also performed. The clinical severity of CSU was evaluated using the urticaria severity score system. Diagnostic interviews systematically assessed the diagnostic criteria outlined by the DSM-V, and the patient was evaluated before, during and after treatment using the Beck Depression Inventory (BDI-2) for depression, the State-Trait Anxiety Inventory (STAI) for anxiety and the Beck Hopelessness Score (BHS) for hopelessness. The patient received 2 ml of Histobulin™ (12 mg human immunoglobulin/0.15 µg histamine complex) once a week by subcutaneous injection for the treatment of CSU. Initial improvement of CSU was achieved after the third injection. After the twenty-seventh injection of Histobulin™, she showed no symptoms or signs and ceased allergic medication use. With the remission of CSU, allergic rhinitis was also completely resolved. The frequency of the common cold was significantly decreased during and after treatment. The medication frequency and development of clinical manifestations of panic disorder changed in parallel with the clinical severity of CSU. Moreover, the patient exhibited no clinical manifestations and ceased medication for panic disorder and sleeping pills for insomnia simultaneously with the remission of CSU. In the psychological evaluation, the BDI, STAI and BHS scores improved accordingly. CONCLUSIONS: The immunoglobulin/histamine complex was effective in treating CSU and concomitant panic disorder in this patient and could be effective in treating some types of panic disorder. Considering the mechanisms of action of histamine and the immunoglobulin/histamine complex together with the patient's clinical progress, histamine seemed to be related to panic disorder in this case. The concept of histamine-mediated syndromes, including allergies and psychiatric disorders, shows that a wider disease identity may be needed. Further studies on the immunopathogenesis of panic disorder and the mechanisms of action of the immunoglobulin/histamine complex are necessary.


Assuntos
Urticária Crônica , Transtorno de Pânico , Urticária , Feminino , Humanos , Pessoa de Meia-Idade , Histamina/uso terapêutico , Transtorno de Pânico/complicações , Transtorno de Pânico/tratamento farmacológico , Doença Crônica , Urticária Crônica/complicações , Urticária Crônica/tratamento farmacológico , Urticária/complicações , Urticária/tratamento farmacológico , Urticária/diagnóstico , Antagonistas dos Receptores Histamínicos H1/uso terapêutico
5.
Front Immunol ; 13: 864739, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464435

RESUMO

The tumor microenvironment (TME) plays a critical role in tumorigenesis and is comprised of different components, including tumor cells, stromal cells, and immune cells. Among them, the relationship between each mediator involved in the construction of the TME can be understood by focusing on the secreting or expressing factors from each cells. Therefore, understanding the various interactions between each cellular component of the TME is necessary for precise therapeutic approaches. In carcinoma, stromal cells are well known to influence extracellular matrix (ECM) formation and tumor progression through multiple mediators. Immune cells respond to tumor cells by causing cytotoxicity or inflammatory responses. However, they are involved in tumor escape through immunoregulatory mechanisms. In general, anti-cancer therapy has mainly been focused on cancer cells themselves or the interactions between cancer cells and specific cell components. However, cancer cells directly or indirectly influence other TME partners, and members such as stromal cells and immune cells also participate in TME organization through their mutual communication. In this review, we summarized the relationship between stromal cells and immune cells in the TME and discussed the positive and negative relationships from the point of view of tumor development for use in research applications and therapeutic strategies.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Fibroblastos Associados a Câncer/patologia , Humanos , Células Estromais/patologia , Evasão Tumoral , Microambiente Tumoral
6.
Stem Cell Res Ther ; 12(1): 539, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635172

RESUMO

Allergic diseases are immune-mediated diseases. Allergies share a common immunopathogenesis, with specific differences according to the specific disease. Mesenchymal stem/stromal cells (MSCs) have been applied to people suffering from allergic and many other diseases. In this review, the immunologic roles of MSCs are systemically reviewed according to disease immunopathogenesis from a clinical viewpoint. MSCs seem to be a promising therapeutic modality not only as symptomatic treatments but also as causative and even preventive treatments for allergic diseases, including atopic dermatitis and chronic urticaria.


Assuntos
Urticária Crônica , Dermatite Atópica , Hipersensibilidade , Células-Tronco Mesenquimais , Dermatite Atópica/terapia , Humanos
7.
BMB Rep ; 54(10): 534-539, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34488930

RESUMO

IL-10+ regulatory B (Breg) cells play a vital role in regulating the immune responses in experimental autoimmune encephalomyelitis, colitis, and contact hypersensitivity (CHS). Several stimulants such as lipopolysaccharide (LPS), CD40 ligand, and IL-21 spur the activation and maturation of IL-10+ Breg cells, while the epigenetic mechanism for the IL-10 expression remains largely unknown. It is well accepted that the histone acetylation/ deacetylation is an important mechanism that regulates the expression of IL-10. We found that entinostat, an HDAC inhibitor, stimulated the induction of IL-10+ Breg cells by LPS in vitro and the formation of IL-10+ Breg cells to suppress CHS in vivo. We further demonstrated that entinostat inhibited HDAC1 from binding to the proximal region of the IL-10 expression promoter in splenic B cells, followed by an increase in the binding of NF-κB p65, eventually enhancing the expression of IL-10 in Breg cells. [BMB Reports 2021; 54(10): 534-539].


Assuntos
Linfócitos B Reguladores/metabolismo , Benzamidas/farmacologia , Dermatite de Contato/tratamento farmacológico , Piridinas/farmacologia , Acetilação , Animais , Linfócitos B Reguladores/efeitos dos fármacos , Benzamidas/metabolismo , Células Cultivadas , Colite/metabolismo , Dermatite de Contato/genética , Dermatite de Contato/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Histona Desacetilase 1/efeitos dos fármacos , Histona Desacetilase 1/metabolismo , Inibidores de Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Imunidade/imunologia , Imunidade/fisiologia , Interleucina-10/imunologia , Interleucina-10/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Piridinas/metabolismo , Fator de Transcrição RelA/metabolismo
8.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34445596

RESUMO

O-linked-N-acetylglucosaminylation (O-GlcNAcylation) performed by O-GlcNAc transferase (OGT) is a nutrient-responsive post-translational modification (PTM) via the hexosamine biosynthetic pathway (HBP). Various transcription factors (TFs) are O-GlcNAcylated, affecting their activities and significantly contributing to cellular processes ranging from survival to cellular differentiation. Given the pleiotropic functions of O-GlcNAc modification, it has been studied in various fields; however, the role of O-GlcNAcylation during osteoclast differentiation remains to be explored. Kinetic transcriptome analysis during receptor activator of nuclear factor-kappaB (NF-κB) ligand (RANKL)-mediated osteoclast differentiation revealed that the nexus of major nutrient metabolism, HBP was critical for this process. We observed that the critical genes related to HBP activation, including Nagk, Gfpt1, and Ogt, were upregulated, while the global O-GlcNAcylation was increased concomitantly during osteoclast differentiation. The O-GlcNAcylation inhibition by the small-molecule inhibitor OSMI-1 reduced osteoclast differentiation in vitro and in vivo by disrupting the translocation of NF-κB p65 and nuclear factor of activated T cells c1 (NFATc1) into the nucleus by controlling their PTM O-GlcNAcylation. Furthermore, OSMI-1 had a synergistic effect with bone target therapy on osteoclastogenesis. Lastly, knocking down Ogt with shRNA (shOgt) mimicked OSMI-1's effect on osteoclastogenesis. Targeting O-GlcNAcylation during osteoclast differentiation may be a valuable therapeutic approach for osteoclast-activated bone diseases.


Assuntos
Vias Biossintéticas , Diferenciação Celular , Hexosaminas/metabolismo , Osteoclastos/citologia , Processamento de Proteína Pós-Traducional , Ligante RANK/metabolismo , Acilação , Animais , Proliferação de Células , Glicosilação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , N-Acetilglucosaminiltransferases/metabolismo , Osteoclastos/metabolismo , Transdução de Sinais
9.
Bone ; 145: 115836, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33383217

RESUMO

Osteoclasts (OCs) have been well-known involved in the exacerbation of bone-related diseases. However, the role of metabolites on osteoclastogenesis has not been well characterized. Herein, we found osteoclastogenesis was negatively regulated by α-ketoglutarate (αKG) in vitro and in vivo (C57BL/6 mouse). Kinetic transcriptome analysis revealed the upregulation of solute carrier family 7 member 11 (Slc7a11), a subunit of the cysteine/glutamate antiporter, as well as the downregulation of typical OC maker genes through αKG treatment. Given that Slc7a11 could control ROS level through glutathione import, we measured intracellular ROS, then RANKL-induced ROS production was inhibited by αKG. Notably, we highlight that αKG plays an epigenetic co-factor at the Slc7a11 promoter by demethylating repressive histone H3K9 methylation and simultaneously increasing the nuclear factor erythroid 2-related factor (Nrf2) binding, a critical transcription factor through chromatin immunoprecipitation (ChIP) analysis. Together, we suggested that αKG could be a therapeutic strategy for OC activated diseases.


Assuntos
Osteoclastos , Ligante RANK , Animais , Diferenciação Celular , Epigênese Genética , Glutamina , Ácidos Cetoglutáricos , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/metabolismo , Ligante RANK/metabolismo
10.
Front Immunol ; 12: 752888, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069528

RESUMO

Effector and regulatory functions of various leukocytes in allergic diseases have been well reported. Although the role of conventional natural killer (NK) cells has been established, information on its regulatory phenotype and function are very limited. Therefore, the objective of this study was to investigate the phenotype and inhibitory functions of transforming growth factor (TGF)-ß-producing regulatory NK (NKreg) subset in mice with MC903-induced atopic dermatitis (AD). Interestingly, the population of TGF-ß-producing NK cells in peripheral blood monocytes (PBMCs) was decreased in AD patients than in healthy subjects. The number of TGF-ß+ NK subsets was decreased in the spleen or cervical lymph node (cLN), but increased in ear tissues of mice with AD induced by MC903 than those of normal mice. We further observed that TGF-ß+ NK subsets were largely included in CD1dhiPD-L1hiCD27+ NK cell subset. We also found that numbers of ILC2s and TH2 cells were significantly decreased by adoptive transfer of CD1dhiPD-L1hiCD27+ NK subsets. Notably, the ratio of splenic Treg per TH2 was increased by the adoptive transfer of CD1dhiPD-L1hiCD27+ NK cells in mice. Taken together, our findings demonstrate that the TGF-ß-producing CD1dhiPD-L1hiCD27+ NK subset has a previously unrecognized role in suppressing TH2 immunity and ILC2 activation in AD mice, suggesting that the function of TGF-ß-producing NK subset is closely associated with the severity of AD in humans.


Assuntos
Dermatite Atópica/imunologia , Células Matadoras Naturais/imunologia , Animais , Antígenos CD1d/imunologia , Antígeno B7-H1/imunologia , Calcitriol/efeitos adversos , Calcitriol/análogos & derivados , Calcitriol/farmacologia , Dermatite Atópica/induzido quimicamente , Feminino , Humanos , Camundongos , Linfócitos T Reguladores/imunologia , Células Th2/imunologia , Fator de Crescimento Transformador beta/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia
11.
Biomol Ther (Seoul) ; 28(5): 456-464, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32268657

RESUMO

Mast cells (MCs) are systemically distributed and secrete several allergic mediators such as histamine and leukotrienes to cause type I hypersensitivity. Dasatinib is a type of anti-cancer agent and it has also been reported to inhibit human basophils. However, dasatinib has not been reported for its inhibitory effects on MCs or type I hypersensitivity in mice. In this study, we examined the inhibitory effect of dasatinib on MCs and MC-mediated allergic response in vitro and in vivo. in vitro, dasatinib inhibited the degranulation of MCs by antigen stimulation in a dose-dependent manner (IC50, ~34 nM for RBL-2H3 cells; ~52 nM for BMMCs) without any cytotoxicity. It also suppressed the secretion of inflammatory cytokines IL-4 and TNF-α by antigen stimulation. Furthermore, dasatinib inhibited MC-mediated passive cutaneous anaphylaxis (PCA) in mice (ED50, ~29 mg/kg). Notably, dasatinib significantly suppressed the degranulation of MCs in the ear tissue. As the mechanism of its effect, dasatinib inhibited the activation of Syk and Syk-mediated downstream signaling proteins, LAT, PLCγ1, and three typical MAP kinases (Erk1/2, JNK, and p38), which are essential for the activation of MCs. Interestingly, in vitro tyrosine kinase assay, dasatinib directly inhibited the activities of Lyn and Fyn, the upstream tyrosine kinases of Syk in MCs. Taken together, dasatinib suppresses MCs and PCA in vitro and in vivo through the inhibition of Lyn and Fyn Src-family kinases. Therefore, we suggest the possibility of repositioning the anti-cancer drug dasatinib as a treatment for various MC-mediated type I hypersensitive diseases.

12.
Toxicol Appl Pharmacol ; 383: 114763, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31526816

RESUMO

Mast cells (MCs) play an important role as effector cells that cause allergic responses in allergic diseases. For these reasons, MC is considered an attractive therapeutic target for allergic disease treatment. In this study, we investigated the inhibitory effect of WZ3146, N-[3-[5-chloro-2-[4-(4-methylpiperazin-1-yl)anilino]pyrimidin-4-yl]oxyphenyl]prop-2-enamide, and the mechanisms of its actions on the MC activation and IgE-mediated allergic response by using three types of MCs such as rat basophilic leukemia (RBL)-2H3 cells, mouse bone marrow mast cells (BMMCs), and human Laboratory of Allergic Diseases 2 (LAD2) cells. WZ3146 inhibited antigen-stimulated degranulation in a dose-dependent manner (IC50, ~ 0.35 µM for RBL-2H3 cells; ~ 0.39 µM for BMMCs; ~ 0.41 for LAD2 cells). WZ3146 also suppressed the production of histamine, tumor necrosis factor (TNF)-α and interleukin (IL)-6, which mediate various allergic responses, in a dose-dependent manner. As the mechanism of WZ3146 to inhibit MCs, it inhibited the activation of spleen tyrosine kinase (Syk) and the downstream signaling proteins of Syk such as linker for activation of T cell (LAT) and phospholipase (PL) Cγ1 in the signaling pathway of FcεRI. In addition, WZ3146 inhibited the activation of Akt, extracellular signal-regulated kinase (ERK)1/2, p38, and c-Jun N-terminal kinase (JNK). However, WZ3146 did not inhibit degranulation of MCs by thapsigargin or ionomycin, which increase calcium concentration in cytosol. Notably, WZ3146 inhibited the activity of Lyn and Fyn, but not Syk. In an following animal experiment, WZ3146 inhibited IgE-dependent passive cutaneous anaphylaxis (PCA) in a dose-dependent manner (ED50, ~ 20 mg/kg). Taken together, in this study we show that the pyrimidine derivative, WZ3146, inhibits the IgE-mediated allergic response by inhibiting Lyn and Fyn Src-family kinases, which are initially activated by antigen stimulation in MCs. Therefore, we propose that WZ3146 could be used as a new therapeutic agent for the treatment of allergic diseases.


Assuntos
Hipersensibilidade/metabolismo , Imunoglobulina E/metabolismo , Mastócitos/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Pirimidinas/farmacologia , Quinases da Família src/metabolismo , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Hipersensibilidade/imunologia , Imunoglobulina E/imunologia , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Proto-Oncogênicas c-fyn/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-fyn/imunologia , Pirimidinas/química , Ratos , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/imunologia
13.
Sci Adv ; 5(7): eaav8152, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31328158

RESUMO

The function of regulatory immune cells in peripheral tissues is crucial to the onset and severity of various diseases. Interleukin-10 (IL-10)-producing regulatory B (IL-10+ Breg) cells are known to suppress various inflammatory diseases. However, evidence for the mechanism by which IL-10+ Breg cells are generated and maintained is still very limited. Here, we found that IL-10+ Breg cells suppress the activation of IL-13-producing type 2 innate lymphoid cells (IL-13+ ILC2s) in an IL-10-dependent manner in mice with oxazolone-induced severe contact hypersensitivity (CHS). Mast cell (MC) IL-5 was important for maintaining the population of IL-10+ Breg cells in peripheral lymphoid tissues. Overall, these results uncover a previously unknown mechanism of MCs as a type of immunoregulatory cell and elucidate the cross-talk among MCs, IL-10+ Breg cells, and IL-13+ ILC2s in CHS.


Assuntos
Linfócitos B Reguladores/imunologia , Linfócitos B Reguladores/metabolismo , Dermatite de Contato/etiologia , Dermatite de Contato/metabolismo , Interleucina-5/metabolismo , Mastócitos/imunologia , Mastócitos/metabolismo , Oxazolona/efeitos adversos , Tolerância Periférica , Animais , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Citocinas/metabolismo , Dermatite de Contato/patologia , Modelos Animais de Doenças , Imunofluorescência , Isotipos de Imunoglobulinas/imunologia , Masculino , Camundongos , Camundongos Knockout
14.
Biomol Ther (Seoul) ; 27(3): 311-317, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30332888

RESUMO

Mast cells are the most prominent effector cells of Type 1 hypersensitivity immune responses. CYC116 [4-(2-amino-4-methyl-1,3-thiazol-5-yl)-N-[4-(morpholin-4-yl)phenyl] pyrimidin-2-amine] is under development to be used as an anti-cancer drug, but the inhibitory effects of CYC116 on the activation of mast cells and related allergy diseases have not reported as of yet. In this study, we demonstrated, for the first time, that CYC116 inhibited the degranulation of mast cells by antigen stimulation (IC50, ~1.42 µM). CYC116 also inhibited the secretion of pro-inflammatory cytokines including TNF-α (IC50, ~1.10 µM), and IL-6 (IC50, ~1.24 µM). CYC116 inhibited the mast cell-mediated allergic responses, passive cutaneous anaphylaxis (ED50, ~22.5 mg/kg), and passive systemic anaphylaxis in a dose-dependent manner in laboratory experiments performed on mice. Specifically, CYC116 inhibited the activity of Fyn in mast cells and inhibited the activation of Syk and Syk-dependent signaling proteins including LAT, PLCγ, Akt, and MAP kinases. Our results suggest that CYC116 could be used as an alternative therapeutic medication for mast cell-mediated allergic disorders, such as atopic dermatitis and allergic rhinitis.

15.
Biochem Pharmacol ; 154: 270-277, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29777684

RESUMO

Mast cells are critical effector cells in IgE-mediated allergic responses. The aim of this study was to investigate the anti-allergic effects of 3-[(aminocarbonyl)amino]-5-(3-fluorophenyl)-N-(3S)-3-piperidinyl-2-thiophenecarboxamide (AZD7762) in vitro and in vivo. AZD7762 inhibited the antigen-stimulated degranulation from RBL-2H3 (IC50, ∼27.9 nM) and BMMCs (IC50, ∼99.3 nM) in a dose-dependent manner. AZD7762 also inhibited the production of TNF-α and IL-4. As the mechanism of its action, AZD7762 inhibited the activation of Syk and its downstream signaling proteins, such as Linker of activated T cells (LAT), phospholipase (PL) Cγ1, Akt, and mitogen-activated protein (MAP) kinases (Erk1/2, p38, and JNK) in mast cells. In in vitro protein kinase assay, AZD7762 inhibited the activity of Lyn and Fyn kinases, which are important for the activation of Syk in mast cells. Furthermore, AZD7762 also suppressed the degranulation of LAD2 human mast cells (IC50, ∼49.9 nM) and activation of Syk in a dose-dependent manner. As observed in experiments with mast cells in vitro, AZD7762 inhibited antigen-mediated passive cutaneous anaphylaxis in mice (ED50, ∼35.8 mg/kg). Altogether, these results suggest that AZD7762 could be used as a new therapeutic agent for mast cell-mediated allergic diseases.


Assuntos
Antialérgicos/farmacologia , Antineoplásicos/farmacologia , Mastócitos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fyn/antagonistas & inibidores , Tiofenos/farmacologia , Ureia/análogos & derivados , Quinases da Família src/antagonistas & inibidores , Animais , Degranulação Celular/efeitos dos fármacos , Degranulação Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Reposicionamento de Medicamentos/métodos , Humanos , Imunoglobulina E/toxicidade , Masculino , Mastócitos/imunologia , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Ratos , Ureia/farmacologia , Quinases da Família src/metabolismo
16.
Int J Stem Cells ; 11(1): 131-140, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29699387

RESUMO

All-trans retinoic acid (ATRA) is a highly effective treatment for acute promyelocytic leukemia (APL), a cytogenetically distinct subtype of acute myeloid leukemia (AML). However, ATRA-based treatment is not effective in other subtypes of AML. In non-APL AML, ATRA signaling pathway is impaired or downmodulated, and consequently fails to respond to pharmacological doses of ATRA. Therefore, complementary treatment strategies are needed to improve ATRA responsiveness in non-APL AML. In this study, we investigated the combined effect of ATRA and bromodomain inhibitor JQ1, proven to have potent anti-cancer activity mainly through inhibition of c-Myc. We showed that the combination of ATRA with JQ1 synergistically inhibited proliferation of AML cells. The synergistic growth inhibition was resulted from differentiation or apoptosis depending on the kind of AML cells. Concomitantly, the combined treatment of ATRA and JQ1 caused greater depletion of c-Myc and hTERT expression than each agent alone in AML cells. Taken together, these findings support the rationale for the use of the combination of ATRA and JQ1 as a therapeutic strategy for the treatment of AML.

17.
Eur J Pharmacol ; 828: 119-125, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29588153

RESUMO

Mast cells are critical cells that prompt various allergic response-inducing factors, contributing to allergic diseases. While used as an antibiotic for livestock, there is no study on the effect of furaltadone on allergic response. This study investigated the effect of furaltadone on mast cells and passive cutaneous anaphylaxis (PCA). Furaltadone inhibited the degranulation of mast cells stimulated by antigen (IC50, ~ 3.9 µM), and also suppressed the production of tumor necrosis factor (TNF)-α and interleukin (IL)-4 in a concentration dependent manner. In addition, furaltadone inhibited allergic responses in an acute allergy animal model, PCA. Further investigation on the mechanism for these inhibitory effects of furaltadone found that the activities of Lyn/Syk and Syk-dependent downstream proteins such as mitogen-activated protein (MAP) kinases were inhibited by furaltadone in mast cells. Taken together, this study demonstrates that furaltadone inhibits the activation of mast cells by antigen via the suppression of the Lyn/Syk pathway and ameliorates allergic responses in vivo.


Assuntos
Hipersensibilidade/imunologia , Imunoglobulina E/imunologia , Mastócitos/efeitos dos fármacos , Nitrofuranos/farmacologia , Oxazolidinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Quinase Syk/metabolismo , Quinases da Família src/metabolismo , Animais , Degranulação Celular/efeitos dos fármacos , Linhagem Celular , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Mastócitos/citologia , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Anafilaxia Cutânea Passiva/efeitos dos fármacos
18.
BMB Rep ; 50(12): 640-646, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29187284

RESUMO

Regulatory B cells, also well-known as IL-10-producing B cells, play a role in the suppression of inflammatory responses. However, the epigenetic modulation of regulatory B cells is largely unknown. Recent studies showed that the bromodomain and extra-terminal domain (BET) protein inhibitor JQ1 controls the expression of various genes involving cell proliferation and cell cycle. However, the role of BET proteins on development of regulatory B cells is not reported. In this study, JQ1 potently suppressed IL-10 expression and secretion in murine splenic and peritoneal B cells. While bromodomaincontaining protein 4 (BRD4) was associated with NF-κB on IL-10 promoter region by LPS stimulation, JQ1 interfered the interaction of BRD4 with NF-κB on IL-10 promoter. In summary, BRD4 is essential for toll like receptor 4 (TLR4)-mediated IL-10 expression, suggesting JQ1 could be a potential candidate in regulating IL-10-producing regulatory B cells in cancer. [BMB Reports 2017; 50(12): 640-646].


Assuntos
Azepinas/farmacologia , Linfócitos B Reguladores/efeitos dos fármacos , Interleucina-10/biossíntese , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Receptor 4 Toll-Like/metabolismo , Fatores de Transcrição/metabolismo , Triazóis/farmacologia , Animais , Azepinas/química , Linfócitos B Reguladores/metabolismo , Proteínas de Ciclo Celular , Relação Dose-Resposta a Droga , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Triazóis/química
19.
Nat Commun ; 8(1): 1519, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29142196

RESUMO

Receptor activator of NF-kB ligand (RANKL) generates intracellular reactive oxygen species (ROS), which increase RANKL-mediated signaling in osteoclast (OC) precursor bone marrow macrophages (BMMs). Here we show that a ROS scavenging protein DJ-1 negatively regulates RANKL-driven OC differentiation, also called osteoclastogenesis. DJ-1 ablation in mice leads to a decreased bone volume and an increase in OC numbers. In vitro, the activation of RANK-dependent signals is enhanced in DJ-1-deficient BMMs as compared to wild-type BMMs. DJ-1 suppresses the activation of both RANK-TRAF6 and RANK-FcRγ/Syk signaling pathways because of activation of Src homology region 2 domain-containing phosphatase-1, which is inhibited by ROS. Ablation of DJ-1 in mouse models of arthritis and RANKL-induced bone disease leads to an increase in the number of OCs, and exacerbation of bone damage. Overall, our results suggest that DJ-1 plays a role in bone homeostasis in normal physiology and in bone-associated pathology by negatively regulating osteoclastogenesis.


Assuntos
Osso e Ossos/metabolismo , Diferenciação Celular , Homeostase , Osteoclastos/metabolismo , Proteína Desglicase DJ-1/metabolismo , Animais , Feminino , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteogênese , Proteína Desglicase DJ-1/genética , Ligante RANK/metabolismo , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/metabolismo
20.
Toxicol Appl Pharmacol ; 332: 25-31, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28736076

RESUMO

Mast cells trigger IgE-mediated allergic reactions by releasing various allergic mediators. 8-Formyl-7-hydroxy-4-methylcoumarin, also called 4µ8C, was originally known as an inositol-requiring enzyme 1 (IRE1) suppressant, but no study has examined its relationship with mast cells and allergic diseases. Therefore, the purpose of this study was to determine whether 4µ8C is effective in suppressing allergic reactions in mast cells and in IgE-mediated allergic animal model. 4µ8C suppressed the degranulation of IgE-mediated mast cells (IC50=3.2µM) and the production of cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-4 (IL-4) in a dose-dependent manner. 4µ8C also suppressed passive cutaneous anaphylaxis (PCA) in mice (ED50=25.1mg/kg). In an experiment on mast cell signaling pathways stimulated by antigen, the phosphorylation and activation of Syk was decreased by 4µ8C, and phosphorylation of downstream signaling molecules, such as linker for activated T cells (LAT), Akt, and the three MAP kinases, ERK, p38, and JNK, were suppressed. Mechanistic studies showed that 4µ8C inhibited the activity of Lyn and Fyn in vitro. Based on the results of those experiments, the suppressor mechanism of allergic reaction by 4µ8C involved reduced activity of Lyn and Fyn, which is pivotal in an IgE-mediated signaling pathway. In summary, for the first time, this study shows that 4µ8C inhibits Lyn and Fyn, thus suppressing allergic reaction by reducing the degranulation and the production of inflammatory cytokines. This suggests that 4µ8C can be used as a new medicinal candidate to control allergic diseases such as seasonal allergies and atopic dermatitis.


Assuntos
Anafilaxia/imunologia , Cumarínicos/farmacologia , Imunoglobulina E/imunologia , Mastócitos/efeitos dos fármacos , Quinase Syk/metabolismo , Animais , Degranulação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Hipersensibilidade/tratamento farmacológico , Hipersensibilidade/imunologia , Interleucina-4/metabolismo , Masculino , Mastócitos/citologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Anafilaxia Cutânea Passiva , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Transdução de Sinais , Quinase Syk/antagonistas & inibidores , Quinase Syk/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA