Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 341
Filtrar
1.
Environ Sci Technol ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261290

RESUMO

Triclosan (TCS), a widely used antimicrobial agent, has been implicated in the oxidative stress induction and disruption of cellular processes in aquatic organisms. As TCS is ubiquitous in the aquatic environment, many previous studies have documented the effects of exposure to TCS on aquatic organisms. Nevertheless, most of the research has concentrated on the molecular and physiological responses of TCS, but there are still limited studies on the function of specific genes and the consequences of their absence. In this study, we focused on p53, a gene that is crucial for molecular responses such as autophagy and apoptosis as a result of TCS exposure. In order to ascertain the role and impact of the p53 gene in TCS-induced molecular responses, we examined the molecular responses to TCS-induced oxidative stress in wild-type (WT) and CRISPR/Cas9-mediated p53 mutant (MT) water fleas. The result has been accomplished by examining changes in molecular mechanisms, including in vivo end points, enzyme activities, adenosine triphosphate release rate, and apoptosis, to determine the role and impact of the p53 gene on TCS-induced molecular responses. The results indicated that the sensitivity of MT water fleas to TCS was greater than that of WT water fleas; however, the difference in sensitivity was significant at short exposures within 48 h and decreased toward 48 h. Accordingly, when we confirmed the oxidative stress after 24 h of exposure, the oxidative stress to TCS exposure was stronger in the MT group, with an imbalance of redox. To identify the mechanisms of tolerance to TCS in WT and MT Daphnia magna, we checked mitochondrial and ER-stress-related biomarkers and found an increase in apoptosis and greater sensitivity to TCS exposure in the MT group than in the WT. Our results suggest that the absence of p53 caused alterations in molecular processes in response to TCS exposure, resulting in increased sensitivity to TCS, and that p53 plays a critical role in response to TCS exposure.

2.
Front Bioeng Biotechnol ; 12: 1450331, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39234269

RESUMO

Radiofrequency ablation (RFA) is a local treatment modality for primary liver cancers. Although various input parameters of the RF generator have been adjusted to improve the ablation ranges, the limited ablation ranges remain an obstacle to RFA. This study aimed to compare the ablation ranges and efficacy of sine and square electrical waveforms in a mouse tumor model. An RF generator with an adjustable electrical waveform was developed, and its ablation range in the porcine liver was compared. For all RF parameters, the square electrical waveform ablation range was greater than that of the sine electrical waveform (all p < 0.001) in the porcine liver. The 45 BALB/c nude mice were used to evaluate the efficacy of the two electrical waveforms after the RFA. The mean tumor volume in the square group was significantly lower than that in the sine group (p < 0.001), indicating a higher survival rate (60%). The cellular coagulative necrosis, inflammatory cell infiltration, heat shock proteins, cellular necrosis, and tumor necrosis were significantly greater in square electrical waveform than in sine electrical waveform (all; p < 0.05). RFA with square electrical waveforms has therapeutic potential for tumor management with an enhanced ablation range.

3.
PLoS One ; 19(9): e0308691, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39298403

RESUMO

This study reports the effects of changes in the waveform and frequency of radio frequency (RF) energy on the tissue ablation range. We developed a 70-watt RFA generator that provides sine and square waves and allows frequency control between 10 Hz and 500 kHz. The changes in the ablation range according to the waveform and frequency were observed using the developed generator. In the waveform variation test, the distance between the electrodes and the electrode type were changed for both waveforms with the frequency set to 500 kHz. In the frequency variation test, the waveform and electrode type were changed with the frequency set to 10, 100, and 500 kHz, while the distance between the electrodes was set to 20 mm. A fixed 45 voltage was applied using the bipolar method. RF energy was applied for 90 s in vitro. The temperature was regulated to not exceed 70°C. The ablation range was calculated using ImageJ software. The analysis results showed that the ablation range was larger with the square wave than with the sine wave and at 10 kHz than at 500 kHz. The developed generator can advance research on ablation area and depth in RF ablation.


Assuntos
Ondas de Rádio , Eletrodos , Ablação por Cateter/métodos , Ablação por Radiofrequência/métodos , Animais , Temperatura
4.
Int J Biol Macromol ; 277(Pt 4): 134344, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39089545

RESUMO

Canine atopic dermatitis (AD) arises from hypersensitive immune reactions. AD symptoms entail severe pruritus and skin inflammation, with frequent relapses. Consequently, AD patients require continuous management, imposing financial burdens and mental fatigue on pet owners. In this study, we aimed to investigate the therapeutic relevance of secretome from canine adipose tissue-derived mesenchymal stem cells (MSCs), especially after encapsulation in nano-villi chitosan microspheres (CS-MS) to expect improved efficacy. Conditioned media (CM) from MSCs significantly inhibited the proliferation of splenocytes, induced the generation of regulatory T cells, and decreased mast cell degranulation. We found that beneficial soluble factors known to reduce AD symptoms, including transforming growth factor-beta 1, were detectable after sequential concentration and lyophilization of CM. The CS-MS, developed by a phase inversion regeneration method, showed high loading and sustained release of the secretome. Local injection of secretome-loaded CS-MS (ST/SC-MS) effectively reduced clinical severity compared to groups treated with secretome. Histological analysis revealed that ST/SC-MS potently suppressed epidermal hyperplasia, immunocyte infiltration and mast cell activation in the lesion. Taken together, this study presents a novel therapeutic approach exhibiting more potent and prolonged immunoregulatory efficacy of MSC secretome for canine AD treatment.


Assuntos
Quitosana , Dermatite Atópica , Células-Tronco Mesenquimais , Microesferas , Secretoma , Dermatite Atópica/terapia , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/patologia , Animais , Cães , Quitosana/química , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Proliferação de Células/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Mastócitos/imunologia , Meios de Cultivo Condicionados/farmacologia , Preparações de Ação Retardada
5.
Biomolecules ; 14(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39062525

RESUMO

Peptide-based drug development is a promising direction due to its excellent biological activity, minimal immunogenicity, high in vivo stability, and efficient tissue penetrability. GV1001, an amphiphilic peptide, has proven effective as an anti-cancer vaccine, but its effect on osteoblast differentiation is unknown. To identify proteins interacting with GV1001, biotin-conjugated GV1001 was constructed and confirmed by mass spectrometry. Proteomic analyses were performed to determine GV1001's interaction with osteogenic proteins. GV1001 was highly associated with peptidyl-prolyl isomerase A and co-immunoprecipitation assays revealed that GV1001 bound to peptidyl-prolyl cis-trans isomerase 1 (Pin1). GV1001 significantly increased alkaline phosphatase (ALP) activity, bone nodule formation, and the expression of osteogenic gene markers. GV1001-induced osteogenic activity was enhanced by Pin1 overexpression and abolished by Pin1 knockdown. GV1001 increased the protein stability and transcriptional activity of Runx2 and Osterix. Importantly, GV1001 administration enhanced bone mass density in the OVX mouse model, as verified by µCT analysis. GV1001 demonstrated protective effects against bone loss in OVX mice by upregulating osteogenic differentiation via the Pin1-mediated protein stabilization of Runx2 and Osterix. GV1001 could be a potential candidate with anabolic effects for the prevention and treatment of osteoporosis.


Assuntos
Peptídeos Penetradores de Células , Subunidade alfa 1 de Fator de Ligação ao Core , Peptidilprolil Isomerase de Interação com NIMA , Osteogênese , Fator de Transcrição Sp7 , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Osteogênese/efeitos dos fármacos , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/genética , Camundongos , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/química , Fator de Transcrição Sp7/metabolismo , Fator de Transcrição Sp7/genética , Humanos , Feminino , Estabilidade Proteica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/citologia
6.
Stem Cell Res Ther ; 15(1): 167, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872206

RESUMO

BACKGROUND: Stem cell therapy is a promising alternative for inflammatory diseases and tissue injury treatment. Exogenous delivery of mesenchymal stem cells is associated with instant blood-mediated inflammatory reactions, mechanical stress during administration, and replicative senescence or change in phenotype during long-term culture in vitro. In this study, we aimed to mobilize endogenous hematopoietic stem cells (HSCs) using AMD-3100 and provide local immune suppression using FK506, an immunosuppressive drug, for the treatment of inflammatory bowel diseases. METHODS: Reactive oxygen species (ROS)-responsive FK506-loaded thioketal microspheres were prepared by emulsification solvent-evaporation method. Thioketal vehicle based FK506 microspheres and AMD3100 were co-administered into male C57BL6/J mice with dextran sulfate sodium (DSS) induced colitis. The effect of FK506-loaded thioketal microspheres in colitis mice were evaluated using disease severity index, myeloperoxidase activity, histology, flow cytometry, and gene expression by qRT-PCR. RESULTS: The delivery of AMD-3100 enhanced mobilization of HSCs from the bone marrow into the inflamed colon of mice. Furthermore, targeted oral delivery of FK506 in an inflamed colon inhibited the immune activation in the colon. In the DSS-induced colitis mouse model, the combination of AMD-3100 and FK506-loaded thioketal microspheres ameliorated the disease, decreased immune cell infiltration and activation, and improved body weight, colon length, and epithelial healing process. CONCLUSION: This study shows that the significant increase in the percentage of mobilized hematopoietic stem cells in the combination therapy of AMD and oral FK506 microspheres may contribute to a synergistic therapeutic effect. Thus, low-dose local delivery of FK506 combined with AMD3100 could be a promising alternative treatment for inflammatory bowel diseases.


Assuntos
Benzilaminas , Colite , Ciclamos , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Tacrolimo , Animais , Colite/induzido quimicamente , Colite/terapia , Colite/tratamento farmacológico , Colite/patologia , Camundongos , Masculino , Ciclamos/farmacologia , Ciclamos/uso terapêutico , Tacrolimo/farmacologia , Tacrolimo/uso terapêutico , Mobilização de Células-Tronco Hematopoéticas/métodos , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/uso terapêutico , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Modelos Animais de Doenças , Terapia de Imunossupressão , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Microesferas , Espécies Reativas de Oxigênio/metabolismo
7.
J Hazard Mater ; 476: 134986, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38944992

RESUMO

Next-generation risk assessment (NGRA) has emerged as a promising alternative to non-animal studies owing to the increasing demand for the risk assessment of inhaled toxicants. In this study, NGRA was used to assess the inhalation risks of two biocides commonly used as humidifier disinfectants: polyhexamethylene guanidine phosphate (PHMG-p) and chloromethylisothiazolinone/methylisothiazolinone (CMIT/MIT). Human bronchial epithelial cell transcriptomic data were processed based on adverse outcome pathways and used to establish transcriptome-based points of departure (tPODs) for each biocide. tPOD values were 0.00500-0.0510 µg/cm2 and 0.0342-0.0544 µg/cm2 for PHMG-p and CMIT/MIT, respectively. tPODs may provide predictive power comparable to that of traditional animal-based PODs (aPODs). The tPOD-based NGRA determined that both PHMG-p and CMIT/MIT present a high inhalation risk. Moreover, the identified PHMG-p posed a higher risk than CMIT/MIT, and children were identified as more susceptible population compared to adults. This finding is consistent with observations from actual exposure events. Our findings suggest that NGRA with transcriptomics offers a reliable approach for risk assessment of specific humidifier disinfectant biocides, while acknowledging the limitations of current models and in vitro systems, particularly regarding uncertainties in pharmacokinetics (PK) and pharmacodynamics (PD).


Assuntos
Desinfetantes , Guanidinas , Tiazóis , Desinfetantes/toxicidade , Medição de Risco , Humanos , Tiazóis/toxicidade , Guanidinas/toxicidade , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Transcriptoma/efeitos dos fármacos , Perfilação da Expressão Gênica , Exposição por Inalação/efeitos adversos , Células Epiteliais/efeitos dos fármacos , Umidificadores
8.
Gastrointest Endosc ; 100(3): 557-566.e10, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38583543

RESUMO

BACKGROUND AND AIMS: Endobiliary radiofrequency ablation (RFA) is an emerging endoscopic palliative adjunctive therapy used for the local treatment of unresectable malignant biliary obstruction (MBO). However, irregular ablation ranges caused by insufficient electrode-to-bile duct contact pose a significant obstacle. We investigated the feasibility of a self-expandable stent (SES)-based electrode with a customized RFA generator in the porcine liver and common bile duct (CBD). METHODS: An SES-RFA system with polarity switching was developed to perform endobiliary RFA. The ablation ranges of 20 ablation protocols were evaluated to validate the feasibility of the newly developed RFA system in the porcine liver. Nine of 20 ablation protocols were selected for evaluation in the porcine CBD with cholangiography, endoscopy, and histologic and immunohistochemical analysis. RESULTS: The SES-RFA system with polarity switching was successfully constructed and demonstrated high accuracy and reproducibility. The ablation area was clearly identified between the 2 SESs. The ablation ranges and degree of mucosal damage, including terminal deoxynucleotidyl transferase-mediated dUTP nick and labeling-positive and heat shock protein 70-positive depositions, increased proportionally with ablation protocols in the porcine liver and CBD (all P < .05). Ablation length and depth linearly increased with ablation protocols from 8.74 ± .25 to 31.25 ± .67 mm and 1.61 ± .09 to 11.94 ± .44 mm, respectively. CONCLUSIONS: The SES-RFA system with polarity switching between electrodes provided an even circumferential area of ablation and enhanced ablation depth between the electrodes. This novel endobiliary RFA system is a promising modality for local ablation in patients with unresectable MBO.


Assuntos
Colestase , Ablação por Radiofrequência , Animais , Suínos , Colestase/cirurgia , Colestase/etiologia , Ablação por Radiofrequência/métodos , Stents , Ducto Colédoco/cirurgia , Fígado/cirurgia , Fígado/patologia , Estudos de Viabilidade , Colangiografia , Stents Metálicos Autoexpansíveis
9.
Anticancer Res ; 44(3): 1051-1062, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423668

RESUMO

BACKGROUND/AIM: Evidence supports that use of aripiprazole sensitizes drug-resistant oral cancer cells. The aim of the study was to investigate whether aripiprazole can achieve sensitization of highly drug-resistant breast cancer cells, as well as identify its relevant mechanisms of action. MATERIALS AND METHODS: MCF-7/ADR, KB, and KBV20C breast cancer cells were treated with aripiprazole, vincristine (VIC), vinorelbine, vinblastine and their combination. Cell viability assay, annexin V analyses, cellular morphology and density observation with a microscope, western-blotting, fluorescence-activated cell sorting (FACS), and analysis for P-gp inhibitory activity were performed to investigate the drugs' mechanism of action. RESULTS: We found that high drug resistance in MCF-7/ADR cells results from high P-gp inhibitory activity via overexpression of P-gp. Aripiprazole reduced cell viability, increased G2 arrest, and upregulated apoptosis when used as a co-treatment with VIC. Furthermore, we demonstrated that co-treatment with vinorelbine and vinblastine increased the sensitization of MCF-7/ADR breast cancer cells to aripiprazole. We confirmed that VIC-aripiprazole combination has much higher sensitization effects than either VIC-thioridazine or VIC-trifluoperazine co-treatment in MCF-7/ADR cells, since the previously known bipolar drugs (thioridazine and trifluoperazine) has lower P-gp inhibitory activity. However, aripiprazole-induced sensitization was not observed in VIC-treated MDA-MB-231 breast cancer cells suggesting that combination therapy with aripiprazole is specific for P-gp-overexpressing drug-resistant breast cancer cells. CONCLUSION: Co-treatment with low doses of aripiprazole sensitized MCF-7/ADR cells to VIC. Combination therapy with aripiprazole may be a valuable tool for delaying or reducing cancer recurrence by targeting P-gp-overexpressing drug-resistant breast cancer cells.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Neoplasias da Mama , Humanos , Feminino , Vincristina/farmacologia , Aripiprazol/farmacologia , Vinorelbina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Vimblastina/farmacologia , Células MCF-7 , Tioridazina/farmacologia , Trifluoperazina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Subfamília B de Transportador de Cassetes de Ligação de ATP , Doxorrubicina/farmacologia
10.
Planta Med ; 90(4): 256-266, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38040033

RESUMO

Hyperglycemia is a potent risk factor for the development and progression of diabetes-induced nephropathy. Dendropanoxide (DPx) is a natural compound isolated from Dendropanax morbifera (Araliaceae) that exerts various biological effects. However, the role of DPx in hyperglycemia-induced renal tubular cell injury remains unclear. The present study explored the protective mechanism of DPx on high glucose (HG)-induced cytotoxicity in kidney tubular epithelial NRK-52E cells. The cells were cultured with normal glucose (5.6 mM), HG (30 mM), HG + metformin (10 µM), or HG + DPx (10 µM) for 48 h, and cell cycle and apoptosis were analyzed. Malondialdehyde (MDA), advanced glycation end products (AGEs), and reactive oxygen species (ROS) were measured. Protein-based nephrotoxicity biomarkers were measured in both the culture media and cell lysates. MDA and AGEs were significantly increased in NRK-52E cells cultured with HG, and these levels were markedly reduced by pretreatment with DPx or metformin. DPx significantly reduced the levels of kidney injury molecule-1 (KIM-1), pyruvate kinase M2 (PKM2), selenium-binding protein 1 (SBP1), or neutrophil gelatinase-associated lipocalin (NGAL) in NRK-52E cells cultured under HG conditions. Furthermore, treatment with DPx significantly increased antioxidant enzyme activity. DPx protects against HG-induced renal tubular cell damage, which may be mediated by its ability to inhibit oxidative stress through the protein kinase B/mammalian target of the rapamycin (AKT/mTOR) signaling pathway. These findings suggest that DPx can be used as a new drug for the treatment of high glucose-induced diabetic nephropathy.


Assuntos
Hiperglicemia , Metformina , Triterpenos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular , Glucose/toxicidade , Estresse Oxidativo , Transdução de Sinais , Antioxidantes/farmacologia , Apoptose , Serina-Treonina Quinases TOR/metabolismo , Metformina/metabolismo , Metformina/farmacologia , Células Epiteliais/metabolismo
11.
Nutrients ; 15(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38068826

RESUMO

Osteoporosis, which is often associated with increased osteoclast activity due to menopause or aging, was the main focus of this study. We investigated the inhibitory effects of water extract of desalted Salicornia europaea L. (WSE) on osteoclast differentiation and bone loss in ovariectomized mice. Our findings revealed that WSE effectively inhibited RANKL-induced osteoclast differentiation, as demonstrated by TRAP staining, and also suppressed bone resorption and F-actin ring formation in a dose-dependent manner. The expression levels of genes related to osteoclast differentiation, including NFATc1, ACP5, Ctsk, and DCSTAMP, were downregulated by WSE. Oral administration of WSE improved bone density and structural parameters in ovariectomized mice. Dicaffeoylquinic acids (DCQAs) and saponins were detected in WSE, with 3,4-DCQA, 3,5-DCQA, and 4,5-DCQA being isolated and identified. All tested DCQAs, including the aforementioned types, inhibited osteoclast differentiation, bone resorption, and the expression of osteoclast-related genes. Furthermore, WSE and DCQAs reduced ROS production mediated by RANKL. These results indicate the potential of WSE and its components, DCQAs, as preventive or therapeutic agents against osteoporosis and related conditions.


Assuntos
Doenças Ósseas Metabólicas , Reabsorção Óssea , Osteoporose , Feminino , Animais , Camundongos , Osteoclastos , Reabsorção Óssea/tratamento farmacológico , Doenças Ósseas Metabólicas/metabolismo , Osteoporose/tratamento farmacológico , Ligante RANK/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Diferenciação Celular , Osteogênese
12.
J Chemother ; : 1-18, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054850

RESUMO

This study investigated the potential of a newly synthesized histone deacetylase (HDAC) inhibitor, MHY446, in inducing cell death in HCT116 colorectal cancer cells and compared its activity with that of suberoylanilide hydroxamic acid (SAHA), a well-known HDAC inhibitor. The results showed that MHY446 increased the acetylation of histones H3 and H4 and decreased the expression and activity of HDAC proteins in HCT116 cells. Additionally, MHY446 was confirmed to bind more strongly to HDAC1 than HDAC2 and inhibit its activity. In vivo experiments using nude mice revealed that MHY446 was as effective as SAHA in inhibiting HCT116 cell-grafted tumor growth. This study also evaluated the biological effects of MHY446 on cell survival and death pathways. The reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine (NAC) confirmed that ROS play a role in MHY446-induced cell death by reducing poly(ADP-ribose) polymerase cleavage. MHY446 also induced cell death via endoplasmic reticulum (ER) stress by increasing the expression of ER stress-related proteins. NAC treatment decreased the expression of ER stress-related proteins, indicating that ROS mediate ER stress as an upstream signaling pathway and induce cell death. While MHY446 did not exhibit superior HDAC inhibition efficacy compared to SAHA, it is anticipated to provide innovative insights into the future development of therapeutic agents for human CRC by offering novel chemical structure-activity relationship-related information.

13.
Front Bioeng Biotechnol ; 11: 1244569, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744261

RESUMO

Background: In-stent restenosis caused by tissue hyperplasia and tumor growth through the wire meshes of an implanted self-expandable metallic stent (SEMS) remains an unresolved obstacle. This study aimed to investigate the safety and efficacy of SEMS-mediated radiofrequency ablation (RFA) for treating stent-induced tissue hyperplasia in a rat gastric outlet obstruction model. Methods: The ablation zone was investigated using extracted porcine liver according to the ablation time. The optimal RFA parameters were evaluated in the dissected rat gastric outlet. We allocated 40 male rats to four groups of 10 rats as follows: group A, SEMS placement only; group B, SEMS-mediated RFA at 4 weeks; group C, SEMS-mediated RFA at 4 weeks and housed until 8 weeks; and group D, SEMS-mediated RFA at 4 and 8 weeks. Endoscopy and fluoroscopy for in vivo imaging and histological and immunohistochemical analysis were performed to compare experimental groups. Results: Stent placement and SEMS-mediated RFA with an optimized RFA parameter were technically successful in all groups. Granulation tissue formation-related variables were significantly higher in group A than in groups B-D (all p < 0.05). Endoscopic and histological findings confirmed that the degrees of stent-induced tissue hyperplasia in group D were significantly lower than in groups B and C (all p < 0.05). Hsp70 and TUNEL expressions were significantly higher in groups B-D than in group A (all p < 0.001). Conclusion: The implanted SEMS-mediated RFA successfully managed stent-induced tissue hyperplasia, and repeated or periodic RFA seems to be more effective in treating in-stent restenosis in a rat gastric outlet obstruction model.

14.
Cell Death Differ ; 30(10): 2309-2321, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37704840

RESUMO

Gastrointestinal stromal tumors (GISTs) frequently show KIT mutations, accompanied by overexpression and aberrant localization of mutant KIT (MT-KIT). As previously established by multiple studies, including ours, we confirmed that MT-KIT initiates downstream signaling in the Golgi complex. Basic leucine zipper nuclear factor 1 (BLZF1) was identified as a novel MT-KIT-binding partner that tethers MT-KIT to the Golgi complex. Sustained activation of activated transcription factor 6 (ATF6), which belongs to the unfolded protein response (UPR) family, alleviates endoplasmic reticulum (ER) stress by upregulating chaperone expression, including heat shock protein 90 (HSP90), which assists in MT-KIT folding. BLZF1 knockdown and ATF6 inhibition suppressed both imatinib-sensitive and -resistant GIST in vitro. ATF6 inhibitors further showed potent antitumor effects in GIST xenografts, and the effect was enhanced with ER stress-inducing drugs. ATF6 activation was frequently observed in 67% of patients with GIST (n = 42), and was significantly associated with poorer relapse-free survival (P = 0.033). Overall, GIST bypasses ER quality control (QC) and ER stress-mediated cell death via UPR activation and uses the QC-free Golgi to initiate signaling.

15.
Am J Cancer Res ; 13(7): 3221-3233, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37559990

RESUMO

Colorectal cancer (CRC) is a prevalent cancer worldwide, ranking as the third most common cancer and the second leading cause of cancer-related deaths. The presence or absence of lymph node metastases is one of the representative markers for predicting CRC prognosis, but often yields heterogeneous results. In this study, we conducted an integrative molecular analysis of CRC using publicly available data from The Cancer Genome Atlas database and NCBI's Gene Expression Omnibus. Through our analysis, we identified 372 upregulated genes that were differentially expressed in CRC patients. Additionally, Kyoto Encyclopedia of Genes and Genomes analysis revealed five significant pathways, including Hippo, FC-gamma, and forkhead box O signaling pathways, which are known to be associated with cancer. Survival analysis of 28 genes involved in these pathways led to the identification of 13 genes with prognostic significance (P < 0.05). To validate our findings, logistic regression models were generated and tested in multiple cohorts, demonstrating significant accuracy. Moreover, we identified six genes (BNIP3, CD63, RDX, RGCC, WASF1, and WASF3) whose combination predicted the best prognosis based on survival analysis. This predictive model holds promise as a potential biomarker for prognosis, survival, and treatment efficacy. In conclusion, our study provides valuable insights into the molecular characteristics of CRC and identifies prognostic biomarkers. The combination of differentially expressed genes and their involvement in cancer-related pathways enhances our understanding of CRC pathogenesis and opens avenues for personalized treatment approaches and improved patient outcomes.

16.
Biochem Pharmacol ; 216: 115768, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37652106

RESUMO

Nonalcoholic fatty liver disease (NAFLD) has been linked to fat accumulation in the liver and lipid metabolism imbalance. Sesamin, a lignan commonly found in sesame seed oil, possesses antioxidant, anti-inflammatory, and anticancer properties. However, the precise mechanisms by which sesamin prevents hepatic steatosis are not well understood. This study aimed to explore the molecular mechanisms by which sesamin may improve lipid metabolism dysregulation. A in vitro hepatic steatosis model was established by exposing HepG2 cells to palmitate sodium. The results showed that sesamin effectively mitigated lipotoxicity and reduced reactive oxygen species production. Additionally, sesamin suppressed lipid accumulation by regulating key factors involved in lipogenesis and lipolysis, such as fatty acid synthase (FASN), sterol regulatory element-binding protein 1c (SREBP-1c), forkhead box protein O-1, and adipose triglyceride lipase. Molecular docking results indicated that sesamin could bind to estrogen receptor α (ERα) and reduce FASN and SREBP-1c expression via the Ca2+/calmodulin-dependent protein kinase kinase ß (CaMKKß)/AMP-activated protein kinase (AMPK) signaling pathway. Sesamin attenuated palmitate-induced lipotoxicity and regulated hepatic lipid metabolism in HepG2 cells by activating the ERα/CaMKKß/AMPK signaling pathway. These findings suggest that sesamin can improve lipid metabolism disorders and is a promising candidate for treating hepatic steatosis.


Assuntos
Lignanas , Hepatopatia Gordurosa não Alcoólica , Humanos , Receptor alfa de Estrogênio/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Simulação de Acoplamento Molecular , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Lignanas/farmacologia , Metabolismo dos Lipídeos , Células Hep G2 , Transdução de Sinais , Palmitatos/metabolismo
17.
ACS Appl Mater Interfaces ; 15(29): 34475-34487, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37452740

RESUMO

The application of irreversible electroporation (IRE) to endoluminal organs is being investigated; however, the current preclinical evidence and optimized electrodes are insufficient for clinical translation. Here, a novel self-expandable electrode (SE) made of chemically polished nickel-titanium (Ni-Ti) alloy wire for endoluminal IRE is developed in this study. Chemically polished heat-treated Ni-Ti alloy wires demonstrate increased electrical conductivity, reduced carbon and oxygen levels, and good mechanical and self-expanding properties. Bipolar IRE using chemically polished Ni-Ti wires successfully induces cancer cell death. IRE-treated potato tissue shows irreversibly and reversibly electroporated areas containing dead cells in an electrical strength-dependent manner. In vivo study using an optimized electric field strength demonstrates that endobiliary IRE using the SE evenly induces well-distributed mucosal injuries in the common bile duct (CBD) with the overexpression of the TUNEL, HSP70, and inflammatory cells without ductal perforation or stricture formation. This study demonstrates the basic concept of the endobiliary IRE procedure, which is technically feasible and safe in a porcine CBD as a novel therapeutic strategy for malignant biliary obstruction. The SE is a promising electrical energy delivery platform for effectively treating endoluminal organs.


Assuntos
Neoplasias , Titânio , Suínos , Animais , Titânio/química , Níquel/química , Eletroporação/métodos , Eletrodos , Ligas
18.
Int J Biol Sci ; 19(9): 2630-2647, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324954

RESUMO

Hepatic fibrosis results from overproduction and excessive accumulation of extracellular matrix (ECM) proteins in hepatocytes. Although the beneficial effects of dendropanoxide (DPx) isolated from Dendropanax morbifera have been studied, its role as an anti-fibrotic agent remains elucidated. We investigated the protective effect of DPx in BALB/C mice that received thioacetamide (TAA) intraperitoneally for 6 weeks. Later DPx (20 mg/kg/day) or silymarin (50 mg/kg/day) was administered daily for 6 weeks, followed by biochemical and histological analyses of each group. Hematoxylin and eosin staining of the livers showed TAA-induced hepatic fibrosis, which was significantly reduced in the DPx group. DPx treatment significantly decreased TAA-induced hyperlipidemia as evidenced by the decreased AST, ALT, ALP, γ-GTP and serum TG concentrations and reduced the activities of catalase (CAT) and superoxide dismutase (SOD) activity. ELISA revealed reduced levels of total glutathione (GSH), malondialdehyde (MDA) and Inflammatory factors (IL-6, IL-1ß, and TNF-α). Immunostaining showed reduced in collagen-1, α-SMA, and TGF-ß1 expression and western blotting showed reduced levels of the apoptotic proteins, TGF-ß1, p-Smad2/3, and Smad4. RT-qPCR and Western blotting revealed modifications in SIRT1, SIRT3 and SIRT4. Thus, DPx exerted a protective effect against TAA-induced hepatic fibrosis in the male BALB/C mouse model by inhibiting oxidative stress, inflammation, and apoptosis via TGF-ß1/Smads signaling.


Assuntos
Tioacetamida , Fator de Crescimento Transformador beta1 , Camundongos , Animais , Masculino , Fator de Crescimento Transformador beta1/metabolismo , Tioacetamida/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos BALB C , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Fígado/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Estresse Oxidativo , Glutationa/metabolismo
19.
Bioorg Chem ; 137: 106573, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37229969

RESUMO

Herein, atropisomeric 8-aryltetrahydroisoquinolines have been synthesized and biologically evaluated. Based on our structure-activity relationship study, a highly bioactive racemic compound has been produced, and it exhibited high antiproliferative activities against various cancer cell lines, including docetaxel-resistant breast cancer cell lines. Each enantiomer can be synthesized in an enantioselective manner by employing the chiral phosphoric acid-catalyzed atroposelective Pictet-Spengler cyclization. An axially (R)-configured enantiomer showed a higher biological activity compared with the axially (S)-configured enantiomer. Further biological studies suggested that the (R)-enantiomer overcomes docetaxel resistance via the downregulation of signal transducer and activator of transcription 3 activation and consequently induces cellular apoptosis in docetaxel-resistant triple-negative breast cancer cell lines.


Assuntos
Tetra-Hidroisoquinolinas , Neoplasias de Mama Triplo Negativas , Humanos , Docetaxel/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Apoptose , Linhagem Celular Tumoral
20.
Am J Cancer Res ; 13(4): 1443-1456, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168328

RESUMO

N6-methyladenosine (m6A) modification in RNA affects various aspects of RNA metabolism and regulates gene expression. This modification is modulated by many regulatory proteins, such as m6A methyltransferases (writers), m6A demethylases (erasers), and m6A-binding proteins (readers). Previous studies have suggested that alterations in m6A regulatory proteins induce genome-wide alternative splicing in many cancer cells. However, the functional effects and molecular mechanisms of m6A-mediated alternative splicing have not been fully elucidated. To understand the consequences of this modification on RNA splicing in cancer cells, we performed RNA sequencing and analyzed alternative splicing patterns in METTL3-knockdown osteosarcoma U2OS cells. We detected 1,803 alternatively spliced genes in METTL3-knockdown cells compared to the controls and found that cell cycle-related genes were enriched in differentially spliced genes. A comparison of the published MeRIP-seq data for METTL14 with our RNA sequencing data revealed that 70-87% of alternatively spliced genes had an m6A peak near 1 kb of alternative splicing sites. Among the 19 RNA-binding proteins enriched in alternative splicing sites, as revealed by motif analysis, expression of SFPQ highly correlated with METTL3 expression in 12,839 TCGA pan-cancer patients. We also found that cell cycle-related genes were enriched in alternatively spliced genes of other cell lines with METTL3 knockdown. Taken together, we suggest that METTL3 regulates m6A-dependent alternative splicing, especially in cell cycle-related genes, by regulating the functions of splicing factors such as SFPQ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA