Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
J Biotechnol ; 390: 62-70, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38761885

RESUMO

Human serum albumin (HSA), a polypeptide featuring 17 disulfide bonds, acts as a crucial transport protein in human blood plasma. Its extended circulation half-life, mediated by FcRn (neonatal Fc receptor)-facilitated recycling, positions HSA as an excellent carrier for long-acting drug delivery. However, the conventional method of obtaining HSA from human blood faces limitations due to availability and potential contamination risks, such as blood-borne diseases. This study introduced SHuffle, an oxidative Escherichia coli (E. coli) expression system, for the production of recombinant HSA (rHSA) that spontaneously self-folds into its native conformation. This system ensures precise disulfide bond formation and correct folding of cysteine-rich rHSA, eliminating the need for chaperone co-expression or domain fusion of a folding enhancer. The purified rHSA underwent thorough physicochemical characterization, including mass spectrometry, circular dichroism spectroscopy, intrinsic fluorescence spectroscopy, esterase-like activity assay, and size exclusion chromatography, to assess critical quality attributes. Importantly, rHSA maintained native binding affinity to FcRn and the albumin-binding domain. Collectively, our analyses demonstrated a high comparability between rHSA and plasma-derived HSA. The expression of rHSA in E. coli with an oxidizing cytosol provides a secure and cost-effective approach, enhancing the potential of rHSA for diverse medical applications.


Assuntos
Escherichia coli , Oxirredução , Dobramento de Proteína , Proteínas Recombinantes , Albumina Sérica Humana , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Albumina Sérica Humana/metabolismo , Albumina Sérica Humana/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Citoplasma/metabolismo , Receptores Fc/metabolismo , Receptores Fc/química , Antígenos de Histocompatibilidade Classe I/metabolismo
2.
Carbohydr Polym ; 338: 122204, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763712

RESUMO

This study presents the development and characterization of a novel double-network self-healing hydrogel based on N-carboxyethyl chitosan (CEC) and oxidized dextran (OD) with the incorporation of crosslinked collagen (CEC-OD/COL-GP) to enhance its biological and physicochemical properties. The hydrogel formed via dynamic imine bond formation exhibited efficient self-healing within 30 min, and a compressive modulus recovery of 92 % within 2 h. In addition to its self-healing ability, CEC-OD/COL-GP possesses unique physicochemical characteristics including transparency, injectability, and adhesiveness to various substrates and tissues. Cell encapsulation studies confirmed the biocompatibility and suitability of the hydrogel as a cell-culture scaffold, with the presence of a collagen network that enhances cell adhesion, spreading, long-term cell viability, and proliferation. Leveraging their unique properties, we engineered assemblies of self-healing hydrogel modules for controlled spatiotemporal drug delivery and constructed co-culture models that simulate angiogenesis in tumor microenvironments. Overall, the CEC-OD/COL-GP hydrogel is a versatile and promising material for biomedical applications, offering a bottom-up approach for constructing complex structures with self-healing capabilities, controlled drug release, and support for diverse cell types in 3D environments. This hydrogel platform has considerable potential for advancements in tissue engineering and therapeutic interventions.


Assuntos
Adesão Celular , Quitosana , Dextranos , Hidrogéis , Hidrogéis/química , Hidrogéis/farmacologia , Quitosana/química , Dextranos/química , Humanos , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno/química , Animais , Liberação Controlada de Fármacos , Proliferação de Células/efeitos dos fármacos , Encapsulamento de Células/métodos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Camundongos , Biomimética/métodos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Alicerces Teciduais/química
3.
Int J Biol Macromol ; 254(Pt 3): 127965, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37944724

RESUMO

Biomolecules and their functional subdomains are essential building blocks in the creation of multifunctional nanocomplexes. Methyl-binding domain protein 2 (MBD2) and p66α stand out as small α-helical motifs with an ability to self-assemble into a heterodimeric coiled-coil, making them promising building units. Yet, their practical use is hindered by rapid dissociation upon dilution. In this study, novel fusion tags, MBD2 and p66α variants, were developed to covalently link during co-expression in E. coli SHuffle. Through strategic placement of cysteine at each α-helix's terminus, intracellular crosslinking occurred with high specificity and yield, facilitated by preserved α-helical interactions. This instant disulfide bonding in the oxidative cytoplasm of E. coli SHuffle efficiently overcame the need for inefficient in vitro oxidation and protein extraction prone to creating non-specific adducts and suboptimal bioprocesses. In contrast to their wild-type counterparts, the GFP-mCherry protein complex cross-linked by the fusion tags maintained the heterodimeric state even under extensive dilution. The fusion tags, when combined with the E. coli SHuffle system, allowed for the streamlined co-expression of a stable protein complex through self-induced intracellular cysteine coupling. The approach demonstrated herein holds great promise for producing multifunctional and robust heteroprotein complexes.


Assuntos
Dissulfetos , Escherichia coli , Escherichia coli/genética , Dissulfetos/química , Cisteína/metabolismo , Proteínas/metabolismo , Citoplasma/metabolismo
4.
Oncol Rep ; 51(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38099422

RESUMO

Hypopharyngeal squamous cell carcinoma (HSCC) is a relatively rare form of head and neck cancer that is notorious for its poor prognosis and low overall survival rate. This highlights the need for new therapeutic options for this malignancy. The objective of the present study was to examine the ability of caffeic acid phenethyl ester (CAPE), which is an active compound found in propolis, to combat HSCC tumor growth. CAPE exerted its tumor­suppressive activity in HSCC cell lines through the induction of apoptosis. Mechanistically, the CAPE­mediated apoptotic process was attributed to the perturbation of the mitochondrial membrane potential and the activation of caspase­9. CAPE also modulated survivin and X­linked inhibitor of apoptosis, which are potent members of the inhibitors of apoptosis protein family, either through transcriptional or post­translational regulation, leading to HSCC cell line death. Therefore, the findings of the present study suggested that CAPE is an effective treatment alternative for HSCC via the stimulation of mitochondria­dependent apoptosis.


Assuntos
Neoplasias de Cabeça e Pescoço , Álcool Feniletílico , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Linhagem Celular Tumoral , Álcool Feniletílico/farmacologia , Álcool Feniletílico/uso terapêutico , Apoptose , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/uso terapêutico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico
5.
Cell Biochem Funct ; 41(8): 1319-1329, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37792550

RESUMO

Genipin, a natural compound derived from the fruit of Gardenia jasminoides Ellis, was reported to have activity against various cancer types. In this study, we determined the underlying mechanism for genipin-induced cell death in human oral squamous cell carcinoma (OSCC). The growth-inhibitory effects of genipin in human OSCC cells was examined by the Cell Counting Kit-8 and soft agar assays. The effects of genipin on apoptosis were assessed by nuclear morphological changes by 4',6-diamidino-2-phenylindole staining, measurement of the sub-G1 population, and Annexin V-fluorescein isothiocyanate/propidium iodide double staining. The underlying mechanism of genipin activity was analyzed by western blot analysis, subcellular fractionation of the nucleus and cytoplasm, immunocytochemistry, and quantitative real-time polymerase chain reaction. Genipin inhibited the growth of OSCC cells and induced apoptosis, which was mediated by a caspase-dependent pathway. Genipin reduced the phosphorylation of signal transducer and activator of transcription 3 (STAT3) at Tyr705 and its nuclear localization. Furthermore, inhibition of p-STAT3Tyr705 levels following genipin treatment was required for the reduction of survivin and myeloid cell leukemia-1 (Mcl-1) expression, leading to apoptotic cell death. The genipin-mediated reduction in survivin and Mcl-1 expression was caused by transcriptional and/or posttranslational regulatory mechanisms. The results provide insight into the regulatory mechanism by which genipin induces apoptotic cell death through the abrogation of nuclear STAT3 phosphorylation and suggest that genipin may represent a potential therapeutic option for the treatment of human OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/patologia , Survivina/metabolismo , Survivina/farmacologia , Survivina/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/uso terapêutico , Fator de Transcrição STAT3/metabolismo , Neoplasias Bucais/patologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células
6.
Cell Oncol (Dordr) ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37787967

RESUMO

PURPOSE: Neuropilin-2 (NRP2) is a multifunctional single-pass transmembrane receptor that binds to two disparate ligands, namely, vascular endothelial growth factors (VEGFs) and semaphorins (SEMAs). It is reportedly involved in neuronal and vascular development. In this study, we uncovered the exact functional role of NRP2 and its molecular mechanism during aggressive behaviors and lymph node (LN) metastasis in human head and neck cancer (HNC) and identified algal methanol extract as a potential novel NRP2 inhibitor. METHODS: In silico analyses and immunohistochemistry were used to investigate the relationship between NRP2 expression and the prognosis of HNC patients. The functional role of NRP2 on the proliferation, migration, invasion, and cancer stem cell (CSC) properties of HNC cells was examined by MTS, soft agar, clonogenic, transwell migration and invasion assays, and sphere formation assays. Signaling explorer antibody array, western blot, and qPCR were performed toward the investigation of a molecular mechanism that is related to NRP2. RESULTS: NRP2 was highly expressed in HNC and positively correlated with LN metastasis and advanced tumor stage and size in patients. Using loss- or gain-of-function approaches, we found that NRP2 promoted the proliferative, migratory, and invasive capacities of human HNC cells. Furthermore, NRP2 regulated Sox2 expression to exhibit aggressiveness and CSC properties of human HNC cells. We demonstrated that p90 ribosomal S6 kinase 1 (RSK1) elevates the aggressiveness and CSC properties of human HNC cells, possibly by mediating NRP2 and Sox2. Zeb1 was necessary for executing the NRP2/RSK1/Sox2 signaling pathway during the induction of epithelial-to-mesenchymal transition (EMT) and aggressive behaviors of human HNC cells. Moreover, the methanol extract of Codium fragile (MECF) repressed NRP2 expression, inhibiting the RSK1/Sox2/Zeb1 axis, which contributed to the reduction of aggressive behaviors of human HNC cells. CONCLUSIONS: These findings suggest that NRP2 is a critical determinant in provoking EMT and aggressive behaviors in human HNC through the RSK1/Sox2/Zeb1 axis, and MECF may have the potential to be a novel NRP2 inhibitor for treating metastasis in HNC patients.

7.
PLoS One ; 18(9): e0291914, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37733749

RESUMO

Out-toeing gait may cause alterations in lower limb biomechanics that could lead to an increased risk of overuse injuries. Surgery and physical therapy are conventional methods for mitigating such gait, but they are costly and time-consuming. Wearable devices like braces and orthoses are used as affordable alternatives, but they apply non-negligible stress on the skin. Haptic feedback-delivering shoes were also recently developed, but they require actuators and power sources. The purpose of our study is to develop compression tights with inward directing taping lines that apply compression to lower limb muscles and segments to facilitate inward rotation of the foot, overcoming the drawbacks of previous methods. These compression tights were manufactured to fit the average height, leg length, hip girth, and waist girth of South Korean females in their twenties. The efficacy of these compression tights was evaluated by comparing walking kinematics and user satisfaction of 12 female dancers with an out-toeing gait under three conditions: wearing tights with taping lines, tights without taping lines, and basic bicycle shorts. The foot rotation angles and joint kinematics were recorded using a pressure-pad treadmill and motion capture system, respectively. Multiple pairwise comparisons revealed that the compression tights with inward-directing lines significantly reduced foot rotation angles (up to an average of 20.1%) compared with the bicycle shorts (p = 0.002 and 0.001 for dominant and non-dominant foot, respectively) or the compression tights without taping lines (p = 0.005 and p = 0.001 for dominant and non-dominant foot, respectively). Statistical parametric mapping revealed significant main effects of the tight type on joint kinematics. Also, t-tests revealed that the participants reported significantly higher ratings of perceived functionality and usability on the compression tights with inward-directing taping lines. In conclusion, we developed a comfortable and practical apparel-type wearable and demonstrated its short-term efficacy in mitigating out-toeing gait.


Assuntos
Metatarso Valgo , Feminino , Humanos , Estudos de Viabilidade , , Marcha , Extremidade Inferior
8.
Biochem Biophys Res Commun ; 673: 36-43, 2023 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-37356143

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is a prevalent and aggressive non-Hodgkin's lymphoma, and 40% of patients succumb to death. Despite numerous clinical trials aimed at developing treatment strategies beyond the conventional R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone) regimen, there have been no positive results thus far. Although the selective BCL2 inhibitor venetoclax has shown remarkable efficacy in chronic lymphocytic leukemia, its therapeutic effect in DLBCL was limited. We hypothesized that the limited therapeutic effect of venetoclax in DLBCL may be attributed to the complex expression and interactions of BCL2 family members, including BCL2. Therefore, we aimed to comprehensively analyze the expression patterns of BCL2 family members in DLBCL. We analyzed 157 patients with de novo DLBCL diagnosed at Asan Medical Center and Ajou University Hospital. The mRNA expression levels of BCL2 family members were quantified using the NanoString technology. BCL2 family members showed distinct heterogeneous expression patterns both intra- and inter-patient. Using unsupervised hierarchical cluster analysis, we were able to classify patients with similar BCL2 family expression pattern and select groups with clear prognostic features, C1 and C6. In the group with the best prognosis, C1, the expression of pro-apoptotic and pro-apoptotic BH3-only group gene expressions were increased, while anti-apoptotic group expression was significantly increased in both C1 and C6. Based on this, we generated the BCL2 signature score using the expression of pro-apoptotic genes BOK and BCL2L15, and anti-apoptotic gene BCL2. The BCL2 signature score 0 had the best prognosis, score 1/2 had intermediate prognosis, and score 3 had the worst prognosis (EFS, p = 0.0054; OS, p = 0.0011). Multivariate analysis, including COO and IPI, showed that increase in the BCL2 signature score was significantly associated with poor prognosis for EFS, independent of COO and IPI. The BCL2 signature score we proposed in this study provides information on BCL2 family deregulation based on the equilibrium of pro-versus anti-apoptotic BCL2 family, which can aid in the development of new treatment strategies for DLBCL in the future.


Assuntos
Linfoma Difuso de Grandes Células B , Proteínas Proto-Oncogênicas c-bcl-2 , Humanos , Anticorpos Monoclonais Murinos/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Rituximab/uso terapêutico , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Ciclofosfamida/uso terapêutico , Vincristina/uso terapêutico , Prednisona/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
9.
Sci Rep ; 13(1): 3988, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894677

RESUMO

Despite its close association with CNS inflammatory demyelinating disorders (CIDDs), pathogenic characteristics of idiopathic transverse myelitis (ITM) remain largely unknown. Here, we investigated serum levels of neurofilament light chain (sNfL) and glial fibrillary acidic protein (sGFAP) in patients with ITM to unravel the disease characteristics of ITM. We prospectively recruited 70 patients with ITM, 62 with AQP4 + NMOSD and 85 with RRMS-including 31 patients with acute TM attacks-along with 30 HCs. We measured sNfL and sGFAP levels using single-molecular arrays and compared these levels per lesion volume between the disease groups during attacks. Compared to HCs, ITM patients showed higher sNfL and sGFAP during acute attacks (sNfL: p < 0.001, sGFAP: p = 0.024), while those in remission (sNfL: p = 0.944, sGFAP: p > 0.999) did not, regardless of lesion extents and presence of multiple attacks. ITM patients demonstrated lower sGFAP/volume (p = 0.011) during acute attacks and lower sGFAP (p < 0.001) in remission compared to AQP4 + NMOSD patients. These findings suggest that both neuronal and astroglial damages occur in patients with acute ITM attacks at a similar level to those with RRMS, distinct from AQP4 + NMOSD. However, active neuroinflammatory process was not remarkable during remission in this cohort.


Assuntos
Mielite Transversa , Humanos , Mielite Transversa/metabolismo , Biomarcadores , Neurônios , Proteínas de Neurofilamentos , Filamentos Intermediários/metabolismo
10.
Cancer Res Treat ; 55(2): 351-366, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36915242

RESUMO

Circulating tumor DNA (ctDNA) is the portion of the cell-free DNA in the blood of cancer patients released from tumor cells via apoptosis, necrosis, or active release. From 10 mL of blood, the 4-5 mL of plasma obtained from a cancer patient contains 5-10 ng/mL of ctDNA. The plasma contains not only ctDNA of tumor origin, but also DNA from normal cells or clonal hematopoiesis. Another characteristic of ctDNA is its rapid clearance from circulation; it has a half-life of 16 minutes to 2.5 hours. Obtaining reliable results from ctDNA requires the application and approval of standardized clinical validation guidelines; however, the status of numerous ctDNA tests currently varies. The clinical use of ctDNA testing should be carefully considered based on the test's specific needs and characteristics. Here we provide the different characteristics of ctDNA tests and information regarding their validation and approval status.


Assuntos
DNA Tumoral Circulante , Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , DNA Tumoral Circulante/genética , Medicina de Precisão , Oncologia , Biomarcadores Tumorais/genética , Mutação
11.
Int J Lab Hematol ; 45(3): 328-336, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36756990

RESUMO

BACKGROUND: Hypereosinophilia (HE) is defined as peripheral blood (PB) eosinophil count exceeding 1.5 × 109 /L. As the causes of HE can be diverse, the work-up of patients was complicated. In this study, we aimed to categorize the underlying diseases associated with HE and demonstrate minimum diagnostic approach. METHODS: Cases presenting with HE within 7 days of bone marrow (BM) examination conducted between 2008 and 2019 were selected. Cases were classified by the revised 2022 WHO and ICC classification. We also assessed morphologic features of unclassified persisting HE (>4 weeks) patients according to the morphologic criteria suggested a previous study by Wang et al. RESULTS: A total of 364 patients were included. The work-up confirmed primary HE in 38.7%, secondary HE in 48.9%, HE patients with insufficient evaluation in 13.7%. When conducted a slide review of HE patients with sustained HE more than 4 weeks among HE patients with insufficient evaluation, the morphological features showed abnormal eosinophils in PB/BM (69.0%/81.0%), hypercellularity (26.2%), myelofibrosis (7.1%), increased M:E ratio (5.3%), and dysmegakaryopoiesis (4.8%). Of these patients, 14 patients who met all morphologic criteria were suspected of CEL. CONCLUSIONS: This study demonstrates that HE is associated with variable conditions. BM morphological assessment based on a robust criterion can help to confirm a MN irrespective of the presence of clonal markers. The work-up of patients in whom ruled out the common secondary causes of HE requires a systematic but sufficient approach including at a minimum BM karyotyping, PDGFRA testing, lymphocyte immunophenotyping and TCR gene rearrangement.


Assuntos
Medula Óssea , Síndrome Hipereosinofílica , Humanos , Síndrome Hipereosinofílica/etiologia , Síndrome Hipereosinofílica/genética , Centros de Atenção Terciária , Exame de Medula Óssea , Contagem de Leucócitos
12.
Nat Nanotechnol ; 18(4): 390-402, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36635335

RESUMO

Although conventional innate immune stimuli contribute to immune activation, they induce exhausted immune cells, resulting in suboptimal cancer immunotherapy. Here we suggest a kinetically activating nanoadjuvant (K-nanoadjuvant) that can dynamically integrate two waves of innate immune stimuli, resulting in effective antitumour immunity without immune cell exhaustion. The combinatorial code of K-nanoadjuvant is optimized in terms of the order, duration and time window between spatiotemporally activating Toll-like receptor 7/8 agonist and other Toll-like receptor agonists. K-nanoadjuvant induces effector/non-exhausted dendritic cells that programme the magnitude and persistence of interleukin-12 secretion, generate effector/non-exhausted CD8+ T cells, and activate natural killer cells. Treatment with K-nanoadjuvant as a monotherapy or in combination therapy with anti-PD-L1 or liposomes (doxorubicin) results in strong antitumour immunity in murine models, with minimal systemic toxicity, providing a strategy for synchronous and dynamic tailoring of innate immunity for enhanced cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Animais , Camundongos , Imunoterapia/métodos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/uso terapêutico , Imunidade Inata , Neoplasias/terapia
13.
Int J Biol Macromol ; 227: 601-607, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36543295

RESUMO

Proteolysis of amyloids is related to prevention and treatment of amyloidosis. What if the conditions for proteolysis were the same to those for amyloid formation? For example, pepsin, a gastric protease is activated in an acidic environment, which, interestingly, is also a condition that induces the amyloid formation. Here, we investigate the competition reactions between proteolysis and synthesis of amyloid under pepsin-activated conditions. The changes in the quantities and nanomechanical properties of amyloids after pepsin treatment were examined by fluorescence assay, circular dichroism and atomic force microscopy. We found that, in the case of pepsin-resistant amyloid, a secondary reaction can be accelerated, thereby proliferating amyloids. Moreover, after this reaction, the amyloid became 32.4 % thicker and 24.2 % stiffer than the original one. Our results suggest a new insight into the proteolysis-driven proliferation and rigidification of pepsin-resistant amyloids.


Assuntos
Amiloide , Pepsina A , Proteólise , Pepsina A/metabolismo , Amiloide/metabolismo , Peptídeo Hidrolases/metabolismo , Dicroísmo Circular , Proteínas Amiloidogênicas , Proliferação de Células , Microscopia de Força Atômica
14.
Cell Oncol (Dordr) ; 46(2): 267-282, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36441378

RESUMO

PURPOSE: PD-L1 is an immune checkpoint protein that allows cells to evade T-cell-mediated immune responses. Herein, we uncover a tumor-intrinsic mechanism of PD-L1 that is responsible for the progression and aggressiveness of HNC and reveal that the extracts of a brown alga can target the tumor-intrinsic signaling pathway of PD-L1. METHODS: The biological functions of PD-L1 in the proliferation and aggressiveness of HNC cells in vitro were examined by metabolic activity, clonogenic, tumorigenicity, wound healing, migration, and invasion assays. The clinical importance of PD-L1 in the prognosis of patients with HNC was analyzed by immunohistochemistry. The relationship between PD-L1 and EMT was confirmed via western blotting, qPCR, and immunocytochemistry. RESULTS: Through our in silico approach, we found that PD-L1 was upregulated in HNC and was correlated with an unfavorable clinical outcome in patients with HNC. PD-L1 was crucial for promoting tumor growth, both in vitro and in vivo. High expression of PD-L1 was closely correlated with LN metastasis in OSCC. PD-L1 facilitated the cytoskeletal reorganization and aggressiveness of HNC cells. Moreover, PD-L1 enhanced the EMT of HNC cells by regulating the Snail/vimentin axis. Consistently, MEIO suppressed the PD-L1/Snail/vimentin axis, thereby inhibiting the aggressiveness of HNC cells. Inhibition of PD-L1 induced by PD-L1 silencing or MEIO treatment caused Snail degradation through a GSK3ß-dependent mechanism. The tumor-intrinsic function of PD-L1 could be attributed to the regulation of the GSK3ß/Snail/vimentin axis. CONCLUSION: The discovery of MEIO targeting the tumor-intrinsic function of PD-L1 may prove particularly valuable for the development of novel and effective anticancer drug candidates for HNCs overexpressing PD-L1.


Assuntos
Antígeno B7-H1 , Neoplasias de Cabeça e Pescoço , Humanos , Vimentina/metabolismo , Antígeno B7-H1/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral
15.
Front Endocrinol (Lausanne) ; 14: 1322326, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260144

RESUMO

Background: Obesity is known to increase the risk and severity of age-related macular degeneration (AMD). Increased inflamed metabolic activity of visceral adipose tissue (VAT) is considered as a crucial underlying mechanism for the harmful effects of obesity. In this study, we aimed to investigate the inflamed metabolic activity of VAT with 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) and their association with AMD. Materials and methods: A total of 57 elderly participants (aged ≥ 50 years) who underwent 18F-FDG PET/CT for health screening and subsequent fundoscopic exam for complaint of recently impaired vision were enrolled. The metabolic activity of VAT was measured from the maximum standardized uptake value (SUVmax) of VAT. The early AMD participant was defined as the participant with either eye satisfying AMD and without any sign of advanced AMD (neovascular AMD or geographic atrophy). The late AMD participant was defined as the participant with either eye satisfying advanced AMD. Results: VAT SUVmax was highest in participants with late AMD, intermediate in early AMD, and lowest in non-AMD participants. The levels of systemic inflammation surrogate markers were also highest in late AMD group. Furthermore, VAT SUVmax was positively correlated with systemic inflammation surrogate markers and independently associated with the late AMD. Conclusions: The metabolic activity of VAT evaluated by 18F-FDG PET/CT was associated with the severity of AMD and synchronized with the level of systemic inflammation. Thus, VAT SUVmax could be potentially employed as a surrogate marker of obesity-driven VAT inflammation associated with AMD.


Assuntos
Fluordesoxiglucose F18 , Degeneração Macular Exsudativa , Idoso , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Inibidores da Angiogênese , Gordura Intra-Abdominal/diagnóstico por imagem , Fator A de Crescimento do Endotélio Vascular , Acuidade Visual , Inflamação , Obesidade/complicações , Obesidade/diagnóstico por imagem , Biomarcadores
16.
Cells ; 11(17)2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36078152

RESUMO

Mitochondrial dynamics continually maintain cell survival and bioenergetics through mitochondrial quality control processes (fission, fusion, and mitophagy). Aberrant mitochondrial quality control has been implicated in the pathogenic mechanism of various human diseases, including cancer, cardiac dysfunction, and neurological disorders, such as Alzheimer's disease, Parkinson's disease, and prion disease. However, the mitochondrial dysfunction-mediated neuropathological mechanisms in prion disease are still uncertain. Here, we used both in vitro and in vivo scrapie-infected models to investigate the involvement of mitochondrial quality control in prion pathogenesis. We found that scrapie infection led to the induction of mitochondrial reactive oxygen species (mtROS) and the loss of mitochondrial membrane potential (ΔΨm), resulting in enhanced phosphorylation of dynamin-related protein 1 (Drp1) at Ser616 and its subsequent translocation to the mitochondria, which was followed by excessive mitophagy. We also confirmed decreased expression levels of mitochondrial oxidative phosphorylation (OXPHOS) complexes and reduced ATP production by scrapie infection. In addition, scrapie-infection-induced aberrant mitochondrial fission and mitophagy led to increased apoptotic signaling, as evidenced by caspase 3 activation and poly (ADP-ribose) polymerase cleavage. These results suggest that scrapie infection induced mitochondrial dysfunction via impaired mitochondrial quality control processes followed by neuronal cell death, which may have an important role in the neuropathogenesis of prion diseases.


Assuntos
Mitocôndrias , Neurônios , Doenças Priônicas , Animais , Humanos , Camundongos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Mitofagia/fisiologia , Neurônios/metabolismo , Neurônios/patologia , Doenças Priônicas/patologia , Príons/efeitos adversos , Príons/metabolismo , Scrapie/metabolismo , Scrapie/patologia
18.
J Cell Physiol ; 237(7): 3069-3079, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35580065

RESUMO

Recent studies have shown that protein arginine methyltransferase 1 (PRMT1) is highly expressed in the human heart, and loss of PRMT1 contributes to cardiac remodeling in the heart failure. However, the functional importance of PRMT1 in cardiac ion channels remains uncertain. The slow activating delayed rectifier K+ (IKs ) channel is a cardiac K+ channel composed of KCNQ1 and KCNE1 subunits and is a new therapeutic target for treating lethal arrhythmias in many cardiac pathologies, especially heart failure. Here, we demonstrate that PRMT1 is a critical regulator of the IKs channel and cardiac rhythm. In the guinea pig ventricular myocytes, treatment with furamidine, a PRMT1-specific inhibitor, prolonged the action potential duration (APD). We further show that this APD prolongation was attributable to IKs reduction. In HEK293T cells expressing human KCNQ1 and KCNE1, inhibiting PRMT1 via furamidine reduced IKs and concurrently decreased the arginine methylation of KCNQ1, a pore-forming α-subunit. Evidence presented here indicates that furamidine decreased IKs mainly by lowering the affinity of IKs channels for the membrane phospholipid, phosphatidylinositol 4,5-bisphosphate (PIP2 ), which is crucial for pore opening. Finally, applying exogenous PIP2 to cardiomyocytes prevented the furamidine-induced IKs reduction and APD prolongation. Taken together, these results indicate that PRMT1 positively regulated IKs activity through channel-PIP2 interaction, thereby restricting excessive cardiac action potential.


Assuntos
Insuficiência Cardíaca , Canal de Potássio KCNQ1 , Fosfatos de Fosfatidilinositol/metabolismo , Potenciais de Ação , Animais , Cobaias , Células HEK293 , Insuficiência Cardíaca/metabolismo , Humanos , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Miócitos Cardíacos/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo
19.
Genome Med ; 13(1): 114, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34261517

RESUMO

BACKGROUND: Renal medullary carcinomas (RMCs) are rare kidney cancers that occur in adolescents and young adults of African ancestry. Although RMC is associated with the sickle cell trait and somatic loss of the tumor suppressor, SMARCB1, the ancestral origins of RMC remain unknown. Further, characterization of structural variants (SVs) involving SMARCB1 in RMC remains limited. METHODS: We used linked-read genome sequencing to reconstruct germline and somatic haplotypes in 15 unrelated patients with RMC registered on the Children's Oncology Group (COG) AREN03B2 study between 2006 and 2017 or from our prior study. We performed fine-mapping of the HBB locus and assessed the germline for cancer predisposition genes. Subsequently, we assessed the tumor samples for mutations outside of SMARCB1 and integrated RNA sequencing to interrogate the structural variants at the SMARCB1 locus. RESULTS: We find that the haplotype of the sickle cell mutation in patients with RMC originated from three geographical regions in Africa. In addition, fine-mapping of the HBB locus identified the sickle cell mutation as the sole candidate variant. We further identify that the SMARCB1 structural variants are characterized by blunt or 1-bp homology events. CONCLUSIONS: Our findings suggest that RMC does not arise from a single founder population and that the HbS allele is a strong candidate germline allele which confers risk for RMC. Furthermore, we find that the SVs that disrupt SMARCB1 function are likely repaired by non-homologous end-joining. These findings highlight how haplotype-based analyses using linked-read genome sequencing can be applied to identify potential risk variants in small and rare disease cohorts and provide nucleotide resolution to structural variants.


Assuntos
Alelos , Carcinoma Medular/etiologia , Mutação em Linhagem Germinativa , Haplótipos , Neoplasias Renais/etiologia , Mutação , Carcinoma Medular/diagnóstico , Linhagem Celular Tumoral , Criança , Pré-Escolar , Biologia Computacional/métodos , Quebras de DNA , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Genômica/métodos , Genótipo , Humanos , Neoplasias Renais/diagnóstico , Masculino , Proteínas de Fusão Oncogênica , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma
20.
Cancers (Basel) ; 13(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203279

RESUMO

We investigated the regulatory mechanism of FAL1 and unravelled the molecular biological features of FAL1 upregulation in papillary thyroid cancer (PTC). Correlation analyses of FAL1 and neighbouring genes adjacent to chromosome 1q21.3 were performed. Focal amplification was performed using data from copy number alterations in The Cancer Genome Atlas (TCGA) database. To identify putative transcriptional factors, PROMO and the Encyclopaedia of DNA Elements (ENCODE) were used. To validate c-JUN and JUND as master transcription factors for FAL1 and ECM1, gene set enrichment analysis was performed according to FAL1 and ECM1 expression. Statistical analyses of the molecular biological features of FAL1- and ECM1-upregulated PTCs were conducted. FAL1 expression significantly correlated with that of neighbouring genes. Focal amplification of chromosome 1q21.3 was observed in ovarian cancer but not in thyroid carcinoma. However, PROMO suggested 53 transcription factors as putative common transcriptional factors for FAL1 and ECM1 simultaneously. Among them, we selected c-JUN and JUND as the best candidates based on ENCODE results. The expression of target genes of JUND simultaneously increased in FAL1- and ECM1-upregulated PTCs, especially in young patients. The molecular biological features represented RAS-driven PTC and simultaneously enriched immune-related gene sets. FAL1 and ECM1 expression frequently increased simultaneously and could be operated by JUND. The simultaneous upregulation might be a potential diagnostic and therapeutic target for RAS-driven PTC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA