Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
1.
J Med Chem ; 67(11): 9389-9405, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38787938

RESUMO

TLR7/8 agonists are versatile immune stimulators capable of treating various diseases such as viral infections, autoimmune, and cancer. Despite the structural similarity of TLR7/8, their immune stimulation mechanisms and time-course responses significantly differ. In this study, a new series of TLR7-selective agonists was synthesized utilizing the economical building block 2,6-dichloropurine. Compound 27b showed the most potent activity on hTLR7 with an EC50 of 17.53 nM and demonstrated high hTLR7 selectivity (224 folds against TLR8). 27b effectively stimulated the secretion of proinflammatory cytokines in mouse macrophages and enhanced intranasal vaccine efficacy against influenza A virus in vivo. Assessment of humoral and mucosal antibody titers confirmed that 27b elevates IgG and IgA levels, protecting against both homologous and heterologous influenza viral infections. These findings suggest that 27b is a promising candidate as a vaccine adjuvant to prevent viral infections or as a robust immunomodulator with prolonged activity for treating immune-suppressed diseases.


Assuntos
Administração Intranasal , Desenho de Fármacos , Vacinas contra Influenza , Purinas , Receptor 7 Toll-Like , Receptor 7 Toll-Like/agonistas , Animais , Camundongos , Humanos , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Purinas/farmacologia , Purinas/química , Adjuvantes de Vacinas/farmacologia , Adjuvantes de Vacinas/química , Relação Estrutura-Atividade , Camundongos Endogâmicos BALB C , Feminino , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Citocinas/metabolismo , Células RAW 264.7 , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/síntese química , Adjuvantes Imunológicos/química
2.
Acta Biomater ; 180: 140-153, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38604467

RESUMO

Photothermal therapy (PTT) holds great promise as a cancer treatment modality by generating localized heat at the tumor site. Among various photothermal agents, gallium-based liquid metal (LM) has been widely used as a new photothermal-inducible metallic compound due to its structural transformability. To overcome limitations of random aggregation and dissipation of administrated LM particles into a human body, we developed LM-containing injectable composite hydrogel platforms capable of achieving spatiotemporal PTT and chemotherapy. Eutectic gallium-indium LM particles were first stabilized with 1,2-Distearoyl-sn­glycero-3-phosphoethanolamine (DSPE) lipids. They were then incorporated into an interpenetrating hydrogel network composed of thiolated gelatin conjugated with 6-mercaptopurine (MP) chemodrug and poly(ethylene glycol)-diacrylate. The resulted composite hydrogel exhibited sufficient capability to induce MDA-MB-231 breast cancer cell death through a multi-step mechanism: (1) hyperthermic cancer cell death due to temperature elevation by near-infrared laser irradiation via LM particles, (2) leakage of glutathione (GSH) and cleavage of disulfide bonds due to destruction of cancer cells. As a consequence, additional chemotherapy was facilitated by GSH, leading to accelerated release of MP within the tumor microenvironment. The effectiveness of our composite hydrogel system was evaluated both in vitro and in vivo, demonstrating significant tumor suppression and killing. These results demonstrate the potential of this injectable composite hydrogel for spatiotemporal cancer treatment. In conclusion, integration of PTT and chemotherapy within our hydrogel platform offers enhanced therapeutic efficacy, suggesting promising prospects for future clinical applications. STATEMENT OF SIGNIFICANCE: Our research pioneers a breakthrough in cancer treatments by developing an injectable hydrogel platform incorporating liquid metal (LM) particle-mediated photothermal therapy and 6-mercaptopurine (MP)-based chemotherapy. The combination of gallium-based LM and MP achieves synergistic anticancer effects, and our injectable composite hydrogel acts as a localized reservoir for specific delivery of both therapeutic agents. This platform induces a multi-step anticancer mechanism, combining NIR-mediated hyperthermic tumor death and drug release triggered by released glutathione from damaged cancer populations. The synergistic efficacy validated in vitro and in vivo studies highlights significant tumor suppression. This injectable composite hydrogel with synergistic therapeutic efficacy holds immense promise for biomaterial-mediated spatiotemporal treatment of solid tumors, offering a potent targeted therapy for triple negative breast cancers.


Assuntos
Neoplasias da Mama , Gálio , Hidrogéis , Hidrogéis/química , Gálio/química , Gálio/farmacologia , Humanos , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/terapia , Animais , Linhagem Celular Tumoral , Injeções , Fototerapia , Camundongos Nus , Camundongos , Terapia Fototérmica , Camundongos Endogâmicos BALB C
3.
Anticancer Res ; 44(3): 1131-1142, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423649

RESUMO

BACKGROUND/AIM: Cancer stem cells (CSCs) contribute significantly to the poor prognosis of patients with epithelial ovarian cancer (EOC) due to their roles in drug resistance and tumor metastasis. Autotaxin (ATX) plays a pivotal role in the maintenance of the CSC-like properties of EOC tumors. BBT-877 is a novel ATX inhibitor used in clinical treatment of idiopathic pulmonary fibrosis. However, the effects of BBT-877 on drug resistance and metastasis in ovarian CSCs remain unknown. In this study, we aimed to investigate the effects of BBT-877 on drug resistance and intraperitoneal metastasis of EOC. MATERIALS AND METHODS: Spheroid-forming CSCs, which were isolated from two EOC cell lines, A2780 and SKOV3, were investigated by cell viability, western blot, PCR, Spheroid-forming assay, and in vivo experiments. RESULTS: Spheroid-forming CSCs exhibited increased CSC-like properties and paclitaxel (PTX) resistance. BBT-877 treatment inhibited the viability of spheroid-forming CSCs more potently than that of adherent ovarian cancer cell lines. Combinatorial treatment with BBT-877 and PTX significantly attenuated the viability of spheroid-forming CSCs. In a SKOV3 cells-derived intraperitoneal metastasis model, BBT-877 treatment reduced the number of metastatic tumor nodes, while combinatorial treatment with BBT-877 and PTX more potently attenuated the formation of metastatic nodes and accumulation of ascitic fluid. CONCLUSION: These results suggest that BBT-877 can be combined with conventional anticancer drugs for the treatment of patients with recurrent or drug-resistant EOC.


Assuntos
Neoplasias Ovarianas , Oxazóis , Piperazinas , Humanos , Feminino , Carcinoma Epitelial do Ovário/patologia , Neoplasias Ovarianas/patologia , Linhagem Celular Tumoral , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Células-Tronco Neoplásicas/metabolismo
4.
Clin Orthop Surg ; 16(1): 141-148, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38304214

RESUMO

Background: To evaluate the degree of deformation in patients with ankle osteoarthritis (OA), it is essential to measure the three-dimensional (3D), in other words, stereoscopic alignment of the ankle, subtalar, and foot arches. Generally, measurement of radiological parameters use two-dimensional (2D) anteroposterior and lateral radiographs in a weight-bearing state; however, computer-aided 3D analysis (Disior) using weight-bearing cone-beam computed tomography (CBCT) has recently been introduced. Methods: In this study, we compared the 2D human radiographic method with a stereoscopic image in patients with ankle arthritis. We enrolled 57 patients diagnosed with OA (28 left and 29 right) and obtained both standing radiographs and weight-bearing CBCT. Patients were divided by the Takakura stage. The interclass correlation coefficient (ICC) for each result was confirmed. Results: On the ICC between 2D radiographs and 3D analysis, the tibiotalar surface angle and lateral talo-1st metatarsal angle showed a good ICC grade (> 0.6), while other parameters did not have significant ICC results. Three-dimension was superior to radiographs in terms of statistical significance. Conclusions: We demonstrated that 2D and stereoscopic images are useful for the diagnosis of OA. Our study also confirmed that the radiographic features affected by ankle OA varied. However, according to the results, the typical radiography is not sufficient to diagnose and determine a treatment plan for ankle OA. Therefore, the method of using 3D images should be considered.


Assuntos
Tornozelo , Osteoartrite , Humanos , Radiografia , Articulação do Tornozelo/diagnóstico por imagem , Osteoartrite/diagnóstico por imagem , Suporte de Carga , Computadores , Reprodutibilidade dos Testes
5.
J Geriatr Oncol ; 15(2): 101685, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38104479

RESUMO

INTRODUCTION: Fragmented cancer care, defined as receipt of care from multiple hospitals, has been shown to be associated with poor patient outcomes and high expense. However, evidence regarding the effects of hospital choice by patients with cancer on overall survival are lacking. Thus, we investigated the relationship between patterns of fragmented care and five-year mortality in patients with gastric cancer. MATERIALS AND METHODS: Using the Korean National Health Insurance senior cohort of adults aged ≥60 years, we identified patients with gastric cancer who underwent gastrectomy during 2007-2014. We examined the distribution of the study population by five-year mortality, and used Kaplan-Meier survival curves/log-rank test and Cox proportional hazard model to compare five-year mortality with fragmented cancer care. RESULTS: Among the participants, 19.5% died within five years. There were more deaths among patients who received fragmented care, especially those who transferred to smaller hospitals (46.6%) than to larger ones (40.0%). The likelihood of five-year mortality was higher in patients who received fragmented cancer care upon moving from large to small hospitals than those who did not transfer hospitals (hazard ratio, 1.28; 95% confidence interval, 1.10-1.48, P = .001). Moreover, mortality was higher among patients treated in large hospitals or in the capital area for initial treatment, and this association was greater for patients from rural areas. DISCUSSION: Fragmentation of cancer care was associated with reduced survival, and the risk of mortality was higher among patients who moved from large to small hospitals.


Assuntos
Neoplasias Gástricas , Humanos , Idoso , Estudos de Coortes , Neoplasias Gástricas/terapia , Hospitais , Modelos de Riscos Proporcionais , República da Coreia/epidemiologia , Estudos Retrospectivos
6.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139829

RESUMO

BACKGROUND: Ubiquitin-specific protease 11 (USP11), one of the principal phosphatase and tensin homolog (PTEN) deubiquitinases, can reserve PTEN polyubiquitination to maintain PTEN protein integrity and inhibit PI3K/AKT pathway activation. The aim of the current study was to investigate the associations between immunohistochemical USP11 staining intensities and prognostic indicators in individuals with prostate cancer. METHODS: Tissue microarrays (TMAs) were performed for human prostate cancer and normal tissue (control) samples. Data on patient's age, Gleason score, plasma prostate-specific antigen (PSA) titer, disease stage, and presence of seminal vesicles, lymph nodes, and surgical margin involvement were collected. A pathologist who was blinded to the clinical outcome data scored the TMA for USP11 staining intensity as either positive or negative. RESULTS: Cancerous tissues exhibited lower USP11 staining intensity, whereas the neighboring benign peri-tumoral tissues showed higher USP11 staining intensity. The degree of USP11 staining intensity was lower in patients with a higher PSA titer, higher Gleason score, or more advanced disease stage. Patients who showed positive USP11 staining were more likely to have more optimal clinical and biochemical recurrence-free survival statistics. CONCLUSIONS: USP11 staining intensity in patients with prostate cancer is negatively associated with several prognostic factors such as an elevated PSA titer and a high Gleason score. It also reflects both biochemical and clinical recurrence-free survival in such patients. Thus, USP11 staining is a valuable prognostic factor in patients with prostate cancer.

7.
Stem Cell Res Ther ; 14(1): 193, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37533021

RESUMO

BACKGROUND: Peripheral artery disease is an ischemic vascular disease caused by the blockage of blood vessels supplying blood to the lower extremities. Mesenchymal stem cells (MSCs) and endothelial colony-forming cells (ECFCs) have been reported to alleviate peripheral artery disease by forming new blood vessels. However, the clinical application of MSCs and ECFCs has been impeded by their poor in vivo engraftment after cell transplantation. To augment in vivo engraftment of transplanted MSCs and ECFCs, we investigated the effects of hybrid cell spheroids, which mimic a tissue-like environment, on the therapeutic efficacy and survival of transplanted cells. METHODS: The in vivo survival and angiogenic activities of the spheroids or cell suspension composed of MSCs and ECFCs were measured in a murine hindlimb ischemia model and Matrigel plug assay. In the hindlimb ischemia model, the hybrid spheroids showed enhanced therapeutic effects compared with the control groups, such as adherent cultured cells or spheroids containing either MSCs or ECFCs. RESULTS: Spheroids from MSCs, but not from ECFCs, exhibited prolonged in vivo survival compared with adherent cultured cells, whereas hybrid spheroids composed of MSCs and ECFCs substantially increased the survival of ECFCs. Moreover, single spheroids of either MSCs or ECFCs secreted greater levels of pro-angiogenic factors than adherent cultured cells, and the hybrid spheroids of MSCs and ECFCs promoted the secretion of several pro-angiogenic factors, such as angiopoietin-2 and platelet-derived growth factor. CONCLUSION: These results suggest that hybrid spheroids containing MSCs can serve as carriers for cell transplantation of ECFCs which have poor in vivo engraftment efficiency.


Assuntos
Células-Tronco Mesenquimais , Doença Arterial Periférica , Humanos , Animais , Camundongos , Neovascularização Fisiológica , Células Endoteliais/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células Cultivadas , Isquemia/terapia , Isquemia/metabolismo
8.
Int J Mol Sci ; 24(12)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37373457

RESUMO

Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy owing to relapse caused by resistance to chemotherapy. We previously reported that cluster of differentiation 109 (CD109) expression is positively correlated with poor prognosis and chemoresistance in patients with EOC. To further explore the role of CD109 in EOC, we explored the signaling mechanism of CD109-induced drug resistance. We found that CD109 expression was upregulated in doxorubicin-resistant EOC cells (A2780-R) compared with that in their parental cells. In EOC cells (A2780 and A2780-R), the expression level of CD109 was positively correlated with the expression level of ATP-binding cassette (ABC) transporters, such as ABCB1 and ABCG2, and paclitaxel (PTX) resistance. Using a xenograft mouse model, it was confirmed that PTX administration in xenografts of CD109-silenced A2780-R cells significantly attenuated in vivo tumor growth. The treatment of CD109-overexpressed A2780 cells with cryptotanshinone (CPT), a signal transducer and activator of transcription 3 (STAT3) inhibitor, inhibited the CD109 overexpression-induced activation of STAT3 and neurogenic locus notch homolog protein 1 (NOTCH1), suggesting a STAT3-NOTCH1 signaling axis. The combined treatment of CD109-overexpressed A2780 cells with CPT and N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT), a NOTCH inhibitor, markedly abrogated PTX resistance. These results suggest that CD109 plays a key role in the acquisition of drug resistance by activating the STAT3-NOTCH1 signaling axis in patients with EOC.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Animais , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Fator de Transcrição STAT3/metabolismo , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Paclitaxel/farmacologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Transportadores de Cassetes de Ligação de ATP , Proteínas de Neoplasias/metabolismo , Antígenos CD/uso terapêutico , Proteínas Ligadas por GPI/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo
9.
Transl Med Commun ; 8(1): 11, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065938

RESUMO

Gene therapy manipulates or modifies a gene that provides a new cellular function to treat or correct a pathological condition, such as cancer. The approach of using gene manipulation to modify patient's cells to improve cancer therapy and potentially find a cure is gaining popularity. Currently, there are 12 gene therapy products approved by US-FDA, EMA and CFDA for cancer management, these include Rexin-G, Gendicine, Oncorine, Provange among other. The Radiation Biology Research group at Henry Ford Health has been actively developing gene therapy approaches for improving clinical outcome in cancer patients. The team was the first to test a replication-competent oncolytic virus armed with a therapeutic gene in humans, to combine this approach with radiation in humans, and to image replication-competent adenoviral gene expression/activity in humans. The adenoviral gene therapy products developed at Henry Ford Health have been evaluated in more than 6 preclinical studies and evaluated in 9 investigator initiated clinical trials treating more than100 patients. Two phase I clinical trials are currently following patients long term and a phase I trial for recurrent glioma was initiated in November 2022. This systematic review provides an overview of gene therapy approaches and products employed for treating cancer patients including the products developed at Henry Ford Health.

10.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166723, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37087023

RESUMO

The chaperone-mediated autophagy (CMA) pathway is deregulated in different types of cancers; however, its role in cancer stem cells (CSCs) is unknown yet. Development of ovarian cancer, the most lethal gynecological type of cancer, involves the metastasis of CSCs to the abdominal cavity. This study aims to determine the role of CMA in ovarian CSCs. We found that the transcription factor EB (TFEB) and trehalose, a disaccharide that induces TFEB activation, enhance the expression of octamer-binding transcription factor 4 (OCT4) stem cell and lysosomal-associated membrane protein 2A (LAMP2A) CMA markers. However, trehalose did not increase the level of the LC3II macroautophagy marker in ovarian CSCs. In A2780 and SKOV3 ovarian CSCs, LAMP2A and heat shock protein 70 (HSC70) exhibited higher expression levels than in normal adherent cells. Our results showed that the silencing of the LAMP2A gene resulted in reduced sphere formation and enhanced GLUT5 expression in ovarian CSCs. Moreover, the treatment with fructose reduced sphere formation and enhanced the expression levels of LAMP2A, SOX2, and OCT4 in ovarian CSCs. The KEGG functional analysis revealed that differentially expressed genes were enriched in the ferroptosis pathway in A2780-spheroid (SP) cells after treatment with fructose. In A2780-SP and SKOV3-SP cells, the level of SLC7A11 decreased whereas FTH increased after treatment with fructose. Taken together, our results suggest that CMA is mediated in CSCs via fructose metabolism.


Assuntos
Autofagia Mediada por Chaperonas , Neoplasias Ovarianas , Humanos , Feminino , Autofagia/genética , Linhagem Celular Tumoral , Trealose , Frutose/farmacologia , Neoplasias Ovarianas/genética , Células-Tronco Neoplásicas
11.
Int J Mol Sci ; 24(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37047234

RESUMO

NANOG, a stemness-associated transcription factor, is highly expressed in many cancers and plays a critical role in regulating tumorigenicity. Transformation/transcription domain-associated protein (TRRAP) has been reported to stimulate the tumorigenic potential of cancer cells and induce the gene transcription of NANOG. This study aimed to investigate the role of the TRRAP-NANOG signaling pathway in the tumorigenicity of cancer stem cells. We found that TRRAP overexpression specifically increases NANOG protein stability by interfering with NANOG ubiquitination mediated by FBXW8, an E3 ubiquitin ligase. Mapping of NANOG-binding sites using deletion mutants of TRRAP revealed that a domain of TRRAP (amino acids 1898-2400) is responsible for binding to NANOG and that the overexpression of this TRRAP domain abrogated the FBXW8-mediated ubiquitination of NANOG. TRRAP knockdown decreased the expression of CD44, a cancer stem cell marker, and increased the expression of P53, a tumor suppressor gene, in HCT-15 colon cancer cells. TRRAP depletion attenuated spheroid-forming ability and cisplatin resistance in HCT-15 cells, which could be rescued by NANOG overexpression. Furthermore, TRRAP knockdown significantly reduced tumor growth in a murine xenograft transplantation model, which could be reversed by NANOG overexpression. Together, these results suggest that TRRAP plays a pivotal role in the regulation of the tumorigenic potential of colon cancer cells by modulating NANOG protein stability.


Assuntos
Neoplasias do Colo , Animais , Humanos , Camundongos , Carcinogênese/genética , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Células-Tronco Neoplásicas/metabolismo , Estabilidade Proteica
12.
Radiat Oncol ; 18(1): 10, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639774

RESUMO

The limitation of cancer radiotherapy does not derive from an inability to ablate tumor, but rather to do so without excessively damaging critical tissues and organs and adversely affecting patient's quality of life. Although cellular senescence is a normal consequence of aging, there is increasing evidence showing that the radiation-induced senescence in both tumor and adjacent normal tissues contributes to tumor recurrence, metastasis, and resistance to therapy, while chronic senescent cells in the normal tissue and organ are a source of many late damaging effects. In this review, we discuss how to identify cellular senescence using various bio-markers and the role of the so-called senescence-associated secretory phenotype characteristics on the pathogenesis of the radiation-induced late effects. We also discuss therapeutic options to eliminate cellular senescence using either senolytics and/or senostatics. Finally, a discussion of cellular reprogramming is presented, another promising avenue to improve the therapeutic gain of radiotherapy.


Assuntos
Neoplasias , Lesões por Radiação , Humanos , Qualidade de Vida , Senescência Celular , Neoplasias/patologia
13.
J Neurointerv Surg ; 15(2): 200-204, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35140167

RESUMO

BACKGROUND: Cerebral aneurysms should be treated before rupture because ruptured aneurysms result in serious disability. Therefore, accurate prediction of rupture risk is important and has been estimated using various hemodynamic factors. OBJECTIVE: To suggest a new way to predict rupture risk in cerebral aneurysms using a novel deep learning model based on hemodynamic parameters for better decision-making about treatment. METHODS: A novel convolutional neural network (CNN) model was used for rupture risk prediction retrospectively of 123 aneurysm cases. To include the effect of hemodynamic parameters into the CNN, the hemodynamic parameters were first calculated using computational fluid dynamics and fluid-structure interaction. Then, they were converted into images for training the CNN using a novel approach. In addition, new data augmentation methods were devised to obtain sufficient training data. A total of 53,136 images generated by data augmentation were used to train and test the CNN. RESULTS: The CNNs trained with wall shear stress (WSS), strain, and combination images had area under the receiver operating characteristics curve values of 0.716, 0.741, and 0.883, respectively. Based on the cut-off values, the CNN trained with WSS (sensitivity: 0.5, specificity: 0.79) or strain (sensitivity: 0.74, specificity: 0.71) images alone was not highly predictive. However, the CNN trained with combination images of WSS and strain showed a sensitivity and specificity of 0.81 and 0.82, respectively. CONCLUSION: CNN-based deep learning algorithm using hemodynamic factors, including WSS and strain, could be an effective tool for predicting rupture risk in cerebral aneurysms with good predictive accuracy.


Assuntos
Aneurisma Roto , Aprendizado Profundo , Aneurisma Intracraniano , Humanos , Aneurisma Intracraniano/diagnóstico por imagem , Estudos Retrospectivos , Redes Neurais de Computação , Hemodinâmica , Aneurisma Roto/diagnóstico por imagem
14.
Adv Biol Regul ; 88: 100943, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36542983

RESUMO

DJ-1 has gained extensive attention after being identified in 2003 as a protein implicated in the pathogenesis of early-onset Parkinson's disease. Since then, efforts have revealed versatile DJ-1 functions in reactive oxygen species (ROS) control, transcriptional regulation, chaperone function, fertility, and cell transformation. Herein, we report a novel function of DJ-1 in actin cytoskeletal rearrangements. DJ-1 was identified as a new binding partner of Mena, a protein of the Enah/VASP family, and it promoted cancer cell migration by Mena-dependent actin polymerization and filopodia formation. These results suggest a novel molecular mechanism for DJ-1-dependent cancer cell invasion and metastasis.


Assuntos
Actinas , Proteínas dos Microfilamentos , Proteína Desglicase DJ-1 , Animais , Actinas/química , Movimento Celular , Citoesqueleto , Drosophila/genética , Drosophila/metabolismo , Mamíferos/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteína Desglicase DJ-1/química , Proteína Desglicase DJ-1/metabolismo
15.
Mater Today Bio ; 16: 100386, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35991627

RESUMO

Triple-negative breast cancer (TNBC) patients are considered intractable, as this disease has few effective treatments and a very poor prognosis even in its early stages. Here, intratumoral therapy with resveratrol (Res), which has anticancer and metastasis inhibitory effects, was proposed for the effective treatment of TNBC. An injectable Res-loaded click-crosslinked hyaluronic acid (Res-Cx-HA) hydrogel was designed and intratumorally injected to generate a Res-Cx-HA depot inside the tumor. The Res-Cx-HA formulation exhibited good injectability into the tumor tissue, quick depot formation inside the tumor, and the depot remained inside the injected tumor for extended periods. In vivo formed Res-Cx-HA depots sustained Res inside the tumor for extended periods. More importantly, the bioavailability and therapeutic efficacy of Res remained almost exclusively within the tumor and not in other organs. Intratumoral injection of Res-Cx-HA in animal models resulted in significant negative tumor growth rates (i.e., the tumor volume decreased over time) coupled with large apoptotic cells and limited angiogenesis in tumors. Therefore, Res-Cx-HA intratumoral injection is a promising way to treat TNBC patients with high efficacy and minimal adverse effects.

16.
Front Immunol ; 13: 940258, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003384

RESUMO

Chronic neuropathic pain is caused by dysfunction of the peripheral nerves associated with the somatosensory system. Mesenchymal stem cells (MSCs) have attracted attention as promising cell therapeutics for chronic pain; however, their clinical application has been hampered by the poor in vivo survival and low therapeutic efficacy of transplanted cells. Increasing evidence suggests enhanced therapeutic efficacy of spheroids formed by three-dimensional culture of MSCs. In the present study, we established a neuropathic pain murine model by inducing a chronic constriction injury through ligation of the right sciatic nerve and measured the therapeutic effects and survival efficacy of spheroids. Monolayer-cultured and spheroids were transplanted into the gastrocnemius muscle close to the damaged sciatic nerve. Transplantation of spheroids alleviated chronic pain more potently and exhibited prolonged in vivo survival compared to monolayer-cultured cells. Moreover, spheroids significantly reduced macrophage infiltration into the injured tissues. Interestingly, the expression of mouse-origin genes associated with inflammatory responses, Ccl11/Eotaxin, interleukin 1A, tumor necrosis factor B, and tumor necrosis factor, was significantly attenuated by the administration of spheroids compared to that of monolayer. These results suggest that MSC spheroids exhibit enhanced in vivo survival after cell transplantation and reduced the host inflammatory response through the regulation of main chronic inflammatory response-related genes.


Assuntos
Dor Crônica , Células-Tronco Mesenquimais , Neuralgia , Animais , Dor Crônica/metabolismo , Inflamação/genética , Inflamação/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Neuralgia/metabolismo , Neuralgia/terapia , Esferoides Celulares/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
17.
Biomed Pharmacother ; 152: 113241, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35691157

RESUMO

The novel (nua) kinase family 1 (NUAK1) is an AMPK-related kinase and its expression is associated with tumor malignancy and poor prognosis in several types of cancer, suggesting its potential as a target for cancer therapy. Therefore, the development of NUAK1-targeting inhibitors could improve therapeutic outcomes in cancer. We synthesized KI-301670, a novel NUAK1 inhibitor, and assessed its anticancer effects and mechanism of action in pancreatic cancer. It effectively inhibited pancreatic cancer growth and proliferation, and induced cell cycle arrest, markedly G0/G1 arrest, by increasing the expression of p27 and decreasing expression of p-Rb and E2F1. Additionally, the apoptotic effect of KI-301670 was observed by an increase in cleaved PARP, TUNEL-positive cells, and annexin V cell population, as well as the release of cytochrome c via the loss of mitochondrial membrane potential. KI-301670 inhibited the migration and invasion of pancreatic cancer cells. Mechanistically, KI-301670 effectively inhibited the PI3K/AKT pathway in pancreatic cancer cells. Furthermore, it significantly attenuated tumor growth in a mouse xenograft tumor model. Our results demonstrate that a novel NUAK1 inhibitor, KI-301670, exerts anti-tumor effects by directly suppressing cancer cell growth by affecting the PI3K/AKT pathway, suggesting that it could be a novel therapeutic candidate for pancreatic cancer treatment.


Assuntos
Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas c-akt , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Neoplasias Pancreáticas
18.
Mol Ther Oncolytics ; 25: 211-224, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35592390

RESUMO

Oncolytic vaccinia virus (OVV) has been reported to induce cell death in various types of cancer; however, the oncolytic activity of OVV in drug-resistant ovarian cancer remains limited. In the present study, we established doxorubicin-resistant ovarian cancer cells (A2780-R) from the A2780 human ovarian cancer cell line. Both A2780 and A2780-R cells were infected with OVV to explore its anticancer effects. Interestingly, OVV-infected A2780-R cells showed reduced viral replication and cell death compared with A2780 cells, suggesting their resistance against OVV-induced oncolysis; to understand the mechanism underlying this resistance, we explored the involvement of protein kinases. Among protein kinase inhibitors, PD0325901, an MEK inhibitor, significantly augmented OVV replication and cell death in A2780-R cells. PD0325901 treatment increased the phosphorylation of STAT3 in A2780-R cells. Moreover, cryptotanshinone, a STAT3 inhibitor, abrogated PD0325901-stimulated OVV replication. Furthermore, trametinib, a clinically approved MEK inhibitor, increased OVV replication in A2780-R cells. Transcriptomic analysis showed that the MEK inhibitor promoted OVV replication via increasing STAT3 activation and downregulating the cytosolic DNA-sensing pathway. Combined treatment with OVV and trametinib attenuated A2780-R xenograft tumor growth. These results suggest that pharmacological inhibition of MEK reinforces the oncolytic efficacy of OVV in drug-resistant ovarian cancer.

19.
Polymers (Basel) ; 14(9)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35567037

RESUMO

Translocation of cell-penetrating peptides is promoted by incorporated arginine or other guanidinium groups. However, relatively little research has considered the role of these functional groups on antimicrobial peptide activity. A series of cationic linear-, star- and multi-branched-poly(L-arginine-co-L-phenylalanine) have been synthesized via the ring-opening copolymerizations of corresponding N-carboxyanhydride monomers followed by further modifications using the N-heterocyclic carbene organocatalyst. All the polymers are characterized by the random coiled microstructure. Antibacterial efficacy, tested by the gram-positive B. subtilis bacteria and the gram-negative E. coli bacteria, was sensitive to the structure and relative composition of the copolymer and increased in the order of linear- < star- < multi-branched structure. The multi-branched-p[(L-arginine)23-co-(L-phenylalanine)7]8 polymer showed the best antibacterial property with the lowest minimum inhibitory concentration values of 48 µg mL−1 for E. coli and 32 µg mL−1 for B. subtilis. The efficacy was prominent for B. subtilis due to the anionic nature of its membrane. All of the resultant arginine moiety-containing polypeptides showed excellent blood compatibility. The antibiotic effect of the copolymers with arginine moieties was retained even in the environment bearing Ca2+, Mg2+, and Na+ ions similar to blood plasma. The cationic arginine-bearing copolypeptides were also effective for the sterilization of naturally occurring sources of water such as lakes, seas, rain, and sewage, showing a promising range of applicability.

20.
Physiol Plant ; 174(2): e13677, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35316541

RESUMO

In wheat (Triticum aestivum L.), the floret development stage is an important step in determining grain yield per spike; however, the molecular mechanisms underlying floret development remain unclear. In this study, we elucidated the role of TaF-box2, a member of the F-box-containing E3 ubiquitin protein ligases, which is involved in floret development and anthesis of wheat. TaF-box2 was transiently expressed in the plasma membrane and cytoplasm of both tobacco and wheat. We also found that the SCFF-box2 (Skp1-Cul1-Rbx1-TaF-box2) ubiquitin ligase complex mediated self-ubiquitination activity. Transgenic Arabidopsis plants that constitutively overexpressed TaF-box2 showed markedly greater hypocotyl and root length than wild-type plants, and produced early flowering phenotypes. Flowering-related genes were significantly upregulated in TaF-box2-overexpressing Arabidopsis plants. Further protein interaction analyses such as yeast two-hybrid, in vitro pull-down, and bimolecular fluorescence complementation assays confirmed that TaF-box2 physically interacted with TaCYCL1 (Triticum aestivum cyclin-L1-1). Ubiquitination and degradation assays demonstrated that TaCYCL1 was ubiquitinated by SCFF-box2 and degraded through the 26S proteasome complex. The physiological functions of the TaF-box2 protein remain unclear; however, we discuss several potential routes of involvement in various physiological mechanisms which counteract flowering in transgenic Arabidopsis plants.


Assuntos
Arabidopsis , Proteínas F-Box , Arabidopsis/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Triticum/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA