Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38774957

RESUMO

OBJECTIVE: Cochlear implant (CI) electrode design has changed over time. Changes in intracochlear electrode design might influence the spread of neural activation along the auditory nerve and the number of independent channels. This study aimed to investigate the impact of intracochlear electrode design on the electrode-neuron interface using electrophysiological measures. STUDY DESIGN: Prospective cohort study. SETTING: A single tertiary hospital. METHODS: Fifty-two ears who were implanted with CI divided into 3 groups based on the design of intracochlear electrode arrays. Twenty-three ears were implanted with lateral wall straight electrodes. Eighteen ears were implanted with the slim perimodiolar electrode, and 11 ears were implanted with the old perimodiolar electrode. Various electrically-evoked compound action potential (ECAP) metrics were measured to quantify spread of excitation and channel interaction. RESULTS: ECAP threshold and slope were not significantly different among groups. ECAP spread of excitation (SOE) half-width and channel interaction index (CII) were significantly larger in subjects implanted with the lateral wall straight electrodes, indicating a wider spread of excitation compared to those with perimodiolar electrodes. Electrode impedance was significantly lower in subjects implanted with perimodiolar electrodes than those with lateral wall electrodes. CONCLUSION: Perimodiolar electrode groups yielded significantly narrower SOE half-widths and smaller CII than the lateral wall straight electrode group. This may indicate that the electrode array that hugged the modiolus had less overlap in neural excitation between adjacent electrodes, resulting in reduced channel interaction and potentially better spectral resolution than the electrode array positioned more laterally.

2.
J Audiol Otol ; 28(2): 100-106, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38695055

RESUMO

We herein review the use of electrocochleography (ECoG) to assess peripheral auditory system responsiveness in a growing population of cochlear implant (CI) users with preserved hearing in ears with implants. Twenty-eight recently published intracochlear ECoG articles were thoroughly reviewed to investigate the prognostic utility of intraoperative ECoG monitoring to assess hearing preservation, and the clinical applicability of postoperative ECoG for estimating audiometric thresholds and monitoring longitudinal changes in residual acoustic hearing in patients with EAS. Intraoperative ECoG studies have focused on monitoring the changes in the cochlear microphonics (CM) amplitudes during and after electrode insertion. Mixed results have been reported regarding the relationship between changes in CM amplitude in the operating room and changes in hearing thresholds after surgery. Postoperative ECoG studies have shown that CM and auditory nerve neurophonics thresholds correlate significantly with behavioral thresholds. ECoG thresholds sensitively detect changes as residual acoustic hearing decreases over time in some CI users. This indicates its potential clinical value for monitoring the post-implantation status of the peripheral auditory system. Intracochlear ECoG can provide real-time intraoperative feedback and monitor postoperative hearing preservation in a growing population of CI users.

3.
Ear Hear ; 44(5): 1061-1077, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36882917

RESUMO

OBJECTIVES: Less traumatic intracochlear electrode design and the introduction of the soft surgery technique allow for the preservation of low-frequency acoustic hearing in many cochlear implant (CI) users. Recently, new electrophysiologic methods have also been developed that allow acoustically evoked peripheral responses to be measured in vivo from an intracochlear electrode. These recordings provide clues to the status of peripheral auditory structures. Unfortunately, responses generated from the auditory nerve (auditory nerve neurophonic [ANN]) are somewhat difficult to record because they are smaller than the hair cell responses (cochlear microphonic). Additionally, it is difficult to completely segregate the ANN from the cochlear microphonic, complicating the interpretation and limiting clinical applications. The compound action potential (CAP) is a synchronous response of multiple auditory nerve fibers and may provide an alternative to ANN where the status of the auditory nerve is of primary interest. This study is a within-subject comparison of CAPs recorded using traditional stimuli (clicks and 500 Hz tone bursts) and a new stimulus (CAP chirp). We hypothesized that the chirp stimulus might result in a more robust CAP than that recorded using traditional stimuli, allowing for a more accurate assessment of the status of the auditory nerve. DESIGN: Nineteen adult Nucleus L24 Hybrid CI users with residual low-frequency hearing participated in this study. CAP responses were recorded from the most apical intracochlear electrode using a 100 µs click, 500 Hz tone bursts, and chirp stimuli presented via the insert phone to the implanted ear. The chirp stimulus used in this study was CAP chirp generated using parameters from human-derived band CAPs ( Chertoff et al. 2010 ). Additionally, nine custom chirps were created by systematically varying the frequency sweep rate of the power function used to construct the standard CAP chirp stimulus. CAPs were recorded using all acoustic stimuli, allowing for within-subject comparisons of the CAP amplitude, threshold, percentage of measurable CAP responses, and waveform morphology. RESULTS: Considerable variation in response morphology was apparent across stimuli and stimulation levels. Clicks and CAP chirp significantly evoked identifiable CAP response more compared to 500 Hz tone bursts. At relatively high stimulation levels, the chirp-evoked CAPs were significantly larger in amplitude and less ambiguous in morphology than the click-evoked CAPs. The status of residual acoustic hearing at high frequencies influenced the likelihood that a CAP could be reliably recorded. Subjects with better preserved hearing at high frequencies had significantly larger CAP amplitudes when CAP chirp was used. Customizing the chirp stimulus by varying the frequency sweep rates significantly affected the CAP amplitudes; however, pairwise comparisons did not show significant differences between chirps. CONCLUSIONS: CAPs can be measured more effectively using broadband acoustic stimuli than 500 Hz tone bursts in CI users with residual low-frequency acoustic hearing. The advantage of using CAP chirp stimulus relative to standard clicks is dependent on the extent of preserved acoustic hearing at high frequencies and the stimulus level. The chirp stimulus may present an attractive alternative to standard clicks or tone bursts for this CI population when the goal is to record robust CAP responses.


Assuntos
Implante Coclear , Implantes Cocleares , Adulto , Humanos , Potenciais de Ação/fisiologia , Audição , Estimulação Acústica/métodos , Acústica , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Limiar Auditivo/fisiologia
4.
Ear Hear ; 44(5): 1014-1028, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36790447

RESUMO

OBJECTIVE: Minimally traumatic surgical techniques and advances in cochlear implant (CI) electrode array designs have allowed acoustic hearing present in a CI candidate prior to surgery to be preserved postoperatively. As a result, these patients benefit from combined electric-acoustic stimulation (EAS) postoperatively. However, 30% to 40% of EAS CI users experience a partial loss of hearing up to 30 dB after surgery. This additional hearing loss is generally not severe enough to preclude use of acoustic amplification; however, it can still impact EAS benefits. The use of electrocochleography (ECoG) measures of peripheral hair cell and neural auditory function have shed insight into the pathophysiology of postimplant loss of residual acoustic hearing. The present study aims to assess the long-term stability of ECoG measures and to establish ECoG as an objective method of monitoring residual hearing over the course of EAS CI use. We hypothesize that repeated measures of ECoG should remain stable over time for EAS CI users with stable postoperative hearing preservation. We also hypothesize that changes in behavioral audiometry for EAS CI users with loss of residual hearing should also be reflected in changes in ECoG measures. DESIGN: A pool of 40 subjects implanted under hearing preservation protocol was included in the study. Subjects were seen at postoperative visits for behavioral audiometry and ECoG recordings. Test sessions occurred 0.5, 1, 3, 6, 12 months, and annually after 12 months postoperatively. Changes in pure-tone behavioral audiometric thresholds relative to baseline were used to classify subjects into two groups: one group with stable acoustic hearing and another group with loss of acoustic hearing. At each test session, ECoG amplitude growth functions for several low-frequency stimuli were obtained. The threshold, slope, and suprathreshold amplitude at a fixed stimulation level was obtained from each growth function at each time point. Longitudinal linear mixed effects models were used to study trends in ECoG thresholds, slopes, and amplitudes for subjects with stable hearing and subjects with hearing loss. RESULTS: Preoperative, behavioral audiometry indicated that subjects had an average low-frequency pure-tone average (125 to 500 Hz) of 40.88 ± 13.12 dB HL. Postoperatively, results showed that ECoG thresholds and amplitudes were stable in EAS CI users with preserved residual hearing. ECoG thresholds increased (worsened) while ECoG amplitudes decreased (worsened) for those with delayed hearing loss. The slope did not distinguish between EAS CI users with stable hearing and subjects with delayed loss of hearing. CONCLUSIONS: These results provide a new application of postoperative ECoG as an objective tool to monitor residual hearing and understand the pathophysiology of delayed hearing loss. While our measures were conducted with custom-designed in-house equipment, CI companies are also designing and implementing hardware and software adaptations to conduct ECoG recordings. Thus, postoperative ECoG recordings can potentially be integrated into clinical practice.


Assuntos
Implante Coclear , Implantes Cocleares , Surdez , Perda Auditiva , Humanos , Estimulação Acústica , Audiometria de Resposta Evocada/métodos , Implante Coclear/métodos , Perda Auditiva/reabilitação , Surdez/reabilitação , Audiometria de Tons Puros , Limiar Auditivo , Estimulação Elétrica
5.
Laryngoscope Investig Otolaryngol ; 7(4): 1098-1106, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36000038

RESUMO

Objectives: This study sought to characterize the influence of inner ear malformations (IEMs) on intraoperative electrically evoked compound action potential (ECAP) and auditory performance to better understand the underlying pathophysiology related to variabilities in cochlear implant (CI) outcomes that individuals with malformed cochlea may present. Methods: The medical records of 222 ears implanted with Cochlear Nucleus CI were reviewed. Of the total, 64 ears had radiologic evidence of IEMs, and 158 ears were normal. Individuals with IEMs were grouped based on the severity of anomalies; 38 had mild IEMs (e.g., enlarged vestibular aqueduct, incomplete partition type II, etc.) and 26 had severe IEMs (e.g., cochlear nerve hypoplasia, common cavity, etc.). Intraoperative ECAP thresholds obtained via neural response telemetry (NRT) and the categories of auditory performance (CAP) scores measured at 12 months postoperative were compared and correlated. Results: Absent ECAP responses were more apparent in the IEM group. ECAP thresholds were significantly elevated in the severe IEM group, while the mild IEM group had ECAP thresholds comparable to the normal group. The mild IEM group achieved CAP scores similar to the normal control. Patients in the severe IEM group showed significantly lower CAP scores at 12 months postoperative. Significant negative relationships existed between ECAP thresholds and CAP scores obtained from all subjects. Conclusion: Measurable ECAP responses and NRT thresholds varied across groups. The inverse relationship between NRT thresholds and CAP scores may suggest that electrophysiological responses measured during surgery may potentially be indicative of postoperative performance in our CI population. Level of Evidence: 2b.

6.
J Assoc Res Otolaryngol ; 23(1): 95-118, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34686938

RESUMO

Acoustic hearing can be preserved after cochlear implant (CI) surgery, allowing for combined electric-acoustic stimulation (EAS) and superior speech understanding compared to electric-only hearing. Among patients who initially retain useful acoustic hearing, 30-40 % experience a delayed hearing loss that occurs 3 or more months after CI activation. Increases in electrode impedances have been associated with delayed loss of residual acoustic hearing, suggesting a possible role of intracochlear inflammation/fibrosis as reported by Scheperle et al. (Hear Res 350:45-57, 2017) and Shaul et al. (Otol Neurotol 40(5):e518-e526, 2019). These studies measured only total impedance. Total impedance consists of a composite of access resistance, which reflects resistance of the intracochlear environment, and polarization impedance, which reflects resistive and capacitive properties of the electrode-electrolyte interface as described by Dymond (IEEE Trans Biomed Eng 23(4):274-280, 1976) and Tykocinski et al. (Otol Neurotol 26(5):948-956, 2005). To explore the role of access and polarization impedance components in loss of residual acoustic hearing, these measures were collected from Nucleus EAS CI users with stable acoustic hearing and subsequent precipitous loss of hearing. For the hearing loss group, total impedance and access resistance increased over time while polarization impedance remained stable. For the stable hearing group, total impedance and access resistance were stable while polarization impedance declined. Increased access resistance rather than polarization impedance appears to drive the increase in total impedances seen with loss of hearing. Moreover, access resistance has been correlated with intracochlear fibrosis/inflammation in animal studies as observed by Xu et al. (Hear Res 105(1-2):1-29, 1997) and Tykocinski et al. (Hear Res 159(1-2):53-68, 2001). These findings thus support intracochlear inflammation as one contributor to loss of acoustic hearing in our EAS CI population.


Assuntos
Implante Coclear , Implantes Cocleares , Surdez , Perda Auditiva , Percepção da Fala , Estimulação Acústica , Acústica , Animais , Surdez/cirurgia , Impedância Elétrica , Estimulação Elétrica , Fibrose , Audição , Perda Auditiva/reabilitação , Humanos , Inflamação/cirurgia
7.
J Assoc Res Otolaryngol ; 22(2): 161-176, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33538936

RESUMO

Changes in cochlear implant (CI) design and surgical techniques have enabled the preservation of residual acoustic hearing in the implanted ear. While most Nucleus Hybrid L24 CI users retain significant acoustic hearing years after surgery, 6-17 % experience a complete loss of acoustic hearing (Roland et al. Laryngoscope. 126(1):175-81. (2016), Laryngoscope. 128(8):1939-1945 (2018); Scheperle et al. Hear Res. 350:45-57 (2017)). Electrocochleography (ECoG) enables non-invasive monitoring of peripheral auditory function and may provide insight into the pathophysiology of hearing loss. The ECoG response is evoked using an acoustic stimulus and includes contributions from the hair cells (cochlear microphonic-CM) as well as the auditory nerve (auditory nerve neurophonic-ANN). Seven Hybrid L24 CI users with complete loss of residual hearing months after surgery underwent ECoG measures before and after loss of hearing. While significant reductions in CMs were evident after hearing loss, all participants had measurable CMs despite having no measurable acoustic hearing. None retained measurable ANNs. Given histological data suggesting stable hair cell and neural counts after hearing loss (e.g., Quesnel et al. Hear Res. 333:225-234. (2016)), the loss of ECoG and audiometric hearing may reflect reduced synaptic input. This is consistent with the theory that residual CM responses coupled with little to no ANN responses reflect a "disconnect" between hair cells and auditory nerve fibers (Fontenot et al. Ear Hear. 40(3):577-591. 2019). This "disconnection" may prevent proper encoding of auditory stimulation at higher auditory pathways, leading to a lack of audiometric responses, even in the presence of viable cochlear hair cells.


Assuntos
Implantes Cocleares , Células Ciliadas Auditivas/fisiologia , Perda Auditiva , Estimulação Acústica , Estimulação Elétrica , Audição , Perda Auditiva/terapia , Humanos
8.
Artigo em Inglês | MEDLINE | ID: mdl-32993065

RESUMO

(1) Objectives: This study reviews the use of electrocochleography (ECoG) as a tool for assessing the response of the peripheral auditory system and monitoring hearing preservation in the growing population of cochlear implant (CI) users with preserved hearing in the implanted ear. (2) Methods: A search was conducted in PubMed and CINAHL databases up to August 2020 to locate articles related to the ECoG measured during or after the cochlear implant (CI) surgery for monitoring purposes. Non-English articles, animal studies, literature reviews and editorials, case reports, and conference papers were excluded. The quality of studies was evaluated using the National Institute of Health (NIH) "Study Quality Assessment Tool for Case Series Studies". (3) Results: A total 30 articles were included for the systematic review. A total of 21 articles were intraoperative ECoG studies, while seven articles were postoperative studies. Two studies were conducted ECoG both during and after the surgery. Intraoperative ECoG studies focused on monitoring changes in ECoG response amplitudes during and/or after electrode insertion and predicting the scalar location of the electrode array. Postoperative ECoG studies focused on using the ECoG measurements to estimate behavioral audiometric thresholds and monitor pathophysiological changes related to delayed onset hearing loss postimplant. (4) Conclusions: ECoG is feasible to provide real-time feedback intraoperatively and has a potential clinical value to monitor the status of hearing preservation postoperatively in this CI population with residual acoustic hearing.


Assuntos
Audiometria de Resposta Evocada , Implante Coclear , Implantes Cocleares , Correção de Deficiência Auditiva , Audição/fisiologia , Estimulação Acústica , Acústica , Humanos , Projetos Piloto
9.
Auris Nasus Larynx ; 37(1): 6-17, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19897328

RESUMO

Cochlear implantation has revolutionized the treatment and prognosis of children with severe to profound sensorineural hearing loss who receive limited benefits from hearing aids. Children who receive cochlear implantation at young age, in particular before 2 years of age, can be expected to reach their normal age-equivalent developmental milestones and have higher chance to integrate into the mainstream educational settings. With the positive outcomes after cochlear implantation and the improvements in technology and surgical techniques, candidacy for cochlear implantation in children has been expanding to include hearing-impaired children with significant residual hearing, severe inner ear malformations, multiple handicaps such as mental retardation or visual impairment, and auditory neuropathy. Furthermore, there is growing interest in offering bilateral cochlear implantation to give children the benefits of binaural hearing. As the candidacy criteria expand, cochlear implant programs including preoperative evaluation, surgery, and habilitation have become more complex. Therefore, candidates should be selected prudently by multidisciplinary approach and cochlear implantation in children is much better to be provided by experienced cochlear implant team consisting of experts in relevant fields for the best results.


Assuntos
Implante Coclear/métodos , Perda Auditiva Neurossensorial/cirurgia , Audiometria de Tons Puros , Criança , Pré-Escolar , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/epidemiologia , Humanos , Lactente , Transtornos do Desenvolvimento da Linguagem/diagnóstico , Transtornos do Desenvolvimento da Linguagem/epidemiologia , Programas de Rastreamento/métodos , Seleção de Pacientes , Cuidados Pré-Operatórios , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA