Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutr Res ; 128: 14-23, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39002358

RESUMO

Sesamolin, a lignan isolated from sesame oils, has been found to possess neuroprotective, anticancer, and free radical scavenging properties. We hypothesized that sesamolin could stimulate the activity of nuclear factor erythroid-derived 2-like 2 (Nrf2) and inhibit adipocyte differentiation of preadipocytes. The objective of this study was to investigate effects of sesamolin on adipocyte differentiation and its underlying molecular mechanisms. In this study, we determined the effects of treatment with 25 to 100 µM sesamolin on adipogenesis in cell culture systems. Sesamolin inhibited lipid accumulation and suppressed the expression of adipocyte markers during adipocyte differentiation of C3H10T1/2, 3T3-L1, and primary preadipocytes. Mechanism studies revealed that sesamolin increased Nrf2 protein expression without inducing its mRNA, leading to an increase in the expression of Nrf2 target genes such as heme oxygenase 1 and NAD(P)H:quinone oxidoreductase 1 (Nqo1) in C3H10T1/2 adipocytes and mouse embryonic fibroblasts. These effects were significantly attenuated in Nrf2 knockout (KO) mouse embryonic fibroblasts, indicating that effects of sesamolin were dependent on Nrf2. In H1299 human lung cancer cells with KO of Kelch like-ECH-associated protein 1 (Keap1), a negative regulator of Nrf2, sesamolin failed to further increase Nrf2 protein expression. However, upon reexpressing Keap1 in Keap1 KO cells, the ability of sesamolin to elevate Nrf2 protein expression was restored, highlighting the crucial role of Keap1 in sesamolin-induced Nrf2 activation. Taken together, these findings show that sesamolin can inhibit adipocyte differentiation through Keap1-mediated Nrf2 activation.


Assuntos
Células 3T3-L1 , Adipócitos , Adipogenia , Diferenciação Celular , Proteína 1 Associada a ECH Semelhante a Kelch , NAD(P)H Desidrogenase (Quinona) , Fator 2 Relacionado a NF-E2 , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Animais , Camundongos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Dioxóis/farmacologia , Camundongos Knockout , Lignanas/farmacologia , Humanos , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética
2.
Int J Mol Sci ; 25(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38791319

RESUMO

Glutathione S-transferase omega 1 (GstO1) catalyzes deglutathionylation and plays an important role in the protein glutathionylation cycle in cells. GstO1 contains four conserved cysteine residues (C32, C90, C191, C236) found to be mutated in patients with associated diseases. In this study, we investigated the effects of cysteine mutations on the structure and function of GstO1 under different redox conditions. Wild-type GstO1 (WT) was highly sensitive to hydrogen peroxide (H2O2), which caused precipitation and denaturation at a physiological temperature. However, glutathione efficiently inhibited the H2O2-induced denaturation of GstO1. Cysteine mutants C32A and C236A exhibited redox-dependent stabilities and enzyme activities significantly different from those of WT. These results indicate that C32 and C236 play critical roles in GstO1 regulation by sensing redox environments and explain the pathological effect of cysteine mutations found in patients with associated diseases.


Assuntos
Cisteína , Glutationa Transferase , Glutationa , Peróxido de Hidrogênio , Oxirredução , Cisteína/metabolismo , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Humanos , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Mutação
3.
Plants (Basel) ; 13(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38475570

RESUMO

Plants that possess a diverse range of bioactive compounds are essential for maintaining human health and survival. The diversity of bioactive compounds with distinct therapeutic potential contributes to their role in health systems, in addition to their function as a source of nutrients. Studies on the genetic makeup and composition of bioactive compounds have revealed them to be rich in steroidal alkaloids, saponins, terpenes, flavonoids, and phenolics. The Solanaceae family, having a rich abundance of bioactive compounds with varying degrees of pharmacological activities, holds significant promise in the management of different diseases. Investigation into Solanum species has revealed them to exhibit a wide range of pharmacological properties, including antioxidant, hepatoprotective, cardioprotective, nephroprotective, anti-inflammatory, and anti-ulcerogenic effects. Phytochemical analysis of isolated compounds such as diosgenin, solamargine, solanine, apigenin, and lupeol has shown them to be cytotoxic in different cancer cell lines, including liver cancer (HepG2, Hep3B, SMMC-772), lung cancer (A549, H441, H520), human breast cancer (HBL-100), and prostate cancer (PC3). Since analysis of their phytochemical constituents has shown them to have a notable effect on several signaling pathways, a great deal of attention has been paid to identifying the biological targets and cellular mechanisms involved therein. Considering the promising aspects of bioactive constituents of different Solanum members, the main emphasis was on finding and reporting notable cultivars, their phytochemical contents, and their pharmacological properties. This review offers mechanistic insights into the bioactive ingredients intended to treat different ailments with the least harmful effects for potential applications in the advancement of medical research.

4.
Heliyon ; 10(1): e23512, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38187250

RESUMO

Tetranectin (TN), a serum protein, is closely associated with different types of cancers. TN binds plasminogen and promotes the proteolytic activation of plasminogen into plasmin, which suggests that TN is involved in remodeling the extracellular matrix and cancer tissues during cancer development. TN is also associated with other diseases, such as developmental disorders, cardiovascular diseases, neurological diseases, inflammation, and diabetes. Although the functional mechanism of TN in diseases is not fully elucidated, TN binds different proteins, such as structural protein, a growth factor, and a transcription regulator. Moreover, TN changes and regulates protein functions, indicating that TN-binding proteins mediate the association between TN and diseases. This review summarizes the current knowledge of TN-associated diseases and TN functions with TN-binding proteins in different diseases. In addition, potential TN-targeted disease treatment by inhibiting the interaction between TN and its binding proteins is discussed.

5.
Molecules ; 28(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38067419

RESUMO

This study was undertaken to investigate the interaction between the sodium channel blocker amiloride (AML) and human serum albumin (HSA). A combination of multi-spectroscopic techniques and computational methods were employed to identify the AML binding site on HSA and the forces responsible for the formation of the HSA-AML complex. Our findings revealed that AML specifically binds to Sudlow's site II, located in subdomain IIIA of HSA, and that the complex formed is stabilized using van der Waals hydrogen-bonding and hydrophobic interactions. FRET analysis showed that the distance between AML and Trp214 was optimal for efficient quenching. UV-Vis spectroscopy and circular dichroism indicated minor changes in the structure of HSA after AML binding, and molecular dynamics simulations (MDS) conducted over 100 ns provided additional evidence of stable HSA-AML-complex formation. This study enhances understanding of the interaction between AML and HSA and the mechanism responsible.


Assuntos
Leucemia Mieloide Aguda , Albumina Sérica Humana , Humanos , Albumina Sérica Humana/química , Simulação de Acoplamento Molecular , Amilorida/farmacologia , Ligação Proteica , Sítios de Ligação , Dicroísmo Circular , Termodinâmica , Espectrometria de Fluorescência
6.
Biomaterials ; 285: 121550, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35533439

RESUMO

Effective cancer therapy aims to treat not only primary tumors but also metastatic and recurrent cancer. Immune check point blockade-mediated immunotherapy showed promising effect against tumors; however, it still has a limited effect in metastatic or recurrent cancer. Here, we extracted recombinant murine programmed death-1 (rmPD-1) proteins. The extracted rmPD-1 effectively bound to CT-26 and 4T1 cells expressing PD-L1 and PD-L2. The rmPD-1 did not alter the activation of dendritic cells (DCs); however, rmPD-1 promoted T cell-mediated anti-cancer immunity against CT-26 tumors in mice. Moreover, rmPD-1 decorated thermal responsive hybrid nanoparticles (piHNPs) promoted apoptotic and necrotic cell death of CT-26 cells in response to laser irradiation at 808 nm consequently, it promoted anti-tumor effects against the 1st challenged CT-26 tumors in mice. In addition, piHNP-mediated cured mice from 1st challenged CT-26 was also prevented the 2nd challenged lung metastatic tumor growth, which was dependent of cancer antigen-specific memory T cell immunity. It was also confirmed that the lung metastatic growth of 2nd challenged 4T1 breast cancer was also prevented in cured mice from 1st challenged 4T1 by piHNP. Thus, these data demonstrate that rmPD-1 functions as an immune checkpoint blockade for the treatment of tumors, and piHNPs could be a novel therapeutic agent for preventing cancer metastasis and recurrence.


Assuntos
Nanopartículas , Receptor de Morte Celular Programada 1 , Animais , Linhagem Celular Tumoral , Imunidade , Imunoterapia , Camundongos , Recidiva Local de Neoplasia , Receptor de Morte Celular Programada 1/metabolismo
7.
Int J Biol Macromol ; 209(Pt A): 211-219, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35358581

RESUMO

Tetranectin is a serum protein that binds to plasminogen and enhances its proteolytic activation, which underlies the involvement of tetranectin in the development of several carcinomas including colon cancer. In the present study, structure-based in silico screening of natural products showed that epigallocatechin gallate with anticancer effects binds to tetranectin. Binding to epigallocatechin gallate to tetranectin was confirmed by intrinsic fluorescence quenching assays and isothermal titration calorimetry. Furthermore, epigallocatechin gallate efficiently inhibited the activity of tetranectin to enhance the activation of plasminogen. We also found that tetranectin enhanced the proliferation of CT-26 colon cancer cells. Epigallocatechin gallate showed its cytotoxic effect on CT-26 cells due to its binding to tetranectin and the consequent suppression of the cell proliferation. These results demonstrate that the anticancer effect of epigallocatechin gallate is mediated, at least in part, by inhibiting tetranectin as a binding target.


Assuntos
Catequina , Neoplasias do Colo , Catequina/análogos & derivados , Catequina/química , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/tratamento farmacológico , Humanos , Lectinas Tipo C , Plasminogênio/metabolismo
8.
BMB Rep ; 55(3): 154-159, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34743784

RESUMO

Protein S-glutathionylation is a reversible post-translational modification on cysteine residues forming a mixed disulfide with glutathione. S-glutathionylation, not only protects proteins from oxidation but also regulates the functions of proteins involved in various cellular signaling pathways. In this study, we developed a method for the detection of S-glutathionylated proteins (ProSSG) using eosin-glutathione (E-GSH) and mouse glutaredoxin 1 (mGrx1). ProSSG was efficiently and specifically labeled with E-GSH to form ProSSG-E via thiol-disulfide exchange. ProSSG-E was readily luminescent allowing the detection of ProSSG with semi-quantitative determination. In addition, a deglutathionylation enzyme mGrx1 specifically released E-GSH from ProSSG-E, which increased fluorescence allowing a sensitive determination of ProSSG levels. Application of the method to the adipocyte differentiation of 3T3-L1 cells showed specific detection of ProSSG and its increase upon differentiation induction, which was consistent with the result obtained by conventional immunoblot analysis, but with greater specificity and sensitivity. [BMB Reports 2022; 55(3): 154-159].


Assuntos
Glutarredoxinas , Glutationa , Adipócitos/metabolismo , Animais , Amarelo de Eosina-(YS) , Glutationa/metabolismo , Camundongos , Oxirredução , Processamento de Proteína Pós-Traducional
9.
Int J Nanomedicine ; 16: 7711-7726, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34848956

RESUMO

INTRODUCTION: Protein-derived biogenic syntheses of inorganic nanoparticles have gained immense attention because of their broad spectrum of applications. Proteins offer a reducing environment to enable the synthesis of nanoparticles and encapsulate synthesized nanoparticles and provide them temporal stability in addition to biocompatibility. METHODS: In the present study, Benincasa hispida fruit proteins were used to synthesize silver nanoparticles (AgNPs) at 37 °C over five days of incubation. The synthesis of AgNPs was confirmed by UV-Vis spectroscopy, TEM, zeta potential, and DLS analyses. Further, these NPs depicted antibacterial and antibiofilm effects. Additionally, the anticancer activities of nanoparticles were also tested against the lung cancer cell line (A549) with respect to the normal cell line (NRK) using MTT assay. Further, the estimation of ROS generation through DCFH-DA staining along with a reduction in mitochondrial membrane potential by Mito Tracker Red CMX staining was carried out. Moreover, nuclear degradation in the AgNPs treated cells was cross-checked by DAPI staining. RESULTS: The average size of AgNPs was detected to be 27 ±1 nm by TEM analysis, whereas surface encapsulation by protein was determined by FTIR spectroscopy. These NPs were effective against bacterial pathogens such as Escherichia coli, Staphylococcus aureus, Salmonella enteric, and Staphylococcus epidermis with MICs of 148.12 µg/mL, 165.63 µg/mL, 162.77 µg/mL, and 124.88 µg/mL, respectively. Furthermore, these nanoparticles inhibit the formation of biofilms of E. coli, S. aureus, S. enteric, and S. epidermis by 71.14%, 73.89%, 66.66%, and 64.81%, respectively. Similarly, these nanoparticles were also found to inhibit (IC50 = 57.11 µM) the lung cancer cell line (A549). At the same time, they were non-toxic against NRK cells up to a concentration of 200 µM. DISCUSSION: We successfully synthesized potentially potent antibacterial, antibiofilm and anticancer biogenic AgNPs.


Assuntos
Nanopartículas Metálicas , Prata , Antibacterianos/farmacologia , Escherichia coli , Frutas , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Prata/farmacologia , Staphylococcus aureus
10.
Nanomaterials (Basel) ; 11(12)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34947576

RESUMO

Fungal metabolites, proteins, and enzymes have been rich sources of therapeutics so far. Therefore, in this study, the hypha extract of a newly identified noble fungus (Alternaria sp. with NCBI Accession number: MT982648) was used to synthesize silver nanoparticles (F-AgNPs) to utilize against bacteria, fungi, and lung cancer. F-AgNPs were characterized by using physical techniques, including UV-visible spectroscopy, zeta potential, DLS, XRD, TEM, and HR-TEM. The particles were found to be polydispersed and quasi-spherical in shape under TEM. They had an average size of ~15 nm. The well dispersed particles were found to have consistent crystallinity with cubic phase geometry under XRD and HR-TEM. The presence of different functional groups on the surfaces of biosynthesized F-AgNPs was confirmed by FTIR. The particle distribution index was found to be 0.447 with a hydrodynamic diameter of ~47 d.nm, and the high value of zeta potential (-20.3 mV) revealed the stability of the nanoemulsion. These particles were found to be active against Staphylococcus aureus (multidrug resistance-MDR), Klebsiella pneumonia, Salmonella abony, and Escherichia coli (MDR) with MIC50 10.3, 12.5, 22.69, and 16.25 µg/mL, respectively. Particles also showed inhibition against fungal strains, including A. flavus, A. niger, T. viridens, and F. oxysporium. Their inhibition of biofilm formation by the same panel of bacteria was also found to be very promising and ranged from 16.66 to 64.81%. F-AgNPs also showed anticancer potential (IC50-21.6 µg/mL) with respect to methotrexate (IC50-17.7 µg/mL) against lung cancer cell line A549, and they did not result in any significant inhibition of the normal cell line BEAS-2. The particles were found to alter the mitochondrial membrane potential, thereby disturbing ATP synthesis and leading to high ROS formation, which are responsible for cell membrane damage and release of LDH, intracellular proteins, lipids, and DNA. A high level of ROS also elicits pro-inflammatory signaling cascades that lead to programmed cell death by either apoptosis or necrosis.

11.
Mar Drugs ; 18(12)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302530

RESUMO

Natural polysaccharides exhibit beneficial immune modulatory effects, including immune stimulatory and anti-cancer activities. In this study, we examined the effect of Codium fragile polysaccharide (CFP) on natural killer (NK) cell activation, and its effect on tumor-bearing mice. Intravenous CFP treatment of C57BL/6 mice resulted in the upregulation of CD69, which is a marker associated with NK cell activation. In addition, intracellular levels of interferon (IFN)-γ and the cytotoxic mediators perforin and granzyme B were markedly increased in response to the CFP treatment of splenic NK cells. IFN-γ production by NK cells was directly induced by CFP, whereas the upregulation of CD69 and cytotoxic mediators required IL-12. Finally, intraperitoneal treatment with CFP prevented CT-26 (murine carcinoma) tumor cell infiltration in the lungs, without significantly reducing the body weight. In addition, treatment with CFP prevented B16 melanoma cell infiltration in the lung of C57BL/6 mice. Moreover, the anti-tumor effect was diminished by the depletion of NK cells. Therefore, these data suggest that CFP may be used as an NK cell stimulator to produce a phenomenon that contributes to anti-cancer immunity.


Assuntos
Antineoplásicos/farmacologia , Clorófitas/metabolismo , Neoplasias do Colo/tratamento farmacológico , Células Matadoras Naturais/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Melanoma Experimental/tratamento farmacológico , Polissacarídeos/farmacologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Granzimas , Interferon gama/metabolismo , Interleucina-12/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Lectinas Tipo C/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Polissacarídeos/isolamento & purificação , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Baço/efeitos dos fármacos , Baço/imunologia , Baço/metabolismo , Microambiente Tumoral
12.
Mar Drugs ; 18(11)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33120897

RESUMO

Natural polysaccharides exhibit an immunostimulatory effect with low toxicity in humans and animals. It has shown that polysaccharide extracted from Codium fragile (CFP) induces anti-cancer immunity by dendritic cell (DC) activation, while the effect of CFP has not examined in the human immune cells. In this study, we found that CFP promoted the upregulation of CD80, CD83 and CD86 and major histocompatibility complex (MHC) class I and II in human monocyte-derived dendritic cells (MDDCs). In addition, CFP induced the production of proinflammatory cytokines in MDDCs. Moreover, CFP directly induced the activation of Blood Dendritic Cell Antigen (BDCA)1+ and BDCA3+ subsets of human peripheral blood DCs (PBDCs). The CFP-stimulated BDCA1+ PBDCs further promoted activation and proliferation of syngeneic CD4 T cells. The CFP-activated BDCA3+ PBDCs activated syngeneic CD8 T cells, which produced cytotoxic mediators, namely, cytotoxic T lymphocytes. These results suggest that CFP may be a candidate molecule for enhancing immune activation in humans.


Assuntos
Adjuvantes Imunológicos/farmacologia , Clorófitas/metabolismo , Células Dendríticas/efeitos dos fármacos , Imunidade Celular/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Polissacarídeos/farmacologia , Linfócitos T/efeitos dos fármacos , Adjuvantes Imunológicos/isolamento & purificação , Animais , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células HL-60 , Humanos , Camundongos , Polissacarídeos/isolamento & purificação , Células RAW 264.7 , Linfócitos T/imunologia , Linfócitos T/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-31035724

RESUMO

Spices have been known for their various health activities; however, they also possess the allergic potential for the respiratory system and the skin as they are fine particulate matter. Persons involved in spice agriculture and food industries are at greater risk since they are exposed to a considerable amount of combustible dust, which may be the cause of fire and explosion and adversely affect the health. These workers may experience allergy, long-term and short-term respiratory issues including occupational asthma, dermatitis, etc. Some spices induce T cell-based inflammatory reaction upon contact recognition of the antigen. Antigen Presenting Cells (APC) on binding to the causative metabolite results in activation of macrophages by allergen cytokine interleukin (IL)-12 and tumor necrosis factor-beta (TNF). Cross-reactivity for protein allergens is another factor which seems to be a significant trigger for the stimulation of allergic reactions. Thus, it was imperative to perform a systematic review along with bioinformatics based representation of some evident allergens has been done to identify the overall conservation of epitopes. In the present manuscript, we have covered a multifold approach, i.e., to categorize the spice particles based on a clear understanding about nature, origin, mechanisms; to assess metabolic reactions of the particles after exposure as well as knowledge on the conditions of exposure along with associated potential health effects. Another aim of this study is to provide some suggestions to prevent and to control the exposure up to some extent.


Assuntos
Poeira/análise , Saúde Ocupacional , Especiarias/análise , Especiarias/toxicidade , Alérgenos/imunologia , Humanos , Hipersensibilidade , Material Particulado
14.
Saudi Pharm J ; 27(3): 437-445, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30976189

RESUMO

Cannabinoids, commonly used for medicinal and recreational purposes, consist of various complex hydrophobic molecules obtained from Cannabis sativa L. Acting as an inhibitory molecule; they have been investigated for their antineoplastic effect in various breast tumor models. Lately, it was found that cannabinoid treatment not only stimulates autophagy-mediated apoptotic death of tumor cells through unfolded protein response (UPRER) activated downstream effectors, but also imposes cell cycle arrest. The exploitation of UPRER tumors as such is believed to be a major molecular event and is therefore employed in understanding the development and progression of breast tumor. Simultaneously, the data on clinical trials following administration of cannabinoid is currently being explored to find its role not only in palliation but also in the treatment of breast cancer. The present study summarizes new achievements in understanding the extent of therapeutic progress and highlights recent developments in cannabinoid biology towards achieving a better cure of breast cancer through the exploitation of different cannabinoids.

15.
Front Immunol ; 10: 344, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30881358

RESUMO

The etiopathologies behind autoimmune thyroid diseases (AITDs) unravel misbehavior of immune components leading to the corruption of immune homeostasis where thyroid autoantigens turn foe to the self. In AITDs lymphocytic infiltration in the thyroid shows up a deranged immune system charging the follicular cells of the thyroid gland (thyrocytes) leading to the condition of either hyperthyroidism or hypothyroidism. The inflammation in AITDs consistently associate with ER function due to which disturbances in the ER protein homeostasis leads to unfolded protein response (UPR) that promotes pathogenesis of autoimmunity. The roles of ER stress in the instantaneous downregulation of MHC class I molecules on thyrocytes and the relevance of IFN γ in the pathogenesis of AITD has been well-documented. Thyroglobulin being the major target of autoantibodies in most of the AITDs is because of its unusual processing in the ER. Autoimmune disorders display a conglomeration of ER stress-induced UPR activated molecules. Several epidemiological data highlight the preponderance of AITDs in women as well as its concurrence with breast cancer. Both being an active glandular system displaying endocrine activity, thyroid as well as breast tissue show various commonalities in the expression pattern of heterogenous molecules that not only participate in the normal functioning but at the same time share the blame during disease establishment. Studies on the development and progression of breast carcinoma display a deranged and uncontrolled immune response, which is meticulously exploited during tumor metastasis. The molecular crosstalks between AITDs and breast tumor microenvironment rely on active participation of immune cells. The induction of ER stress by Tunicamycin advocates to provide a model for cancer therapy by intervening glycosylation. Therefore, this review attempts to showcase the molecules that are involved in feeding up the relationship between breast carcinoma and AITDs.


Assuntos
Doenças Autoimunes/imunologia , Neoplasias da Mama/imunologia , Doenças da Glândula Tireoide/imunologia , Animais , Autoantígenos/imunologia , Autoimunidade , Estresse do Retículo Endoplasmático/imunologia , Feminino , Humanos , Linfócitos/imunologia , Glândula Tireoide/imunologia
16.
Exp Mol Med ; 49(11): e389, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-29123254

RESUMO

The endoplasmic reticulum (ER) is an important subcellular organelle that is involved in numerous activities required to achieve and maintain functional proteins in addition to its role in the biosynthesis of lipids and as a repository of intracellular Ca2+. The inability of the ER to cope with protein folding beyond its capacity causes disturbances that evoke ER stress. Cells possess molecular mechanisms aimed at clearing unwanted cargo from the ER lumen as an adaptive response, but failing to do so navigates the system towards cell death. This systemic approach is called the unfolded protein response. Aging insults cells through various perturbations in homeostasis that involve curtailing ER function by mitigating the expression of its resident chaperones and enzymes. Here the unfolded protein response (UPR) cannot protect the cell due to the weakening of its protective arm, which exacerbates imbalanced homeostasis. Aging predisposed breast malignancy activates the UPR, but tumor cells maneuver the mechanistic details of the UPR, favoring tumorigenesis and thereby eliciting a treacherous condition. Tumor cells exploit UPR pathways via crosstalk involving various signaling cascades that usher tumor cells to immortality. This review aims to present a collection of data that can delineate the missing links of molecular signatures between aging and breast cancer.


Assuntos
Envelhecimento/metabolismo , Neoplasias da Mama/etiologia , Neoplasias da Mama/metabolismo , Retículo Endoplasmático/metabolismo , Resposta a Proteínas não Dobradas , Envelhecimento/genética , Animais , Autofagia , Vias Biossintéticas , Transformação Celular Neoplásica , Estresse do Retículo Endoplasmático , Regulação da Expressão Gênica , Hexosaminas/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Chaperonas Moleculares/metabolismo
17.
Sci Rep ; 7(1): 9470, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28842631

RESUMO

Microtubule affinity regulating kinase 4 (MARK4) is a Ser/Thr kinase belonging to AMPK-like family, has recently become an important drug target against cancer and neurodegenerative disorders. In this study, we have evaluated different natural dietary polyphenolics including rutin, quercetin, ferulic acid, hesperidin, gallic acid and vanillin as MARK4 inhibitors. All compounds are primarily binds to the active site cavity of MARK4. In silico observations were further complemented by the fluorescence-binding studies and isothermal titration calorimetry (ITC) measurements. We found that rutin and vanillin bind to MARK4 with a reasonably high affinity. ATPase and tau-phosphorylation assay further suggesting that rutin and vanillin inhibit the enzyme activity of MARK4 to a great extent. Cell proliferation, ROS quantification and Annexin-V staining studies are clearly providing sufficient evidences for the apoptotic potential of rutin and vanillin. In conclusion, rutin and vanillin may be considered as potential inhibitors for MARK4 and further exploited to design novel therapeutic molecules against MARK4 associated diseases.


Assuntos
Polifenóis/química , Polifenóis/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Apoptose/efeitos dos fármacos , Sítios de Ligação , Proliferação de Células , Suplementos Nutricionais , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Fosforilação , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Termodinâmica
18.
Appl Microbiol Biotechnol ; 101(9): 3513-3536, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28361239

RESUMO

Chitin is a long unbranched polysaccharide, made up of ß-1,4-linked N-acetylglucosamine which forms crystalline fiber-like structure. It is present in the fungal cell walls, insect and crustacean cuticles, nematode eggshells, and protozoa cyst. We provide a critical appraisal on the chemical modifications of chitin and its derivatives in the context of their improved efficacy in medical applications without any side effect. Recent advancement in nanobiotechnology has helped to synthesize several chitin derivatives having significant biological applications. Here, we discuss the molecular diversity of chitin and its applications in enzyme immobilization, wound healing, packaging material, controlled drug release, biomedical imaging, gene therapy, agriculture, biosensor, and cosmetics. Also, we highlighted chitin and its derivatives as an antioxidant, antimicrobial agent, anticoagulant material, food additive, and hypocholesterolemic agent. We envisage that chitin and chitosan-based nanomaterials with their potential applications would augment nanobiotechnology and biomedical industries.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Quitina/química , Quitina/metabolismo , Nanoestruturas/química
19.
Mol Cells ; 38(12): 1096-104, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26615830

RESUMO

Particulate matter2.5 (PM2.5) is notorious for its strong toxic effects on the cardiovascular, skin, nervous, and reproduction systems. However, the molecular mechanism by which PM2.5 aggravates disease progression is poorly understood, especially in a water-soluble state. In the current study, we investigated the putative physiological effects of aqueous PM2.5 solution on lipoprotein metabolism. Collected PM2.5 from Seoul, Korea was dissolved in water, and the water extract (final 3 and 30 ppm) was treated to human serum lipoproteins, macrophages, and dermal cells. PM2.5 extract resulted in degradation and aggregation of high-density lipoprotein (HDL) as well as low-density lipoprotein (LDL); apoA-I in HDL aggregated and apo-B in LDL disappeared. PM2.5 treatment (final 30 ppm) also induced cellular uptake of oxidized LDL (oxLDL) into macrophages, especially in the presence of fructose (final 50 mM). Uptake of oxLDL along with production of reactive oxygen species was accelerated by PM2.5 solution in a dose-dependent manner. Further, PM2.5 solution caused cellular senescence in human dermal fibroblast cells. Microinjection of PM2.5 solution into zebrafish embryos induced severe mortality accompanied by impairment of skeletal development. In conclusion, water extract of PM2.5 induced oxidative stress as a precursor to cardiovascular toxicity, skin cell senescence, and embryonic toxicity via aggregation and proteolytic degradation of serum lipoproteins.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Lipoproteínas/metabolismo , Macrófagos/efeitos dos fármacos , Material Particulado/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Células Cultivadas , Senescência Celular , Relação Dose-Resposta a Droga , Frutose/farmacologia , Humanos , Queratinócitos , Metabolismo dos Lipídeos/efeitos dos fármacos , Peixe-Zebra/embriologia
20.
Biochem Biophys Res Commun ; 457(1): 112-8, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25528585

RESUMO

High density lipoprotein (HDL) receptor, scavenger receptor class B, type I (SR-BI), mediates selective cholesteryl ester uptake from lipoproteins into the liver as well as cholesterol efflux from macrophages to HDL. Recently, strong evidence has demonstrated the anti-inflammatory effect of HDL, although the mechanism of action is not fully understood. In this study, we showed that the anti-inflammatory effects of HDL are dependent on SR-BI expression in THP-1 macrophages. Consistent with earlier findings, pretreatment of macrophages with HDL abolished LPS-induced TNFα production. HDL also inhibited LPS-induced NF-κB activation. In addition, knockdown of SR-BI or inhibition of SR-BI ligand binding abolished the anti-inflammatory effect of HDL. SR-BI is a multi-ligand receptor that binds to modified lipoproteins as well as native HDL. Since modified lipoproteins have pro-inflammatory properties, it is unclear whether SR-BI activated by modified HDL has an anti- or pro-inflammatory effect. Glycated HDL induced NF-κB activation and cytokine production in macrophages in vitro, suggesting a pro-inflammatory effect for modified HDL. Moreover, inhibition of SR-BI function or expression potentiated glycated HDL-induced TNF-α production, suggesting an anti-inflammatory effect for SR-BI. In conclusion, SR-BI plays an important function in regulating HDL-mediated anti-inflammatory response in macrophages.


Assuntos
Anti-Inflamatórios/metabolismo , Antígenos CD36/metabolismo , Lipoproteínas HDL/metabolismo , Macrófagos/metabolismo , Glicosilação , Humanos , Inflamação/patologia , Modelos Biológicos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA