Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Mol Cells ; 47(3): 100033, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38403196

RESUMO

Considering the recent increase in the number of colorectal cancer (CRC) cases in South Korea, we aimed to clarify the molecular characteristics of CRC unique to the Korean population. To gain insights into the complexities of CRC and promote the exchange of critical data, RNA-sequencing analysis was performed to reveal the molecular mechanisms that drive the development and progression of CRC; this analysis is critical for developing effective treatment strategies. We performed RNA-sequencing analysis of CRC and adjacent normal tissue samples from 214 Korean participants (comprising a total of 381 including 169 normal and 212 tumor samples) to investigate differential gene expression between the groups. We identified 19,575 genes expressed in CRC and normal tissues, with 3,830 differentially expressed genes (DEGs) between the groups. Functional annotation analysis revealed that the upregulated DEGs were significantly enriched in pathways related to the cell cycle, DNA replication, and IL-17, whereas the downregulated DEGs were enriched in metabolic pathways. We also analyzed the relationship between clinical information and subtypes using the Consensus Molecular Subtype (CMS) classification. Furthermore, we compared groups clustered within our dataset to CMS groups and performed additional analysis of the methylation data between DEGs and CMS groups to provide comprehensive biological insights from various perspectives. Our study provides valuable insights into the molecular mechanisms underlying CRC in Korean patients and serves as a platform for identifying potential target genes for this disease. The raw data and processed results have been deposited in a public repository for further analysis and exploration.


Assuntos
Neoplasias Colorretais , Perfilação da Expressão Gênica , Humanos , Perfilação da Expressão Gênica/métodos , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Biologia Computacional/métodos , RNA
2.
Nat Commun ; 15(1): 538, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225226

RESUMO

Hematopoietic stem cells (HSCs) are capable of regenerating the blood system, but the instructive cues that direct HSCs to regenerate particular lineages lost to the injury remain elusive. Here, we show that iron is increasingly taken up by HSCs during anemia and induces erythroid gene expression and regeneration in a Tet2-dependent manner. Lineage tracing of HSCs reveals that HSCs respond to hemolytic anemia by increasing erythroid output. The number of HSCs in the spleen, but not bone marrow, increases upon anemia and these HSCs exhibit enhanced proliferation, erythroid differentiation, iron uptake, and TET2 protein expression. Increased iron in HSCs promotes DNA demethylation and expression of erythroid genes. Suppressing iron uptake or TET2 expression impairs erythroid genes expression and erythroid differentiation of HSCs; iron supplementation, however, augments these processes. These results establish that the physiological level of iron taken up by HSCs has an instructive role in promoting erythroid-biased differentiation of HSCs.


Assuntos
Anemia , Dioxigenases , Humanos , Baço , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular , Ferro/metabolismo , Anemia/metabolismo , Células Eritroides , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo
3.
Nucleic Acids Res ; 51(20): 11178-11196, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37850636

RESUMO

Von Hippel-Lindau (VHL) is a tumor suppressor that functions as the substrate recognition subunit of the CRL2VHL E3 complex. While substrates of VHL have been identified, its tumor suppressive role remains to be fully understood. For further determination of VHL substrates, we analyzed the physical interactome of VHL and identified the histone H3K9 methyltransferase SETBD1 as a novel target. SETDB1 undergoes oxygen-dependent hydroxylation by prolyl hydroxylase domain proteins and the CRL2VHL complex recognizes hydroxylated SETDB1 for ubiquitin-mediated degradation. Under hypoxic conditions, SETDB1 accumulates by escaping CRL2VHL activity. Loss of SETDB1 in hypoxia compared with that in normoxia escalates the production of transposable element-derived double-stranded RNAs, thereby hyperactivating the immune-inflammatory response. In addition, strong derepression of TEs in hypoxic cells lacking SETDB1 triggers DNA damage-induced death. Our collective results support a molecular mechanism of oxygen-dependent SETDB1 degradation by the CRL2VHL E3 complex and reveal a role of SETDB1 in genome stability under hypoxia.


Assuntos
Instabilidade Genômica , Histona-Lisina N-Metiltransferase , Hipóxia , Humanos , Genes Supressores de Tumor , Histona-Lisina N-Metiltransferase/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Oxigênio/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
4.
BMB Rep ; 56(10): 569-574, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37605616

RESUMO

Aberrant DNA methylation plays a pivotal role in the onset and progression of colorectal cancer (CRC), a disease with high incidence and mortality rates in Korea. Several CRC-associated diagnostic and prognostic methylation markers have been identified; however, due to a lack of comprehensive clinical and methylome data, these markers have not been validated in the Korean population. Therefore, in this study, we aimed to obtain the CRC methylation profile using 172 tumors and 128 adjacent normal colon tissues of Korean patients with CRC. Based on the comparative methylome analysis, we found that hypermethylated positions in the tumor were predominantly concentrated in CpG islands and promoter regions, whereas hypomethylated positions were largely found in the open-sea region, notably distant from the CpG islands. In addition, we stratified patients by applying the CpG island methylator phenotype (CIMP) to the tumor methylome data. This stratification validated previous clinicopathological implications, as tumors with high CIMP signatures were significantly correlated with the proximal colon, higher prevalence of microsatellite instability status, and MLH1 promoter methylation. In conclusion, our extensive methylome analysis and the accompanying dataset offers valuable insights into the utilization of CRC-associated methylation markers in Korean patients, potentially improving CRC diagnosis and prognosis. Furthermore, this study serves as a solid foundation for further investigations into personalized and ethnicity-specific CRC treatments. [BMB Reports 2023; 56(10): 569-574].


Assuntos
Neoplasias Colorretais , Metilação de DNA , Humanos , Metilação de DNA/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Ilhas de CpG/genética , República da Coreia , Fenótipo
5.
Mol Cells ; 46(5): 298-308, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-36896596

RESUMO

Gastric cancer (GC) is a complex disease influenced by multiple genetic and epigenetic factors. Chronic inflammation caused by Helicobacter pylori infection and dietary risk factors can result in the accumulation of aberrant DNA methylation in gastric mucosa, which promotes GC development. Tensin 4 (TNS4), a member of the Tensin family of proteins, is localized to focal adhesion sites, which connect the extracellular matrix and cytoskeletal network. We identified upregulation of TNS4 in GC using quantitative reverse transcription PCR with 174 paired samples of GC tumors and adjacent normal tissues. Transcriptional activation of TNS4 occurred even during the early stage of tumor development. TNS4 depletion in GC cell lines that expressed high to moderate levels of TNS4, i.e., SNU-601, KATO III, and MKN74, reduced cell proliferation and migration, whereas ectopic expression of TNS4 in those lines that expressed lower levels of TNS4, i.e., SNU-638, MKN1, and MKN45 increased colony formation and cell migration. The promoter region of TNS4 was hypomethylated in GC cell lines that showed upregulation of TNS4. We also found a significant negative correlation between TNS4 expression and CpG methylation in 250 GC tumors based on The Cancer Genome Atlas (TCGA) data. This study elucidates the epigenetic mechanism of TNS4 activation and functional roles of TNS4 in GC development and progression and suggests a possible approach for future GC treatments.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Infecções por Helicobacter/genética , Helicobacter pylori/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Tensinas/genética , Tensinas/metabolismo
6.
Cancers (Basel) ; 14(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36551669

RESUMO

The loss-of-function variants are thought to be associated with inflammation in the stomach. We here aimed to evaluate the extent and role of methylation at the SSTR2 promoter in inflammation and gastric tumor formation. A whole-genome bisulfite sequencing analysis revealed that the SSTR2 promoter was significantly hypermethylated in gastric tumors, dysplasia, and intestinal metaplasia compared to non-tumor tissues from patients with gastric cancer. Using public data, we confirmed SSTR2 promoter methylation in primary gastric tumors and intestinal metaplasia, and even aged gastric mucosae infected with Helicobacter pylori, suggesting that aberrant methylation is initiated in normal gastric mucosa. The loss-of-function of SSTR2 in SNU638 cell-induced cell proliferation in vitro, while stable transfection of SSTR2 in AGS and MKN74 cells inhibited cell proliferation and tumorigenesis in vitro and in vivo. As revealed by a comparison of target genes differentially expressed in these cells with hallmark molecular signatures, inflammation-related pathways were distinctly induced in SSTR2-KO SNU638 cell. By contrast, inflammation-related pathways were inhibited in AGS and MKN74 cells ectopically expressing SSTR2. Collectively, we propose that SSTR2 silencing upon promoter methylation is initiated in aged gastric mucosae infected with H. pylori and promotes the establishment of an inflammatory microenvironment via the intrinsic pathway. These findings provide novel insights into the initiation of gastric carcinogenesis.

8.
Exp Mol Med ; 54(8): 1236-1249, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35999456

RESUMO

Acquired resistance to inhibitors of anaplastic lymphoma kinase (ALK) is a major clinical challenge for ALK fusion-positive non-small-cell lung cancer (NSCLC). In the absence of secondary ALK mutations, epigenetic reprogramming is one of the main mechanisms of drug resistance, as it leads to phenotype switching that occurs during the epithelial-to-mesenchymal transition (EMT). Although drug-induced epigenetic reprogramming is believed to alter the sensitivity of cancer cells to anticancer treatments, there is still much to learn about overcoming drug resistance. In this study, we used an in vitro model of ceritinib-resistant NSCLC and employed genome-wide DNA methylation analysis in combination with single-cell (sc) RNA-seq to identify cytidine deaminase (CDA), a pyrimidine salvage pathway enzyme, as a candidate drug target. CDA was hypomethylated and upregulated in ceritinib-resistant cells. CDA-overexpressing cells were rarely but definitively detected in the naïve cell population by scRNA-seq, and their abundance was increased in the acquired-resistance population. Knockdown of CDA had antiproliferative effects on resistant cells and reversed the EMT phenotype. Treatment with epigenome-related nucleosides such as 5-formyl-2'-deoxycytidine selectively ablated CDA-overexpressing resistant cells via accumulation of DNA damage. Collectively, our data suggest that targeting CDA metabolism using epigenome-related nucleosides represents a potential new therapeutic strategy for overcoming ALK inhibitor resistance in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Citidina Desaminase/genética , Citidina Desaminase/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Epigenoma , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Receptores Proteína Tirosina Quinases/metabolismo , Análise de Célula Única
9.
Mol Cells ; 45(8): 550-563, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35950456

RESUMO

Hepatocellular carcinoma (HCC) is an aggressive and incurable cancer. Although understanding of the molecular pathogenesis of HCC has greatly advanced, therapeutic options for the disease remain limited. In this study, we demonstrated that SETD5 expression is positively associated with poor prognosis of HCC and that SETD5 depletion decreased HCC cell proliferation and invasion while inducing cell death. Transcriptome analysis revealed that SETD5 loss downregulated the interferon-mediated inflammatory response in HCC cells. In addition, SETD5 depletion downregulated the expression of a critical glycolysis gene, PKM (pyruvate kinase M1/2), and decreased glycolysis activity in HCC cells. Finally, SETD5 knockdown inhibited tumor growth in xenograft mouse models. These results collectively suggest that SETD5 is involved in the tumorigenic features of HCC cells and that targeting SETD5 may suppress HCC progression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Metiltransferases/metabolismo , Camundongos
10.
Genes Genomics ; 44(8): 967-979, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35751785

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the third most common type of diagnosed cancer in the world and has the second-highest mortality rate. Meanwhile, South Korea has the second-highest incidence rate for CRC in the world. OBJECTIVE: To assess the possible influence of ethnicity on the molecular profile of colorectal cancer, we compared genomic and transcriptomic features of South Korean CRCs with European CRCs. METHODS: We assembled a genomic and transcriptomic dataset of South Korean CRC patients (KOCRC; n = 126) from previous studies and European cases (EUCRC; n = 245) selected from The Cancer Genome Atlas (TCGA). Then, we compared the two datasets in terms of clinical data, driver genes, mutational signature, gene sets, consensus molecular subtype, and fusion genes. RESULTS: These two cohorts showed similar profiles in driver mutations but differences in the mutation frequencies of some driver genes (including APC, TP53, PABPC1, FAT4, MUC7, HSPG2, GNAS, DENND5B, and BRAF). Analysis of hallmark pathways using genomic data sets revealed further differences between these populations in the WNT, TP53, and NOTCH signaling pathways. In consensus molecular subtype (CMS) analyses of the study cases, no BRAF mutations were found in the CMS1 subtype of KOCRC, which contrasts with previous findings. Fusion gene analysis identified oncogenic fusion of PTPRK-RSPO3 in a subset of KOCRC patients without APC mutations. CONCLUSIONS: This study presents insights into the genomic landscape of KOCRCs and reveals some similarities and differences with EUCRCs at the molecular level.


Assuntos
Neoplasias Colorretais , Transcriptoma , Povo Asiático , Neoplasias Colorretais/genética , Perfilação da Expressão Gênica , Genômica , Humanos
11.
Microbiome ; 10(1): 3, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991725

RESUMO

BACKGROUND: Host tp53 mutations are frequently found during the early stages of colitis-associated colorectal cancer (CAC), but whether such mutations induce gut microbiota dysbiosis and chronic intestinal inflammation that contributes to the development of CAC, remains unknown. RESULTS: We found that zebrafish tp53 mutant larvae exhibited elevated intestinal inflammation, by monitoring the NFκB activity in the mid-distal intestines of zebrafish larvae using an NFκB:EGFP transgenic reporter line in vivo as well as neutrophil infiltration into the intestine. This inflammation was due to dysbiotic gut microbiota with reduced diversity, revealed using both 16S rRNA amplicon sequencing and a germfree larva model. In this dysbiosis, Aeromonas spp. were aberrantly enriched as major pathobionts and exhibited the capacity for aggressive colonization in tp53 mutants. Importantly, the ex-germfree experiments supported the causality of the host tp53 mutation for inducing the inflammation. Transcriptome and high-performance liquid chromatography analyses of the host gastrointestinal tracts identified dysregulated sialic acid (SA) metabolism concomitant with increased host Neu5Gc levels as the key determinant of aberrant inflammation, which was reversed by the sialidase inhibitors oseltamivir and Philippin A. CONCLUSIONS: These results demonstrate a crucial role for host tp53 in maintaining symbiosis and immune homeostasis via SA metabolism. Disturbed SA metabolism via a tp53 mutation may be exploited by specific elements of the gut microbiome, eliciting both dysbiosis and inflammation. Manipulating sialometabolism may therefore provide an efficacious therapeutic strategy for tp53 mutation-induced dysbiosis, inflammation, and ultimately, related cancers. Video Abstract.


Assuntos
Disbiose , Ácido N-Acetilneuramínico , Animais , Disbiose/induzido quimicamente , Inflamação , Mutação , Ácido N-Acetilneuramínico/efeitos adversos , RNA Ribossômico 16S/genética , Peixe-Zebra
12.
Dermatol Ther ; 34(2): e14770, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33421287

RESUMO

Dermal fillers have become popular due to the increased demand for skin rejuvenation products. Polycaprolactone (PCL), a newly developed bioresorbable medical polymer, has emerged as a durable and safe dermal filler. However, available PCL fillers cause irritation; carrier gels can coagulate PCL particles, block the injection needle, and cause nonhomogeneity of particle suspensions that could be responsible for the observed side effects. To relieve pain, premixing PCL filler with lidocaine. However, this formulation changes the property of the CMC portion of the PCL filler, and possibly results in an uneven suspension of the PCL particles. Hence, a particle-free PCL homogeneously solubilized in water was developed to overcome these limitations. This study aimed to assess the in vivo safety, biodegradability, and neocollagenesis ability of a novel PCL filler, DLMR01 using a rat model. Fillers were characterized after injecting a vehicle control or DLMR01 using a digital camera, folliscope, and a three-dimensional profiling system. Biopsy was performed to evaluate biocompatibility and neocollagenesis. Skin elasticity was measured using a Cutometer. DLMR01 caused no needle occlusion by particle aggregation or laborious injectability. Filler nodules dispersed to surrounding tissues within 6 hours without further granuloma formation. Histological inspection revealed no tissue residual material or foreign body reaction during the 12-week test period. DLMR01 increased dermal thickness, collagen regeneration, and skin elasticity. In conclusion, this study demonstrates the potential of DLMR01 for dermal rejuvenation in a rat model.


Assuntos
Técnicas Cosméticas , Preenchedores Dérmicos , Animais , Técnicas Cosméticas/efeitos adversos , Preenchedores Dérmicos/efeitos adversos , Ácido Hialurônico , Poliésteres , Ratos , Rejuvenescimento
13.
Dermatol Surg ; 47(1): e5-e9, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33347002

RESUMO

BACKGROUND: A wide lower face and a square jaw are considered esthetic problems, particularly in Asia. OBJECTIVE: To investigate the optimal dose of a novel botulinum toxin (prabotulinum toxin A) for treating masseteric hypertrophy. METHODS: Ninety subjects with masseteric hypertrophy were randomly divided into 5 groups and treated with placebo (A, normal saline) or prabotulinum toxin A (B: 24, C: 48, D: 72, and E: 96 units). Photography, ultrasonography, and 3-dimensional imaging were performed before and after injection at baseline and at 4, 8, 12, and 16 weeks after treatment. The participants also rated their satisfaction. RESULTS: Masseter thickness significantly reduced in all groups at 12 weeks, compared with that in the placebo group. A dose-dependent reduction in masseter thickness was observed at the resting and maximal clenching positions. Sonography and 3-dimensional imaging revealed a gradual reduction in masseter thickness and volume, respectively, during the first 12 weeks. Despite being slightly effective, a dose of 24 units might be insufficient for resolving square face problems. Patients in Group E reported discomfort during jaw movement. CONCLUSION: Prabotulinum toxin A could effectively improve lower face contour without major complications, with an optimal dose of 48 to 72 units, followed by reinjection after 12 weeks.


Assuntos
Toxinas Botulínicas Tipo A/uso terapêutico , Hipertrofia/tratamento farmacológico , Músculo Masseter/anormalidades , Fármacos Neuromusculares/uso terapêutico , Adulto , Toxinas Botulínicas Tipo A/administração & dosagem , Relação Dose-Resposta a Droga , Método Duplo-Cego , Estética , Feminino , Humanos , Hipertrofia/diagnóstico por imagem , Injeções Intramusculares , Masculino , Músculo Masseter/diagnóstico por imagem , Pessoa de Meia-Idade , Fármacos Neuromusculares/administração & dosagem , Satisfação do Paciente , República da Coreia
14.
J Cancer Res Clin Oncol ; 147(1): 117-128, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32960359

RESUMO

PURPOSE: As few genotype-phenotype correlations are available for nonsyndromic hereditary colorectal cancer (CRC), we implemented genomic analysis on the basis of the revised Bethesda guideline (RBG) and extended (12 items) to verify possible subtypes. METHODS: Patients with sporadic CRC (n = 249) were enrolled, stratified according to the revised Bethesda guidelines (RBG+ and RBG- groups) plus additional criteria. Exome/transcriptome analyses (n = 98) and cell-based functional assays were conducted. RESULTS: We detected 469 somatic and 830 germline gene mutations differing significantly between the positive and negative groups, associated with 12 RBG items/additional criteria. Twenty-one genes had significantly higher mutation rates in left, relative to right, colon cancer, while USP40, HCFC1, and HSPG2 mutation rates were higher in rectal than colon cancer. FAT4 mutation rates were lower in early-onset CRC, in contrast to increased rates in microsatellite instability (MSI)-positive tumors, potentially defining an early-onset microsatellite-stable subtype. The mutation rates of COL6A5 and MGAM2 were significantly and SETD5 was assumably, associated CRC pedigree with concurrent gastric cancer (GC). The predicted deleterious/damaging germline variants, SH2D4A rs35647122, was associated with synchronous/metachronous CRC with related tumors, while NUP160 rs381660 and KRTAP27-1 rs2244485 were potentially associated with a GC pedigree and less strictly defined hereditary CRC, respectively. SH2D4A and NUP160 acted as oncogenic facilitators. CONCLUSION: Our limited genomic analysis for RBG and additional items suggested that specific somatic alterations in the respective items may enlighten relevant pathogenesis along with the knowledge of germline mutations. Further validation is needed to indicate appropriate surveillance in suspected individuals.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Testes Genéticos/métodos , Instabilidade de Microssatélites , Mutação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Prognóstico
15.
Cell Death Differ ; 28(3): 900-914, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33110214

RESUMO

The mammalian Target of Rapamycin (mTOR) pathway regulates a variety of physiological processes, including cell growth and cancer progression. The regulatory mechanisms of these signals are extremely complex and comprise many feedback loops. Here, we identified the deubiquitinating enzyme ovarian tumor domain-containing protein 5 (OTUD5) as a novel positive regulator of the mTOR complex (mTORC) 1 and 2 signaling pathways. We demonstrated that OTUD5 stabilized ß-transducin repeat-containing protein 1 (ßTrCP1) proteins via its deubiquitinase (DUB) activity, leading to the degradation of Disheveled, Egl-10, and pleckstrin domain-containing mTOR-interacting protein (DEPTOR), which is an inhibitory protein of mTORC1 and 2. We also showed that mTOR directly phosphorylated OTUD5 and activated its DUB activity. RNA sequencing analysis revealed that OTUD5 regulates the downstream gene expression of mTOR. Additionally, OTUD5 depletion elicited several mTOR-related phenotypes such as decreased cell size and increased autophagy in mammalian cells as well as the suppression of a dRheb-induced curled wing phenotype by RNA interference of Duba, a fly ortholog of OTUD5, in Drosophila melanogaster. Furthermore, OTUD5 knockdown inhibited the proliferation of the cancer cell lines with mutations activating mTOR pathway. Our results suggested a positive feedback loop between OTUD5 and mTOR signaling pathway.


Assuntos
Proliferação de Células , Endopeptidases/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Transdução de Sinais , Animais , Autofagia , Enzimas Desubiquitinantes/metabolismo , Drosophila melanogaster , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células MCF-7 , Fosforilação , Interferência de RNA , Ubiquitinação
16.
Cancers (Basel) ; 12(9)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906688

RESUMO

Enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2), the catalytic subunit of polycomb repressive complex 2 (PRC2), regulates genes involved in cell lineage and differentiation through methylating lysine 27 on histone H3 (H3K27me3). Recurrent gain-of-function mutations of EZH2 have been identified in various cancer types, in particular, diffuse large B-cell lymphoma (DLBCL), through large-scale genome-wide association studies and EZH2 depletion or pharmacological inhibition has been shown to exert an antiproliferative effect on cancer cells, both in vitro and in vivo. In the current study, a combination of pomalidomide and GSK126 synergistically inhibited the growth of EZH2 gain-of-function mutant Diffuse large B-cell lymphoma (DLBCL) cells. Furthermore, this synergistic effect appeared to be dependent on cereblon (CRBN), a cellular receptor of pomalidomide, but not degradation of IKAROS family zinc finger 1 (IKZF1) or IKAROS family zinc finger 3 (IKZF3). RNA sequencing analyses revealed that co-treatment with GSK126 and pomalidomide induced specific gene sets involved in B-cell differentiation and apoptosis. Synergistic growth inhibition and B-cell differentiation were further validated in xenograft mouse models. Our collective results provide a molecular basis for the mechanisms underlying the combined therapeutic effects of PRC2 inhibitors and pomalidomide on EZH2-mutated DLBCL.

17.
mSphere ; 5(4)2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32817457

RESUMO

To understand toxin-stimulated host-pathogen interactions, we performed dual-transcriptome sequencing experiments using human epithelial (HT-29) and differentiated THP-1 (dTHP-1) immune cells infected with the sepsis-causing pathogen Vibrio vulnificus (either the wild-type [WT] pathogen or a multifunctional-autoprocessing repeats-in-toxin [MARTX] toxin-deficient strain). Gene set enrichment analyses revealed MARTX toxin-dependent responses, including negative regulation of extracellular related kinase 1 (ERK1) and ERK2 (ERK1/2) signaling and cell cycle regulation in HT-29 and dTHP-1 cells, respectively. Further analysis of the expression of immune-related genes suggested that the MARTX toxin dampens immune responses in gut epithelial cells but accelerates inflammation and nuclear factor κB (NF-κB) signaling in immune cells. With respect to the pathogen, siderophore biosynthesis genes were significantly more highly expressed in WT V. vulnificus than in the MARTX toxin-deficient mutant upon infection of dTHP-1 cells. Consistent with these results, iron homeostasis genes that limit iron levels for invading pathogens were overexpressed in WT V. vulnificus-infected dTHP-1 cells. Taken together, these results suggest that MARTX toxin regulates host inflammatory responses during V. vulnificus infection while also countering host defense mechanisms such as iron limitation.IMPORTANCEV. vulnificus is an opportunistic human pathogen that can cause life-threatening sepsis in immunocompromised patients via seafood poisoning or wound infection. Among the toxic substances produced by this pathogen, the MARTX toxin greatly contributes to disease progression by promoting the dysfunction and death of host cells, which allows the bacteria to disseminate and colonize the host. In response to this, host cells mount a counterattack against the invaders by upregulating various defense genes. In this study, the gene expression profiles of both host cells and V. vulnificus were analyzed by RNA sequencing to gain a comprehensive understanding of host-pathogen interactions. Our results suggest that V. vulnificus uses the MARTX toxin to subvert host cell immune responses as well as to oppose host counterattacks such as iron limitation.


Assuntos
Toxinas Bacterianas/metabolismo , Células Epiteliais/microbiologia , Interações Hospedeiro-Patógeno/genética , Vibrio vulnificus/genética , Toxinas Bacterianas/genética , Perfilação da Expressão Gênica , Células HT29 , Interações Hospedeiro-Patógeno/imunologia , Humanos , Ferro/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Sideróforos/genética , Células THP-1 , Vibrio vulnificus/patogenicidade , Fatores de Virulência/genética
18.
Photochem Photobiol Sci ; 19(8): 1009-1021, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32584352

RESUMO

Ultraviolet light-emitting diodes (UV-LEDs) are a novel light source for phototherapy. This study aimed to evaluate the therapeutic effects of UV-LEDs on psoriasis. Importantly, 310 nm UV-LEDs have not been studied in psoriasis in vitro and in vivo. Effects due to 310 nm UV-LED and 311 nm narrowband ultraviolet B (NBUVB) irradiation were compared for suppressing IL-22-induced activation of STAT3 expression using cell viability assay, western blotting, and immunocytochemistry. C57BL/6 mice were topically treated with imiquimod (IMQ) for 6 consecutive days and degenerative changes were observed. Test groups were irradiated with a 310 nm UV-LED and 311 nm NBUVB. Phenotypic observations, histopathological examinations, and ELISA were conducted with skin and blood samples. STAT3-dependent IL-22 signalling and effects in keratinocytes are negatively regulated by the 310 nm UV-LED, which significantly ameliorated IMQ-induced psoriasis-like dermatitis development and reduced Th17 cytokine levels (IL-17A, IL-22) in serum and dorsal skin. Histopathological findings showed decreases in epidermal thickness and inflammatory T-cell infiltration in the UV-LED-irradiated groups. Quantitative PCR confirmed a UV radiation energy-dependent decrease in IL-17A and IL-22 mRNA levels. The results demonstrated that UV-LEDs had anti-inflammatory and immunoregulatory effects. So, UV-LED phototherapy inhibits psoriasis development by suppressing STAT3 protein and inflammatory cytokines and could be useful in treating psoriasis.


Assuntos
Inflamação/terapia , Interleucinas/metabolismo , Psoríase/terapia , Fator de Transcrição STAT3/biossíntese , Raios Ultravioleta , Animais , Antineoplásicos/farmacologia , Células HaCaT , Humanos , Imiquimode/farmacologia , Inflamação/induzido quimicamente , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Psoríase/induzido quimicamente , Psoríase/patologia , Pele/efeitos dos fármacos , Pele/patologia , Interleucina 22
19.
Int J Cancer ; 146(12): 3354-3368, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32129880

RESUMO

Many studies have focused on global hypomethylation or hypermethylation of tumor suppressor genes, but less is known about the impact of promoter hypomethylation of oncogenes. We previously showed that promoter methylation may gradually increase or decrease during the transition from gastric mucosa (GM) to intestinal metaplasia (IM) to gastric cancer (GC). In our study, we focused on regional CpG hypomethylation of the promoter-proximal DNA of the transcription factor ONECUT2 (OC2) in IM and GC cells. We validated the hypomethylation of promoter-proximal DNA of OC2 in 160 primary GCs, in which methylation level correlated negatively with OC2 mRNA level. IM and GC cells stained positively for OC2, whereas GM cells did not. Stable transfection of OC2 in GC cells promoted colony formation, cell migration, invasion and proliferation. Moreover, OC2 knockdown with a short hairpin RNA suppressed tumorigenesis in nude mice. In addition, chromatin immunoprecipitation coupled with DNA sequencing and RNA-seq analyses revealed that OC2 triggered ACSL5, which is strongly expressed in IM of the stomach but not in GM, indicating that OC2 and ACSL5 are early-stage biomarkers for GC. We also observed a high correlation between the levels of OC2 and ACSL5 mRNAs in the GENT database These results suggest that epigenetic alteration of OC2 upregulates its expression, which then activates ACSL5; thus, OC2 is induced in IM by epigenetic alteration and triggers ACSL5 expression, and thus OC2 and ACSL5 may cooperatively promote intestinal differentiation and GC progression.


Assuntos
Biomarcadores Tumorais/genética , Coenzima A Ligases/genética , Metilação de DNA , Proteínas de Homeodomínio/genética , Neoplasias Gástricas/genética , Fatores de Transcrição/genética , Animais , Biomarcadores Tumorais/metabolismo , Carcinogênese/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Ilhas de CpG/genética , Epigênese Genética , Mucosa Gástrica/patologia , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Estadiamento de Neoplasias , Regiões Promotoras Genéticas/genética , RNA-Seq , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/patologia , Fatores de Transcrição/metabolismo , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Korean J Physiol Pharmacol ; 24(2): 149-156, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32140038

RESUMO

Sodium 2-mercaptoethanesulfonate (mesna) is a protective agent that is widely used in medicine because of its antioxidant effects. Recently, reactive oxygen species (ROS) were shown to increase pigmentation. Thus, ROS scavengers and inhibitors of ROS production may suppress melanogenesis. Forkhead box-O3a (FoxO3a) is an antimelanogenic factor that mediates ROS-induced skin pigmentation. In this study, we aimed to investigate the whitening effect of mesna and the signaling mechanism mediating this effect. Human melanoma (MNT-1) cells were used in this study. mRNA and protein expression were measured by real-time quantitative PCR and Western blotting analysis to track changes in FoxO3a-related signals induced by mesna. An immunofluorescence assay was performed to determine the nuclear translocation of FoxO3a. When MNT-1 melanoma cells were treated with mesna, melanin production and secretion decreased. These effects were accompanied by increases in FoxO3a activation and nuclear translocation, resulting in downregulation of four master genes of melanogenesis: MITF, TYR, TRP1, and TRP2. We found that mesna, an antioxidant and radical scavenger, suppresses melanin production and may therefore be a useful agent for the clinical treatment of hyperpigmentation disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA