Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 21(1): 27, 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35183173

RESUMO

BACKGROUND: The photosynthetic microorganism Chlamydomonas reinhardtii has been approved as generally recognized as safe (GRAS) recently, this can excessively produce carotenoid pigments and fatty acids. Zeaxanthin epoxidase (ZEP), which converts zeaxanthin to violaxanthin, and ADP-glucose pyrophosphorylase (AGP). These are key regulating genes for the xanthophyll and starch pathways in C. reinhardtii respectively. In this study, to produce macular pigment-enriched microalgal oil, we attempted to edit the AGP gene as an additional knock-out target in the zep mutant as a parental strain. RESULTS: Using a sequential CRISPR-Cas9 RNP-mediated knock-out method, we generated double knock-out mutants (dZAs), in which both the ZEP and AGP genes were deleted. In dZA1, lutein (2.93 ± 0.22 mg g-1 DCW: dried cell weight), zeaxanthin (3.12 ± 0.30 mg g-1 DCW), and lipids (450.09 ± 25.48 mg g-1 DCW) were highly accumulated in N-deprivation condition. Optimization of the culture medium and process made it possible to produce pigments and oil via one-step cultivation. This optimization process enabled dZAs to achieve 81% higher oil productivity along with similar macular pigment productivity, than the conventional two-step process. The hexane/isopropanol extraction method was developed for the use of macular pigment-enriched microalgal oil for food. As a result, 196 ± 20.1 mg g-1 DCW of edible microalgal oil containing 8.42 ± 0.92 mg g-1 lutein of oil and 7.69 ± 1.03 mg g-1 zeaxanthin of oil was produced. CONCLUSION: Our research showed that lipids and pigments are simultaneously induced in the dZA strain. Since dZAs are generated by introducing pre-assembled sgRNA and Cas9-protein into cells, antibiotic resistance genes or selective markers are not inserted into the genome of dZA, which is advantageous for applying dZA mutant to food. Therefore, the enriched macular pigment oil extracted from improved strains (dZAs) can be further applied to various food products and nutraceuticals.


Assuntos
Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Edição de Genes , Pigmento Macular/biossíntese , Microalgas/genética , Microalgas/metabolismo , Óleos/metabolismo , Sistemas CRISPR-Cas , Meios de Cultura , Genoma , Glucose-1-Fosfato Adenililtransferase/genética , Glucose-1-Fosfato Adenililtransferase/metabolismo , Lipídeos/biossíntese , Luteína/análise , Mutação , Óleos/química , Zeaxantinas/análise
2.
Nat Commun ; 12(1): 6049, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663809

RESUMO

Microalgae can accumulate various carbon-neutral products, but their real-world applications are hindered by their CO2 susceptibility. Herein, the transcriptomic changes in a model microalga, Chlamydomonas reinhardtii, in a high-CO2 milieu (20%) are evaluated. The primary toxicity mechanism consists of aberrantly low expression of plasma membrane H+-ATPases (PMAs) accompanied by intracellular acidification. Our results demonstrate that the expression of a universally expressible PMA in wild-type strains makes them capable of not only thriving in acidity levels that they usually cannot survive but also exhibiting 3.2-fold increased photoautotrophic production against high CO2 via maintenance of a higher cytoplasmic pH. A proof-of-concept experiment involving cultivation with toxic flue gas (13 vol% CO2, 20 ppm NOX, and 32 ppm SOX) shows that the production of CO2-based bioproducts by the strain is doubled compared with that by the wild-type, implying that this strategy potentially enables the microalgal valorization of CO2 in industrial exhaust.


Assuntos
Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Microalgas/genética , Microalgas/metabolismo , Bombas de Próton/genética , Bombas de Próton/metabolismo , Biodegradação Ambiental , Biocombustíveis , Carbono/metabolismo , Chlamydomonas reinhardtii/metabolismo , Tolerância a Medicamentos , Microalgas/crescimento & desenvolvimento , Organismos Geneticamente Modificados , Transcriptoma , Emissões de Veículos
3.
Foods ; 9(5)2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32375308

RESUMO

In the future, plant based phytochemicals will be considered as efficient replacement sources of chemical preservatives, to act as potential bio-preservatives. We investigated the antibacterial and antioxidant activity of red cabbage (RC) extracts using different solvents. Among all extracts, chloroform extract exhibited strong antimicrobial and antioxidant activities. Hence, the phytochemical constitutions of the RC chloroform extract was examined by GC-MS analysis, and further, based on molecular docking analysis, revealed 2-Methoxy-4-vinylphenol and benzofuran as two major compounds found to be possessing higher degrees of interaction with DNA gyrase (4PLB; -8.63 Kcal.mol-1) and lipoprotein (LpxC-8.229 Kcal.mol-1), respectively, of the bacterial cell wall, which leads to higher antimicrobial efficacy. Further, it was confirmed with that the in vivo Caenorhabditis elegans model (but no cytotoxic effect) was exhibited in the MCF-7 cell line. Thus, we investigated the influence of this extract on the shelf life of meat under refrigeration storage. The physicochemical properties were observed periodically, and microbial analysis was conducted. The shelf life of the beef was enhanced (up to eight days) in terms of microbial and physiochemical properties, at 4 ± 2 °C when compared to control. We concluded that chloroform extract of RC has potential as a natural preservative in the meat processing industry.

4.
Bioresour Technol ; 303: 122932, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32058903

RESUMO

A marine green microalga, Tetraselmis sp., has been studied for the production of biomass and lipids in seawater culture. Since carbohydrate and lipid biosynthesis are competitive metabolic pathways, we attempted to increase lipid synthesis in Tetraselmis by inhibiting carbohydrate synthesis. The main regulatory enzyme in the starch synthesis pathway is ADP-glucose pyrophosphorylase (AGP). AGP loss-of-function mutants were developed using the CRISPR-Cas9 ribonucleoprotein (RNP) delivery system. AGP mutants showed a slight decrease in growth. However, the lipid content in two AGP mutants was significantly enhanced by 2.7 and 3.1 fold (21.1% and 24.1% of DCW), respectively, compared to that in the wild type (7.68% of DCW) under nitrogen starvation. This study is an example of metabolic engineering by genetic editing using the CRISPR-Cas9 RNP method in marine green microalgae. Consequently, starchless Tetraselmis mutants might be considered potential producers of lipids in seawater cultures.


Assuntos
Microalgas , Sistemas CRISPR-Cas , Glucose-1-Fosfato Adenililtransferase , Lipídeos , Ribonucleoproteínas
5.
Int J Mol Sci ; 19(7)2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-29986409

RESUMO

Chlorella has great potential as a bio-factory for production of value-added compounds. To produce the desired chemicals more efficiently in Chlorella, genetic tools for modification of Chlorella need to be developed, especially an endogenous promoter. In this study, the promoter of photosystem I protein D (psaD) from Chlorella vulgaris UTEX395 was identified. Computational analysis revealed the presence of several putative cis-acting elements, including a potential core element, and light-responsive or stress-responsive elements. Gene expression analysis in heterologous expression system in Chlamydomonasreinhardtii and Nicotianabenthamiana showed that CvpsaD promoter can be used to drive the expression of genes. Functional analysis of this promoter suggested that the initiator element (Inr) is important for its function (i.e., TATA-less promoter) and that an additional factor (e.g., downstream of the transcriptional start site) might be needed for light response. We have shown that the CvpsaD promoter is functional, but not sufficiently strong, both in microalgae and higher plant.


Assuntos
Chlorella vulgaris/genética , Complexo de Proteína do Fotossistema I/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/fisiologia , Chlamydomonas reinhardtii/genética , Expressão Gênica , Glucuronidase/genética , Glucuronidase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Canamicina Quinase/genética , Canamicina Quinase/metabolismo , Luz , Luciferases/genética , Luciferases/metabolismo , Plantas Geneticamente Modificadas/genética , Análise de Sequência de DNA , TATA Box , Nicotiana/genética
6.
Sci Rep ; 8(1): 3498, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472589

RESUMO

Measurement techniques in biology are now able to provide data on the trajectories of multiple individual molecules simultaneously, motivating the development of techniques for the stochastic spatio-temporal modelling of biomolecular networks. However, standard approaches based on solving stochastic reaction-diffusion equations are computationally intractable for large-scale networks. We present a novel method for modeling stochastic and spatial dynamics in biomolecular networks using a simple form of the Langevin equation with noisy kinetic constants. Spatial heterogeneity in molecular interactions is decoupled into a set of compartments, where the distribution of molecules in each compartment is idealised as being uniform. The reactions in the network are then modelled by Langevin equations with correcting terms, that account for differences between spatially uniform and spatially non-uniform distributions, and that can be readily estimated from available experimental data. The accuracy and extreme computational efficiency of the approach is demonstrated on a model of the epidermal growth factor receptor network in the human mammary epithelial cell.


Assuntos
Redes Reguladoras de Genes/genética , Modelos Biológicos , Processos Estocásticos , Simulação por Computador , Receptores ErbB/genética , Humanos , Cinética , Transdução de Sinais/genética
7.
PLoS Comput Biol ; 3(11): e218, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17997595

RESUMO

Stable and robust oscillations in the concentration of adenosine 3', 5'-cyclic monophosphate (cAMP) are observed during the aggregation phase of starvation-induced development in Dictyostelium discoideum. In this paper we use mathematical modelling together with ideas from robust control theory to identify two factors which appear to make crucial contributions to ensuring the robustness of these oscillations. Firstly, we show that stochastic fluctuations in the molecular interactions play an important role in preserving stable oscillations in the face of variations in the kinetics of the intracellular network. Secondly, we show that synchronisation of the aggregating cells through the diffusion of extracellular cAMP is a key factor in ensuring robustness of the oscillatory waves of cAMP observed in Dictyostelium cell cultures to cell-to-cell variations. A striking and quite general implication of the results is that the robustness analysis of models of oscillating biomolecular networks (circadian clocks, Ca(2+) oscillations, etc.) can only be done reliably by using stochastic simulations, even in the case where molecular concentrations are very high.


Assuntos
Relógios Biológicos/fisiologia , AMP Cíclico/metabolismo , Dictyostelium/metabolismo , Privação de Alimentos/fisiologia , Modelos Biológicos , Transdução de Sinais/fisiologia , Animais , Simulação por Computador , Modelos Estatísticos , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA