Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Med Rep ; 30(1)2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38785149

RESUMO

Promotion of myoblast differentiation by activating mitochondrial biogenesis and protein synthesis signaling pathways provides a potential alternative strategy to balance energy and overcome muscle loss and muscle disorders. Saururus chinensis (Lour.) Baill. extract (SCE) has been used extensively as a traditional herbal medicine and has several physiological activities, including anti­asthmatic, anti­oxidant, anti­inflammatory, anti­atopic, anticancer and hepatoprotective properties. However, the effects and mechanisms of action of SCE on muscle differentiation have not yet been clarified. In the present study, it was investigated whether SCE affects skeletal muscle cell differentiation through the regulation of mitochondrial biogenesis and protein synthesis in murine C2C12 myoblasts. The XTT colorimetric assay was used to determine cell viability, and myosin heavy chain (MyHC) levels were determined using immunocytochemistry. SCE was applied to C2C12 myotube at different concentrations (1, 5, or 10 ng/ml) and times (1,3, or 5 days). Reverse transcription­quantitative PCR and western blotting were used to analyze the mRNA and protein expression change of factors related to differentiation, mitochondrial biogenesis and protein synthesis. Treatment of C2C12 cells with SCE at 1,5, and 10 ng/ml did not affect cell viability. SCE promoted C2C12 myotube formation and significantly increased MyHC expression in a concentration­ and time­dependent manner. SCE significantly increased the mRNA and protein expression of muscle differentiation­specific markers, such as MyHC, myogenic differentiation 1, myogenin, Myogenic Factor 5, and ß­catenin, mitochondrial biosynthesis­related factors, such as peroxisome proliferator­activated receptor­gamma coactivator­1α, nuclear respirator factor­1, AMP­activated protein kinase phosphorylation, and histone deacetylase 5 and AKT/mTOR signaling factors related to protein synthesis. SCE may prevent skeletal muscle dysfunction by enhancing myoblast differentiation through the promotion of mitochondrial biogenesis and protein synthesis.


Assuntos
Diferenciação Celular , Biogênese de Organelas , Extratos Vegetais , Proteínas Proto-Oncogênicas c-akt , Saururaceae , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Camundongos , Diferenciação Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Extratos Vegetais/farmacologia , Linhagem Celular , Saururaceae/química , Sobrevivência Celular/efeitos dos fármacos , Mioblastos/metabolismo , Mioblastos/efeitos dos fármacos , Mioblastos/citologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/citologia , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/citologia
2.
Front Immunol ; 15: 1284181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455036

RESUMO

Background and aims: Favourable clinical data were published on the efficacy of CT-P13, the first biosimilar of infliximab (IFX), in pediatric inflammatory bowel disease (IBD); however, few studies have compared the effect on endoscopic healing (EH) and drug retention rate between the IFX originator and CT-P13. Therefore, we aimed to compare EH and the drug retention rate between the IFX originator and CT-P13. Methods: Children with Crohn's disease (CD) and ulcerative colitis (UC)/IBD-unclassified (IBD-U) at 22 medical centers were enrolled, with a retrospective review conducted at 1-year and last follow-up. Clinical remission, EH and drug retention rate were evaluated. Results: We studied 416 pediatric patients with IBD: 77.4% had CD and 22.6% had UC/IBD-U. Among them, 255 (61.3%) received the IFX originator and 161 (38.7%) received CT-P13. No statistically significant differences were found between the IFX originator and CT-P13 in terms of corticosteroid-free remission and adverse events. At 1-year follow-up, EH rates were comparable between them (CD: P=0.902, UC: P=0.860). The estimated cumulative cessation rates were not significantly different between the two groups. In patients with CD, the drug retention rates were 66.1% in the IFX originator and 71.6% in the CT-P13 group at the maximum follow-up period (P >0.05). In patients with UC, the drug retention rates were 49.8% in the IFX originator and 56.3% in the CT-P13 group at the maximum follow-up period (P >0.05). Conclusions: The IFX originator and CT-P13 demonstrated comparable therapeutic response including EH, clinical remission, drug retention rate and safety in pediatric IBD.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Criança , Infliximab/uso terapêutico , Resultado do Tratamento , Anticorpos Monoclonais/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Doença de Crohn/tratamento farmacológico
3.
Clin Cancer Res ; 30(8): 1582-1594, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38330145

RESUMO

PURPOSE: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) serve as the standard first-line therapy for EGFR-mutated non-small cell lung cancer (NSCLC). Despite the sustained clinical benefits achieved through optimal EGFR-TKI treatments, including the third-generation EGFR-TKI osimertinib, resistance inevitably develops. Currently, there are no targeted therapeutic options available postprogression on osimertinib. Here, we assessed the preclinical efficacy of BI-4732, a novel fourth-generation EGFR-TKI, using patient-derived preclinical models reflecting various clinical scenarios. EXPERIMENTAL DESIGN: The antitumor activity of BI-4732 was evaluated using Ba/F3 cells and patient-derived cell/organoid/xenograft models with diverse EGFR mutations. Intracranial antitumor activity of BI-4732 was evaluated in a brain-metastasis mouse model. RESULTS: We demonstrated the remarkable antitumor efficacy of BI-4732 as a single agent in various patient-derived models with EGFR_C797S-mediated osimertinib resistance. Moreover, BI-4732 exhibited activity comparable to osimertinib in inhibiting EGFR-activating (E19del and L858R) and T790M mutations. In a combination treatment strategy with osimertinib, BI-4732 exhibited a synergistic effect at significantly lower concentrations than those used in monotherapy. Importantly, BI-4732 displayed potent antitumor activity in an intracranial model, with low efflux at the blood-brain barrier. CONCLUSIONS: Our findings highlight the potential of BI-4732, a selective EGFR-TKI with high blood-brain barrier penetration, targeting a broad range of EGFR mutations, including C797S, warranting clinical development.


Assuntos
Acrilamidas , Carcinoma Pulmonar de Células não Pequenas , Indóis , Neoplasias Pulmonares , Pirimidinas , Camundongos , Animais , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Receptores ErbB/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação , Resistencia a Medicamentos Antineoplásicos/genética , Compostos de Anilina
4.
J Cell Biochem ; 125(2): e30518, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38224182

RESUMO

Excessive bone-resorbing osteoclast activity during bone remodeling is a major feature of bone diseases, such as osteoporosis. Therefore, the inhibition of osteoclast formation and bone resorption can be an effective therapeutic target for various bone diseases. Gryllus biomaculatus (GB) has recently been approved as an alternative food source because of its high nutritional value and environmental sustainability. Traditionally, GB has been known to have various pharmacological properties, including antipyretic and blood pressure-lowering activity, and it has recently been reported to have various biological activities, including protective effects against inflammation, oxidative stress, insulin resistance, and alcohol-induced liver injury. However, the effect of GB on osteoclast differentiation and bone metabolism has not yet been demonstrated. In this study, we confirmed the inhibitory effect of GB extract (GBE) on the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. To determine the effect of GBE on RANKL-induced osteoclast differentiation and function, we performed TRAP and F-actin staining, as well as a bone-resorbing assay. The intracellular mechanisms of GBE responsible for the regulation of osteoclastogenesis were revealed by Western blot analysis and quantitative real-time polymerase chain reaction. We investigated the relationship between GBE and expression of osteoclast-specific molecules to further elucidate the underlying mechanisms. It was found that GBE significantly suppressed osteoclastogenesis by decreasing the phosphorylation of Akt, p38, JNK, and ERK, as well as Btk-PLCγ2 signaling, in pathways involved in early osteoclastogenesis as well as through the subsequent suppression of c-Fos, NFATc1, and osteoclastogenesis-specific marker genes. Additionally, GBE inhibited the formation of F-actin ring-positive osteoclasts and bone resorption activity of mature osteoclasts. Our findings suggest that GBE is a potential functional food and therapeutic candidate for bone diseases involving osteoclasts.


Assuntos
Reabsorção Óssea , Osteoclastos , Ligante RANK , Humanos , Actinas/metabolismo , Reabsorção Óssea/tratamento farmacológico , Diferenciação Celular , Ligantes , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Ligante RANK/antagonistas & inibidores , Ligante RANK/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA