Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39273184

RESUMO

Recent studies have highlighted the potential of Mesenchymal Stem Cells (MSCs) as an alternative treatment for Alopecia Areata (AA) due to their immunosuppressive properties. While MSCs have shown promise in cell experiments, their effectiveness in vivo remains uncertain. This study aims to validate local administration of MSC therapy's efficacy in AA treatment through animal experiments. AA was induced through Interferon-gamma (IFN-γ) administration in mice, and MSC treatment (MSCT)'s effects were assessed visually and through tissue analysis. The MSC-treated group showed more hair regrowth compared to the control (CTL) group. MSCT notably reduced local inflammatory cytokines (JAK1, JAK2, STAT1, STAT3, IFN-γR, IL-1ß, IL-16, IL-17α, and IL-18) in AA-induced mice's skin, but systemic cytokine levels remained unchanged. Furthermore, MSC treatment normalized the expression of Wnt/ß-catenin signaling pathway genes (LEF1 and ß-catenin) and growth factors (FGF7 and FGF2), which are crucial for hair cycle regulation. This study lays the groundwork for further exploring MSCs as a potential treatment for AA, but more research is needed to fully understand their therapeutic potential.


Assuntos
Alopecia em Áreas , Citocinas , Modelos Animais de Doenças , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Alopecia em Áreas/terapia , Alopecia em Áreas/metabolismo , Camundongos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Citocinas/metabolismo , Via de Sinalização Wnt , Interferon gama/metabolismo , beta Catenina/metabolismo , beta Catenina/genética , Feminino , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/genética
2.
Biochem Biophys Res Commun ; 738: 150536, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39146619

RESUMO

S100 calcium-binding protein P (S100P) is a secretory protein that is expressed in various healthy tissues and tumors. Megakaryocyte-secreted S100P promotes osteoclast differentiation and function; however, its receptor and cellular signaling in osteoclasts remain unclear. Receptor for advanced glycation end products (RAGE), which is the receptor for S100P on cancer cells, was expressed in osteoclast precursors, and S100P-RAGE binding was confirmed through co-immunoprecipitation. Additionally, the phosphorylation of ERK and NF-κB was increased in S100P-stimulated osteoclast precursors but was inhibited by addition of the RAGE antagonistic peptide (RAP). S100P-induced osteoclast differentiation and excessive bone resorption activity were also reduced by the addition of RAP. This study demonstrates that S100P, upon binding with RAGE, activates the ERK and NF-κB signaling pathways in osteoclasts, leading to increased cell differentiation and bone resorption activity.

3.
Epidemiol Health ; : e2024070, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39210787

RESUMO

Objectives: Previous research has predominantly focused on total bilirubin levels without clearly distinguishing between direct and indirect bilirubin. In this study, the differences between these forms were examined, and their potential causal relationships with ischemic stroke were investigated. Methods: Two-sample multivariable Mendelian randomization (MVMR) analysis was employed, extracting summary data on bilirubin from the Korean Cancer Prevention Study-II (KCPS-II; n=159,844) and the Korean Genome and Epidemiology Study (KoGES; n=72,299). Data on ischemic stroke were obtained from BioBank Japan (BBJ; n=201,800). Colocalization analysis was performed, focusing on the UGT1A1, SLCO1B1, and SLCO1B3 genes, which are the primary loci associated with serum bilirubin levels. Results: Crude 2-sample Mendelian randomization analysis revealed a significant negative association between total bilirubin levels and ischemic stroke. However, in MVMR analyses, only indirect bilirubin demonstrated a significant negative association with ischemic stroke (odds ratio, 0.76; 95% confidence interval, 0.59 to 0.98). Colocalization analysis did not identify a shared causal variant between the 3 genetic loci related to indirect bilirubin and the risk of ischemic stroke. Conclusion: Our study establishes a causal association between higher genetically determined levels of serum indirect bilirubin and reduced risk of ischemic stroke in an Asian population. Future research should include more in-depth analysis of shared genetic variants between indirect bilirubin and ischemic stroke.

4.
Biochem Biophys Res Commun ; 722: 150171, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38797151

RESUMO

Unique cartilage matrix-associated protein (UCMA) is a γ-carboxyglutamic acid-rich secretory protein primarily expressed in adult cartilage. UCMA promotes osteoblast differentiation and reduces high glucose-induced reactive oxygen species (ROS) production in osteoblasts; however, its role in osteoclasts remains unclear. Since Ucma is not expressed in osteoclasts, treatment with recombinant UCMA protein (rUCMA) was employed to investigate the effect of UCMA on osteoclasts. The rUCMA-treated osteoclasts exhibited significantly reduced osteoclast differentiation, resorption activity, and osteoclast-specific gene expression. Moreover, rUCMA treatment reduced RANKL-induced ROS production and increased the expression of antioxidant genes in osteoclasts. This study demonstrates that UCMA effectively inhibits RANKL-stimulated osteoclast differentiation and oxidative stress.


Assuntos
Diferenciação Celular , Osteoclastos , Ligante RANK , Espécies Reativas de Oxigênio , Osteoclastos/metabolismo , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Animais , Espécies Reativas de Oxigênio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Camundongos , Ligante RANK/metabolismo , Células RAW 264.7 , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Estresse Oxidativo/efeitos dos fármacos
5.
Mar Drugs ; 22(5)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38786608

RESUMO

We identified a new human voltage-gated potassium channel blocker, NnK-1, in the jellyfish Nemopilema nomurai based on its genomic information. The gene sequence encoding NnK-1 contains 5408 base pairs, with five introns and six exons. The coding sequence of the NnK-1 precursor is 894 nucleotides long and encodes 297 amino acids containing five presumptive ShK-like peptides. An electrophysiological assay demonstrated that the fifth peptide, NnK-1, which was chemically synthesized, is an effective blocker of hKv1.3, hKv1.4, and hKv1.5. Multiple-sequence alignment with cnidarian Shk-like peptides, which have Kv1.3-blocking activity, revealed that three residues (3Asp, 25Lys, and 34Thr) of NnK-1, together with six cysteine residues, were conserved. Therefore, we hypothesized that these three residues are crucial for the binding of the toxin to voltage-gated potassium channels. This notion was confirmed by an electrophysiological assay with a synthetic peptide (NnK-1 mu) where these three peptides were substituted with 3Glu, 25Arg, and 34Met. In conclusion, we successfully identified and characterized a new voltage-gated potassium channel blocker in jellyfish that interacts with three different voltage-gated potassium channels. A peptide that interacts with multiple voltage-gated potassium channels has many therapeutic applications in various physiological and pathophysiological contexts.


Assuntos
Peptídeos , Bloqueadores dos Canais de Potássio , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Cifozoários , Animais , Humanos , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Peptídeos/farmacologia , Peptídeos/química , Sequência de Aminoácidos , Venenos de Cnidários/farmacologia , Venenos de Cnidários/química , Alinhamento de Sequência
6.
J Neurooncol ; 166(2): 321-330, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38263486

RESUMO

PURPOSE: The purpose of this study was to determine the safety, feasibility, and immunologic responses of treating grade 4 astrocytomas with multiple infusions of anti-CD3 x anti-EGFR bispecific antibody (EGFRBi) armed T cells (EGFR BATs) in combination with radiation and chemotherapy. METHODS: This phase I study used a 3 + 3 dose escalation design to test the safety and feasibility of intravenously infused EGFR BATs in combination with radiation and temozolomide (TMZ) in patients with newly diagnosed grade 4 astrocytomas (AG4). After finding the feasible dose, an expansion cohort with unmethylated O6-methylguanine-DNA methyltransferase (MGMT) tumors received weekly EGFR BATs without TMZ. RESULTS: The highest feasible dose was 80 × 109 EGFR BATs without dose-limiting toxicities (DLTs) in seven patients. We could not escalate the dose because of the limited T-cell expansion. There were no DLTs in the additional cohort of three patients with unmethylated MGMT tumors who received eight weekly infusions of EGFR BATs without TMZ. EGFR BATs infusions induced increases in glioma specific anti-tumor cytotoxicity by peripheral blood mononuclear cells (p < 0.03) and NK cell activity (p < 0.002) ex vivo, and increased serum concentrations of IFN-γ (p < 0.03), IL-2 (p < 0.007), and GM-CSF (p < 0.009). CONCLUSION: Targeting AG4 with EGFR BATs at the maximum feasible dose of 80 × 109, with or without TMZ was safe and induced significant anti-tumor-specific immune responses. These results support further clinical trials to examine the efficacy of this adoptive cell therapy in patients with MGMT-unmethylated GBM. CLINICALTRIALS: gov Identifier: NCT03344250.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/uso terapêutico , Leucócitos Mononucleares/patologia , Neoplasias Encefálicas/genética , Linfócitos T/patologia , Glioblastoma/tratamento farmacológico , Receptores ErbB , Antineoplásicos Alquilantes/uso terapêutico , Antineoplásicos Alquilantes/farmacologia
7.
Math Biosci Eng ; 20(11): 19454-19467, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-38052609

RESUMO

Cancer occurrence rates are gradually rising in the population, which reasons a heavy diagnostic burden globally. The rate of colorectal (bowel) cancer (CC) is gradually rising, and is currently listed as the third most common cancer globally. Therefore, early screening and treatments with a recommended clinical protocol are necessary to trat cancer. The proposed research aim of this paper to develop a Deep-Learning Framework (DLF) to classify the colon histology slides into normal/cancer classes using deep-learning-based features. The stages of the framework include the following: (ⅰ) Image collection, resizing, and pre-processing; (ⅱ) Deep-Features (DF) extraction with a chosen scheme; (ⅲ) Binary classification with a 5-fold cross-validation; and (ⅳ) Verification of the clinical significance. This work classifies the considered image database using the follwing: (ⅰ) Individual DF, (ⅱ) Fused DF, and (ⅲ) Ensemble DF. The achieved results are separately verified using binary classifiers. The proposed work considered 4000 (2000 normal and 2000 cancer) histology slides for the examination. The result of this research confirms that the fused DF helps to achieve a detection accuracy of 99% with the K-Nearest Neighbor (KNN) classifier. In contrast, the individual and ensemble DF provide classification accuracies of 93.25 and 97.25%, respectively.


Assuntos
Aprendizado Profundo , Neoplasias , Humanos , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Colo , Neoplasias/diagnóstico
8.
Cell Rep ; 42(12): 113497, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38041813

RESUMO

Peptic ulcer disease caused by environmental factors increases the risk of developing gastric cancer (GC), one of the most common and deadly cancers in the world. However, the mechanisms underlying this association remain unclear. A major type of GC uniquely undergoes spasmolytic polypeptide-expressing metaplasia (SPEM) followed by intestinal metaplasia. Notably, intestinal-type GC patients with high levels of YAP signaling exhibit a lower survival rate and poor prognosis. YAP overexpression in gastric cells induces atrophy, metaplasia, and hyperproliferation, while its deletion in a Notch-activated gastric adenoma model suppresses them. By defining the YAP targetome genome-wide, we demonstrate that YAP binds to active chromatin elements of SPEM-related genes, which correlates with the activation of their expression in both metaplasia and ulcers. Single-cell analysis combined with our YAP signature reveals that YAP signaling is activated during SPEM, demonstrating YAP as a central regulator of SPEM in gastric neoplasia and regeneration.


Assuntos
Peptídeos , Neoplasias Gástricas , Humanos , Peptídeos/metabolismo , Estômago , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Gástricas/genética , Metaplasia/metabolismo , Mucosa Gástrica/metabolismo
9.
Diagnostics (Basel) ; 13(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37958210

RESUMO

AIM: Method: This research presents a model combining machine learning (ML) techniques and eXplainable artificial intelligence (XAI) to predict breast cancer (BC) metastasis and reveal important genomic biomarkers in metastasis patients. METHOD: A total of 98 primary BC samples was analyzed, comprising 34 samples from patients who developed distant metastases within a 5-year follow-up period and 44 samples from patients who remained disease-free for at least 5 years after diagnosis. Genomic data were then subjected to biostatistical analysis, followed by the application of the elastic net feature selection method. This technique identified a restricted number of genomic biomarkers associated with BC metastasis. A light gradient boosting machine (LightGBM), categorical boosting (CatBoost), Extreme Gradient Boosting (XGBoost), Gradient Boosting Trees (GBT), and Ada boosting (AdaBoost) algorithms were utilized for prediction. To assess the models' predictive abilities, the accuracy, F1 score, precision, recall, area under the ROC curve (AUC), and Brier score were calculated as performance evaluation metrics. To promote interpretability and overcome the "black box" problem of ML models, a SHapley Additive exPlanations (SHAP) method was employed. RESULTS: The LightGBM model outperformed other models, yielding remarkable accuracy of 96% and an AUC of 99.3%. In addition to biostatistical evaluation, in XAI-based SHAP results, increased expression levels of TSPYL5, ATP5E, CA9, NUP210, SLC37A1, ARIH1, PSMD7, UBQLN1, PRAME, and UBE2T (p ≤ 0.05) were found to be associated with an increased incidence of BC metastasis. Finally, decreased levels of expression of CACTIN, TGFB3, SCUBE2, ARL4D, OR1F1, ALDH4A1, PHF1, and CROCC (p ≤ 0.05) genes were also determined to increase the risk of metastasis in BC. CONCLUSION: The findings of this study may prevent disease progression and metastases and potentially improve clinical outcomes by recommending customized treatment approaches for BC patients.

10.
PLoS One ; 18(10): e0292601, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37831692

RESUMO

Computer-aided classification of diseases of the gastrointestinal tract (GIT) has become a crucial area of research. Medical science and artificial intelligence have helped medical experts find GIT diseases through endoscopic procedures. Wired endoscopy is a controlled procedure that helps the medical expert in disease diagnosis. Manual screening of the endoscopic frames is a challenging and time taking task for medical experts that also increases the missed rate of the GIT disease. An early diagnosis of GIT disease can save human beings from fatal diseases. An automatic deep feature learning-based system is proposed for GIT disease classification. The adaptive gamma correction and weighting distribution (AGCWD) preprocessing procedure is the first stage of the proposed work that is used for enhancing the intensity of the frames. The deep features are extracted from the frames by deep learning models including InceptionNetV3 and GITNet. Ant Colony Optimization (ACO) procedure is employed for feature optimization. Optimized features are fused serially. The classification operation is performed by variants of support vector machine (SVM) classifiers, including the Cubic SVM (CSVM), Coarse Gaussian SVM (CGSVM), Quadratic SVM (QSVM), and Linear SVM (LSVM) classifiers. The intended model is assessed on two challenging datasets including KVASIR and NERTHUS that consist of eight and four classes respectively. The intended model outperforms as compared with existing methods by achieving an accuracy of 99.32% over the KVASIR dataset and 99.89% accuracy using the NERTHUS dataset.


Assuntos
Inteligência Artificial , Trato Gastrointestinal , Humanos , Endoscopia Gastrointestinal , Máquina de Vetores de Suporte
11.
Mol Med Rep ; 28(5)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37732549

RESUMO

Wear particle­induced osteolysis is a serious complication that occurs in individuals with titanium (Ti)­based implants following long­term usage due to loosening of the implants. The control of excessive osteoclast differentiation and inflammation is essential for protecting against wear particle­induced osteolysis. The present study evaluated the effect of britanin, a pseudoguaianolide sesquiterpene isolated from Inula japonica, on osteoclastogenesis in vitro and Ti particle­induced osteolysis in vivo. The effect of britanin was examined in the osteoclastogenesis of mouse bone marrow­derived macrophages (BMMs) using TRAP staining, RT­PCR, western blotting and immunocytochemistry. The protective effect of britanin was examined in a mouse calvarial osteolysis model and evaluated using micro­CT and histomorphometry. Britanin inhibited osteoclast differentiation and F­actin ring formation in the presence of macrophage colony­stimulating factor and receptor activator of nuclear factor kB ligand in BMMs. The expression of osteoclast­specific marker genes, including tartrate­resistant acid phosphatase, cathepsin K, dendritic cell­specific transmembrane protein, matrix metallopeptidase 9 and nuclear factor of activated T­cells cytoplasmic 1, in the BMMs was significantly reduced by britanin. In addition, britanin reduced the expression of B lymphocyte­induced maturation protein­1, which is a transcriptional repressor of negative osteoclastogenesis regulators, including interferon regulatory factor­8 and B­cell lymphoma 6. Conversely, britanin increased the expression levels of anti­oxidative stress genes, namely nuclear factor erythroid­2­related factor 2, NAD(P)H quinone oxidoreductase 1 and heme oxygenase 1 in the BMMs. Furthermore, the administration of britanin significantly reduced osteolysis in a Ti particle­induced calvarial osteolysis mouse model. Based on these findings, it is suggested that britanin may be a potential therapeutic agent for wear particle­induced osteolysis and osteoclast­associated disease.


Assuntos
Osteogênese , Osteólise , Humanos , Animais , Camundongos , Osteólise/tratamento farmacológico , Osteólise/etiologia , Titânio/efeitos adversos , Osteoclastos , Citoesqueleto de Actina , Modelos Animais de Doenças
12.
Exp Mol Med ; 55(7): 1293-1304, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37430089

RESUMO

Transfer RNAs (tRNAs) play an essential role in mRNA translation by delivering amino acids to growing polypeptide chains. Recent data demonstrate that tRNAs can be cleaved by ribonucleases, and the resultant cleavage products, tRNA-derived small RNAs (tsRNAs), have crucial roles in physiological and pathological conditions. They are classified into more than six types according to their size and cleavage positions. Since the initial discovery of the physiological functions of tsRNAs more than a decade ago, accumulating data have demonstrated that tsRNAs play critical roles in gene regulation and tumorigenesis. These tRNA-derived molecules have various regulatory functions at the transcriptional, post-transcriptional, and translational levels. More than a hundred types of modifications are found on tRNAs, affecting the biogenesis, stability, function, and biochemical properties of tsRNA. Both oncogenic and tumor suppressor functions have been reported for tsRNAs, which play important roles in the development and progression of various cancers. Abnormal expression patterns and modification of tsRNAs are associated with various diseases, including cancer and neurological disorders. In this review, we will describe the biogenesis, versatile gene regulation mechanisms, and modification-mediated regulation mechanisms of tsRNA as well as the expression patterns and potential therapeutic roles of tsRNAs in various cancers.


Assuntos
Neoplasias , RNA de Transferência , Humanos , RNA de Transferência/genética , RNA de Transferência/metabolismo , Neoplasias/genética , Biossíntese de Proteínas , Regulação da Expressão Gênica , Biologia
14.
Exp Mol Med ; 55(5): 974-986, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37121972

RESUMO

The mesenchymal cancer phenotype is known to be clinically related to treatment resistance and a poor prognosis. We identified gene signature-based molecular subtypes of gastric cancer (GC, n = 547) based on transcriptome data and validated their prognostic and predictive utility in multiple external cohorts. We subsequently examined their associations with tumor microenvironment (TME) features by employing cellular deconvolution methods and sequencing isolated GC populations. We further performed spatial transcriptomics analysis and immunohistochemistry, demonstrating the presence of GC cells in a partial epithelial-mesenchymal transition state. We performed network and pharmacogenomic database analyses to identify TGF-ß signaling as a driver pathway and, thus, a therapeutic target. We further validated its expression in tumor cells in preclinical models and a single-cell dataset. Finally, we demonstrated that inhibition of TGF-ß signaling negated mesenchymal/stem-like behavior and therapy resistance in GC cell lines and mouse xenograft models. In summary, we show that the mesenchymal GC phenotype could be driven by epithelial cancer cell-intrinsic TGF-ß signaling and propose therapeutic strategies based on targeting the tumor-intrinsic mesenchymal reprogramming of medically intractable GC.


Assuntos
Neoplasias Gástricas , Animais , Camundongos , Humanos , Neoplasias Gástricas/patologia , Transição Epitelial-Mesenquimal/genética , Perfilação da Expressão Gênica , Transcriptoma , Modelos Animais de Doenças , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral/genética
15.
Anticancer Res ; 43(5): 1959-1965, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37097656

RESUMO

BACKGROUND/AIM: Unique cartilage matrix-associated protein (UCMA), a recently discovered vitamin K-dependent protein (VKDP) with a large number of γ-carboxyglutamic acid (Gla) residues, is associated with ectopic calcifications. Although the function of VKDPs is related to their γ-carboxylation status, the carboxylation status of UCMA in breast cancer is still unknown. Here, we investigated the inhibitory effect of UCMA with differing γ-carboxylation status on breast cancer cell lines, such as MDA-MB-231, 4T1, and E0771 cells. MATERIALS AND METHODS: Undercarboxylated UCMA (ucUCMA) was generated by mutating the γ-glutamyl carboxylase (GGCX) recognition sites. The ucUCMA and carboxylated UCMA (cUCMA) proteins were collected from culture media of HEK293-FT cells that had been transfected with mutated GGCX and wild-type UCMA expression plasmids, respectively. Boyden Transwell and colony formation assays were performed to evaluate cancer cell migration, invasion, and proliferation. RESULTS: Culture medium containing cUCMA protein inhibited the migration, invasion, and colony formation of MDA-MB-231 and 4T1 cells to a greater degree than medium containing ucUCMA protein. Significant reductions in the migration, invasion, and colony formation were also observed in cUCMA-treated E0771 cells compared to those in ucUCMA-treated cells. CONCLUSION: The inhibitory role of UCMA in breast cancer is closely related to its γ-carboxylation status. The results of this study may be a basis for the development of UCMA-based anti-cancer drugs.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Proteínas Matrilinas , Células HEK293 , Proteínas/metabolismo , Vitamina K/metabolismo , Cartilagem
16.
J Cell Physiol ; 238(5): 1006-1019, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36870066

RESUMO

The engulfment adaptor phosphotyrosine-binding domain containing 1 (GULP1) is an adaptor protein involved in the engulfment of apoptotic cells via phagocytosis. Gulp1 was first found to promote the phagocytosis of apoptotic cells by macrophages, and its role in various tissues, including neurons and ovaries, has been well studied. However, the expression and function of GULP1 in bone tissue are poorly understood. Consequently, to determine whether GULP1 plays a role in the regulation of bone remodeling in vitro and in vivo, we generated Gulp1 knockout (KO) mice. Gulp1 was expressed in bone tissue, mainly in osteoblasts, while its expression is very low in osteoclasts. Microcomputed tomography and histomorphometry analysis in 8-week-old male Gulp1 KO mice revealed a high bone mass in comparison with male wild-type (WT) mice. This was a result of decreased osteoclast differentiation and function in vivo and in vitro as confirmed by a reduced actin ring and microtubule formation in osteoclasts. Gas chromatography-mass spectrometry analysis further showed that both 17ß-estradiol (E2) and 2-hydroxyestradiol levels, and the E2/testosterone metabolic ratio, reflecting aromatase activity, were also higher in the bone marrow of male Gulp1 KO mice than in male WT mice. Consistent with mass spectrometry analysis, aromatase enzymatic activity was significantly higher in the bone marrow of male Gulp1 KO mice. Altogether, our results suggest that GULP1 deficiency decreases the differentiation and function of osteoclasts themselves and increases sex steroid hormone-mediated inhibition of osteoclast differentiation and function, rather than affecting osteoblasts, resulting in a high bone mass in male mice. To the best of our knowledge, this is the first study to explore the direct and indirect roles of GULP1 in bone remodeling, providing new insights into its regulation.


Assuntos
Aromatase , Estradiol , Osteoclastos , Animais , Masculino , Camundongos , Aromatase/genética , Aromatase/metabolismo , Osso e Ossos , Diferenciação Celular , Camundongos Knockout , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Microtomografia por Raio-X , Estradiol/metabolismo
17.
Nat Nanotechnol ; 18(4): 390-402, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36635335

RESUMO

Although conventional innate immune stimuli contribute to immune activation, they induce exhausted immune cells, resulting in suboptimal cancer immunotherapy. Here we suggest a kinetically activating nanoadjuvant (K-nanoadjuvant) that can dynamically integrate two waves of innate immune stimuli, resulting in effective antitumour immunity without immune cell exhaustion. The combinatorial code of K-nanoadjuvant is optimized in terms of the order, duration and time window between spatiotemporally activating Toll-like receptor 7/8 agonist and other Toll-like receptor agonists. K-nanoadjuvant induces effector/non-exhausted dendritic cells that programme the magnitude and persistence of interleukin-12 secretion, generate effector/non-exhausted CD8+ T cells, and activate natural killer cells. Treatment with K-nanoadjuvant as a monotherapy or in combination therapy with anti-PD-L1 or liposomes (doxorubicin) results in strong antitumour immunity in murine models, with minimal systemic toxicity, providing a strategy for synchronous and dynamic tailoring of innate immunity for enhanced cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Animais , Camundongos , Imunoterapia/métodos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/uso terapêutico , Imunidade Inata , Neoplasias/terapia
18.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38203337

RESUMO

Psoriasis is a chronic inflammatory skin disease characterized by epidermal hyperproliferation, aberrant differentiation of keratinocytes, and dysregulated immune responses. WW domain-containing oxidoreductase (WWOX) is a non-classical tumor suppressor gene that regulates multiple cellular processes, including proliferation, apoptosis, and migration. This study aimed to explore the possible role of WWOX in the pathogenesis of psoriasis. Immunohistochemical analysis showed that the expression of WWOX was increased in epidermal keratinocytes of both human psoriatic lesions and imiquimod-induced mice psoriatic model. Immortalized human epidermal keratinocytes were transduced with a recombinant adenovirus expressing microRNA specific for WWOX to downregulate its expression. Inflammatory responses were detected using Western blotting, real-time quantitative reverse transcription polymerase chain reaction (PCR), and enzyme-linked immunosorbent assay. In human epidermal keratinocytes, WWOX knockdown reduced nuclear factor-kappa B signaling and levels of proinflammatory cytokines induced by polyinosinic: polycytidylic acid [(poly(I:C)] in vitro. Furthermore, calcium chelator and protein kinase C (PKC) inhibitors significantly reduced poly(I:C)-induced inflammatory reactions. WWOX plays a role in the inflammatory reaction of epidermal keratinocytes by regulating calcium and PKC signaling. Targeting WWOX could be a novel therapeutic approach for psoriasis in the future.


Assuntos
Dermatite , Psoríase , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Inflamação , NF-kappa B , Psoríase/induzido quimicamente , Psoríase/genética , Proteínas Supressoras de Tumor/genética , Oxidorredutase com Domínios WW/genética
19.
Nutrients ; 14(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36558517

RESUMO

Hair loss remains a significant problem that is difficult to treat; therefore, there is a need to identify safe natural materials that can help patients with hair loss. We evaluated the hair anagen activation effects of limonin, which is abundant in immature citrus fruits. Limonin increased the proliferation of rat dermal papilla cells (rDPC) by changing the levels of cyclin D1 and p27, and increasing the number of BrdU-positive cells. Limonin increased autophagy by decreasing phosphorylated mammalian target of rapamycin levels and increasing the phospho-Raptor, ATG7 and LC3B. Limonin also activated the Wnt/ß-catenin pathway by increasing phospho-ß-catenin levels. XAV939, a Wnt/ß-catenin inhibitor, inhibited these limonin-induced changes, including induced autophagy, BrdU-positive cells, and cell proliferation. Limonin increased the phosphorylated AKT levels in both two-dimensional cultured rDPC and three-dimensional spheroids. Treatment with the PI3K inhibitor wortmannin inhibited limonin-induced proliferation, and disrupted other limonin-mediated changes, including decreased p27, increased BrdU-positive cells, induced autophagy, and increased ATG7 and LC3B levels. Wortmannin also inhibited limonin-induced cyclin D1 and LC3 expression in spheroids. Collectively, these results indicate that limonin can enhance anagen signaling by activating autophagy via targeting the Wnt/ß-catenin and/or PI3K/AKT pathways in rDPC, highlighting a candidate nutrient for hair loss treatment.


Assuntos
Folículo Piloso , Limoninas , Animais , Ratos , Alopecia , beta Catenina/metabolismo , Bromodesoxiuridina/metabolismo , Proliferação de Células , Células Cultivadas , Ciclina D1/metabolismo , Frutas/metabolismo , Limoninas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Via de Sinalização Wnt , Wortmanina/metabolismo , Wortmanina/farmacologia
20.
Cancers (Basel) ; 14(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36551552

RESUMO

Osteosarcoma is one of the aggressive bone tumors with numerous histologic patterns. Histopathological inspection is a crucial criterion in the medical diagnosis of Osteosarcoma. Due to the advancement of computing power and hardware technology, pathological image analysis system based on artificial intelligence (AI) were more commonly used. But classifying many intricate pathology images by hand will be challenging for pathologists. The lack of labeling data makes the system difficult to build and costly. This article designs a Honey Badger Optimization with Deep Learning based Automated Osteosarcoma Classification (HBODL-AOC) model. The HBODL-AOC technique's goal is to identify osteosarcoma's existence using medical images. In the presented HBODL-AOC technique, image preprocessing is initially performed by contrast enhancement technique. For feature extraction, the HBODL-AOC technique employs a deep convolutional neural network-based Mobile networks (MobileNet) model with an Adam optimizer for hyperparameter tuning. Finally, the adaptive neuro-fuzzy inference system (ANFIS) approach is implemented for the HBO (Honey Badger Optimization) algorithm can tune osteosarcoma classification and the membership function (MF). To demonstrate the enhanced classification performance of the HBODL-AOC approach, a sequence of simulations was performed. The extensive simulation analysis portrayed the improved performance of the HBODL-AOC technique over existing DL models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA