Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Molecules ; 29(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38930946

RESUMO

Cisplatin, a platinum-based chemotherapeutic, is effective against various solid tumors, but its use is often limited by its nephrotoxic effects. This study evaluated the protective effects of trametinib, an FDA-approved selective inhibitor of mitogen-activated protein kinase kinase 1/2 (MEK1/2), against cisplatin-induced acute kidney injury (AKI) in mice. The experimental design included four groups, control, trametinib, cisplatin, and a combination of cisplatin and trametinib, each consisting of eight mice. Cisplatin was administered intraperitoneally at a dose of 20 mg/kg to induce kidney injury, while trametinib was administered via oral gavage at 3 mg/kg daily for three days. Assessments were conducted 72 h after cisplatin administration. Our results demonstrate that trametinib significantly reduces the phosphorylation of MEK1/2 and extracellular signal-regulated kinase 1/2 (ERK1/2), mitigated renal dysfunction, and ameliorated histopathological abnormalities. Additionally, trametinib significantly decreased macrophage infiltration and the expression of pro-inflammatory cytokines in the kidneys. It also lowered lipid peroxidation by-products, restored the reduced glutathione/oxidized glutathione ratio, and downregulated NADPH oxidase 4. Furthermore, trametinib significantly inhibited both apoptosis and necroptosis in the kidneys. In conclusion, our data underscore the potential of trametinib as a therapeutic agent for cisplatin-induced AKI, highlighting its role in reducing inflammation, oxidative stress, and tubular cell death.


Assuntos
Injúria Renal Aguda , Cisplatino , Modelos Animais de Doenças , Inflamação , Estresse Oxidativo , Piridonas , Pirimidinonas , Animais , Cisplatino/efeitos adversos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Piridonas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Pirimidinonas/farmacologia , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/metabolismo , Masculino , Morte Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Túbulos Renais/patologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Citocinas/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
2.
J Clin Med ; 11(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36498769

RESUMO

Cisplatin is a chemotherapeutic agent widely used in the treatment of various cancers, but its application is often limited due to complications such as acute kidney injury (AKI). Orexins are hypothalamic neuropeptides that modulate the sleep-wake cycle, neuroendocrine function, and the autonomic nervous system. Emerging evidence suggests that orexin A (OXA) has anti-inflammatory and neuroprotective effects in animal models of neuroinflammatory diseases of the central nervous system. However, the effect of OXA on kidney diseases has not been examined. Here, we investigated whether OXA has a protective effect in a murine model of cisplatin-induced AKI. Intraperitoneal administration of OXA ameliorated renal dysfunction, and histological abnormalities in mice injected with cisplatin. OXA inhibited cisplatin-induced oxidative stress through the modulation of prooxidant and antioxidant enzymes. This peptide reduced apoptotic cell death by inhibiting the p53-mediated pathway in mice injected with cisplatin. OXA also alleviated cisplatin-induced cytokine production and macrophage infiltration into injured kidneys. Taken together, these results showed that OXA ameliorates cisplatin-induced AKI via antioxidant, anti-apoptotic, and anti-inflammatory actions. This peptide could be a potential therapeutic agent for cisplatin-induced AKI.

3.
Comput Math Methods Med ; 2022: 7502504, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276999

RESUMO

Melanoma is a dangerous form of skin cancer that results in the demise of patients at the developed stage. Researchers have attempted to develop automated systems for the timely recognition of this deadly disease. However, reliable and precise identification of melanoma moles is a tedious and complex activity as there exist huge differences in the mass, structure, and color of the skin lesions. Additionally, the incidence of noise, blurring, and chrominance changes in the suspected images further enhance the complexity of the detection procedure. In the proposed work, we try to overcome the limitations of the existing work by presenting a deep learning (DL) model. Descriptively, after accomplishing the preprocessing task, we have utilized an object detection approach named CornerNet model to detect melanoma lesions. Then the localized moles are passed as input to the fuzzy K-means (FLM) clustering approach to perform the segmentation task. To assess the segmentation power of the proposed approach, two standard databases named ISIC-2017 and ISIC-2018 are employed. Extensive experimentation has been conducted to demonstrate the robustness of the proposed approach through both numeric and pictorial results. The proposed approach is capable of detecting and segmenting the moles of arbitrary shapes and orientations. Furthermore, the presented work can tackle the presence of noise, blurring, and brightness variations as well. We have attained the segmentation accuracy values of 99.32% and 99.63% over the ISIC-2017 and ISIC-2018 databases correspondingly which clearly depicts the effectiveness of our model for the melanoma mole segmentation.


Assuntos
Melanoma , Toupeiras , Neoplasias Cutâneas , Humanos , Animais , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Melanoma/diagnóstico por imagem , Análise por Conglomerados , Neoplasias Cutâneas/diagnóstico por imagem , Dermoscopia/métodos
4.
Org Biomol Chem ; 20(35): 6994-7000, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35993969

RESUMO

N-Substituted peptides, such as peptoids and ß-peptoids, have been reported to have unique structures with diverse functions, like catalysis and manipulation of biomolecular functions. Recently, the preorganization of monomer shape by restricting bond rotations about all backbone dihedral angles has been demonstrated to be useful for de novo design of peptoid structures. Such design strategies are hitherto unexplored for ß-peptoids; to date, no preorganized ß-peptoid monomers have been reported. Here, we report the first design strategy for ß-peptoids, in which all four backbone dihedral angles (ω, ϕ, θ, ψ) are rotationally restricted on a per-residue basis. The introduction of a cyclopentane constraint realized the preorganized monomer structure and led to a ß-peptoid with a stable twisted strand shape.


Assuntos
Peptoides , Ciclopentanos , Peptídeos/química , Peptoides/química
5.
Metabolomics ; 18(7): 48, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35781849

RESUMO

INTRODUCTION: Rheumatoid arthritis (RA) and osteoarthritis (OA) are clinicopathologically different. OBJECTIVES: We aimed to assess the feasibility of metabolomics in differentiating the metabolite profiles of synovial fluid between RA and OA using gas chromatography/time-of-flight mass spectrometry. METHODS: We first compared the global metabolomic changes in the synovial fluid of 19 patients with RA and OA. Partial least squares-discriminant, hierarchical clustering, and univariate analyses were performed to distinguish metabolites of RA and OA. These findings were then validated using synovial fluid samples from another set of 15 patients with RA and OA. RESULTS: We identified 121 metabolites in the synovial fluid of the first 19 samples. The score plot of PLS-DA showed a clear separation between RA and OA. Twenty-eight crucial metabolites, including hypoxanthine, xanthine, adenosine, citrulline, histidine, and tryptophan, were identified to be capable of distinguishing RA metabolism from that of OA; these were found to be associated with purine and amino acid metabolism. CONCLUSION: Our results demonstrated that metabolite profiling of synovial fluid could clearly discriminate between RA and OA, suggesting that metabolomics may be a feasible tool to assist in the diagnosis and advance the comprehension of pathological processes for diseases.


Assuntos
Artrite Reumatoide , Osteoartrite , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Metabolômica/métodos , Osteoartrite/metabolismo , Líquido Sinovial/metabolismo
6.
Molecules ; 26(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34946671

RESUMO

Septic acute kidney injury (AKI) is an important medical problem worldwide, but current treatments are limited. During sepsis, lipopolysaccharide (LPS) activates various signaling pathways involved in multiorgan failure. Carnosic acid is a natural phenolic diterpene and has multiple bioactivities, such as anti-tumor, anti-inflammatory, and anti-oxidative effects. However, the effect of carnosic acid on septic AKI has not been explored. Therefore, this study aimed to determine whether carnosic acid has a therapeutic effect on LPS-induced kidney injury. Administration of carnosic acid after LPS injection ameliorated histological abnormalities and renal dysfunction. Cytokine production, immune cell infiltration, and nuclear factor-κB activation after LPS injection were also alleviated by carnosic acid. The compound suppressed oxidative stress with the modulation of pro-oxidant and antioxidant enzymes. Tubular cell apoptosis and caspase-3 activation were also inhibited by carnosic acid. These data suggest that carnosic acid ameliorates LPS-induced AKI via inhibition of inflammation, oxidative stress, and apoptosis and could serve as a useful treatment agent for septic AKI.


Assuntos
Abietanos/farmacologia , Injúria Renal Aguda , Lipopolissacarídeos/toxicidade , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/prevenção & controle , Animais , Masculino , Camundongos
7.
Molecules ; 25(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287398

RESUMO

Sepsis is the major cause of acute kidney injury (AKI) in severely ill patients, but only limited therapeutic options are available. During sepsis, lipopolysaccharide (LPS), an endotoxin derived from bacteria, activates signaling cascades involved in inflammatory responses and tissue injury. Apamin is a component of bee venom and has been shown to exert antioxidative, antiapoptotic, and anti-inflammatory activities. However, the effect of apamin on LPS-induced AKI has not been elucidated. Here, we show that apamin treatment significantly ameliorated renal dysfunction and histological injury, especially tubular injury, in LPS-injected mice. Apamin also suppressed LPS-induced oxidative stress through modulating the expression of nicotinamide adenine dinucleotide phosphate oxidase 4 and heme oxygenase-1. Moreover, tubular cell apoptosis with caspase-3 activation in LPS-injected mice was significantly attenuated by apamin. Apamin also inhibited cytokine production and immune cell accumulation, suppressed toll-like receptor 4 pathway, and downregulated vascular adhesion molecules. Taken together, these results suggest that apamin ameliorates LPS-induced renal injury through inhibiting oxidative stress, apoptosis of tubular epithelial cells, and inflammation. Apamin might be a potential therapeutic option for septic AKI.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Antioxidantes/fisiologia , Apamina/farmacologia , Apoptose/efeitos dos fármacos , Inflamação/tratamento farmacológico , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Inflamação/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Sepse/tratamento farmacológico , Sepse/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Am J Emerg Med ; 38(10): 2028-2033, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33142169

RESUMO

INTRODUCTION: Emergency department (ED) crowding is associated with increased mortality and delays in care. We developed a rapid admission pathway targeting critically-ill trauma patients in the ED. This study investigates the sustainability of the pathway, as well as its effectiveness in times of increased ED crowding. MATERIALS & METHODS: This was a retrospective cohort study assessing the admission of critically-ill trauma patients with and without the use of a rapid admission pathway from 2013 to 2018. We accessed demographic and clinical data from trauma registry data and ED capacity logs. Statistical analyses included univariate and multivariate testing. RESULTS: A total of 1700 patients were included. Of this cohort, 434 patients were admitted using the rapid admission pathway, whereas 1266 were admitted using the traditional pathway. In bivariate analysis, mean ED LOS was 1.54 h (95% Confidence Interval [CI]: 1.41, 1.66) with the rapid pathway, compared with 5.88 h (95% CI: 5.64, 6.12) with the traditional pathway (p < 0.01). We found no statistically significant relationship between rapid admission pathway use and survival to hospital discharge. During times of increased crowding, rapid pathway use continued to be associated with reduction in ED LOS (p < 0.01). The reduction in ED LOS was sustained when comparing initial results (2013-2014) to recent data (2015-2018). CONCLUSION: This study found that a streamlined process to admit critically-ill trauma patients is sustainable and associated with reduction in ED LOS. As ED crowding remains pervasive, these findings support restructured care processes to limit prolonged ED boarding times for critically-ill patients.


Assuntos
Aglomeração , Admissão do Paciente/normas , Fatores de Tempo , Ferimentos e Lesões/complicações , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Estado Terminal/terapia , Serviço Hospitalar de Emergência/organização & administração , Serviço Hospitalar de Emergência/estatística & dados numéricos , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Tempo de Internação/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Admissão do Paciente/tendências , Estudos Retrospectivos , Estatísticas não Paramétricas
9.
FASEB J ; 34(1): 333-349, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914629

RESUMO

Kidney fibrosis is a common process of various kidney diseases leading to end-stage renal failure irrespective of etiology. Myofibroblasts are crucial mediators in kidney fibrosis through production of extracellular matrix (ECM), but their origin has not been clearly identified. Many study proposed that epithelial and endothelial cells become myofibroblasts by epithelial dedifferentiation and endothelial-mesenchymal transition (EndoMT). TGF-ß1/Smad signaling plays a crucial role in partly epithelial-mensencymal transition (EMT) and EndoMT. Thus, we designed the TGF-ß1/Smad oligodeoxynucleotide (ODN), a synthetic short DNA containing complementary sequence for Smad transcription factor and TGF-ß1 mRNA. Therefore, this study investigated the anti-fibrotic effect of synthetic TGF-ß1/Smad ODN on UUO-induced kidney fibrosis in vivo model and TGF-ß1-induced in vitro model. To examine the effect of TGF-ß1/Smad ODN, we performed various experiments to evaluate kidney fibrosis. The results showed that UUO induced inflammation, ECM accumulation, epithelial dedifferentiation and EndoMT processes, and tubular atrophy. However, synthetic TGF-ß1/Smad ODN significantly suppressed UUO-induced fibrosis. Furthermore, synthetic ODN attenuated TGF-ß1-induced epithelial dedifferentiation and EndoMT program via blocking TGF-ß1/Smad signaling. In conclusion, this study demonstrated that administration of synthetic TGF-ß1/Smad ODN attenuates kidney fibrosis, epithelial dedifferentiation, and EndoMT processes. The findings propose the possibility of synthetic ODN as a new effective therapeutic tool for kidney fibrosis.


Assuntos
Desdiferenciação Celular , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal , Fibrose/prevenção & controle , Nefropatias/prevenção & controle , Oligodesoxirribonucleotídeos/farmacologia , Proteínas Smad/genética , Fator de Crescimento Transformador beta1/genética , Animais , Células Epiteliais/metabolismo , Fibrose/genética , Fibrose/patologia , Técnicas In Vitro , Nefropatias/genética , Nefropatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obstrução Ureteral/genética , Obstrução Ureteral/patologia , Obstrução Ureteral/prevenção & controle
10.
Biomolecules ; 10(1)2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31861726

RESUMO

Melatonin, a pineal hormone, is well known to regulate the sleep-wake cycle. Besides, the hormone has been shown to display pleiotropic effects arising from its powerful anti-oxidant and anti-inflammatory activities. Recent studies have reported that melatonin exerts protective effects in animal models of kidney disease. However, the potential effects of melatonin on aristolochic acid (AA)-induced nephropathy (AAN) have not yet been investigated. Here, we found that the administration of melatonin ameliorated AA-induced renal dysfunction, as evidenced by decreased plasma levels of blood urea nitrogen and creatinine and histopathological abnormalities such as tubular dilatation and cast formation. The upregulation of tubular injury markers after AA injection was reversed by melatonin. Melatonin also suppressed AA-induced oxidative stress, as evidenced by the downregulation of 4-hydroxynonenal and reduced level of malondialdehyde, and modulated expression of pro-oxidant and antioxidant enzymes. In addition, p53-dependent apoptosis of tubular epithelial cells, infiltration of macrophages and CD4+ T cells into damaged kidneys, and renal expression of cytokines and chemokines were inhibited by melatonin. Moreover, melatonin attenuated AA-induced tubulointerstitial fibrosis through suppression of the tumor growth factor-ß/Smad signaling pathway. These results suggest that melatonin might be a potential therapeutic agent for AAN.


Assuntos
Ácidos Aristolóquicos/efeitos adversos , Nefropatias/prevenção & controle , Melatonina/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Citocinas/genética , Citocinas/metabolismo , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Nefropatias/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
11.
Biology (Basel) ; 8(4)2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31717992

RESUMO

Recent studies showed that melatonin, a well-known pineal hormone that modulates the circadian rhythm, exerts beneficial effects against liver fibrosis. However, mechanisms for its protective action against the fibrotic processes remain incompletely understood. Here, we aimed to explore the effects of the hormone on transforming growth factor-ß1 (TGF-ß1)-stimulated epithelial-mesenchymal transition (EMT) in AML12 hepatocytes. Pretreatment with melatonin dose-dependently reversed downregulation of an epithelial marker and upregulation of mesenchymal markers after TGF-ß1 stimulation. Additionally, melatonin dose-dependently suppressed an increased phosphorylation of Smad2/3 after TGF-ß1 treatment. Besides the canonical Smad signaling pathway, an increase in phosphorylation of extracellular signal-regulated kinase 1/2 and p38 was also dose-dependently attenuated by melatonin. The suppressive effect of the hormone on EMT stimulated by TGF-ß1 was not affected by luzindole, an antagonist of melatonin membrane receptors, suggesting that its membrane receptors are not required for the inhibitory action of melatonin. Moreover, melatonin suppressed elevation of intracellular reactive oxygen species (ROS) levels in TGF-ß1-treated cells. Finally, TGF-ß1-stimulated EMT was also inhibited by the antioxidant N-acetylcysteine. Collectively, these results suggest that melatonin prevents TGF-ß1-stimulated EMT through suppression of Smad and mitogen-activated protein kinase signaling cascades by deactivating ROS-dependent mechanisms in a membrane receptor-independent manner.

12.
Appl Microbiol Biotechnol ; 103(19): 8145-8155, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31482283

RESUMO

The environmental accumulation of polycyclic aromatic hydrocarbons (PAHs) is of great concern due to potential carcinogenic and mutagenic risks, as well as their resistance to remediation. While many fungi have been reported to break down PAHs in environments, the details of gene-based metabolic pathways are not yet comprehensively understood. Specifically, the genome-scale transcriptional responses of fungal PAH degradation have rarely been reported. In this study, we report the genomic and transcriptomic basis of PAH bioremediation by a potent fungal degrader, Dentipellis sp. KUC8613. The genome size of this fungus was 36.71 Mbp long encoding 14,320 putative protein-coding genes. The strain efficiently removed more than 90% of 100 mg/l concentration of PAHs within 10 days. The genomic and transcriptomic analysis of this white rot fungus highlights that the strain primarily utilized non-ligninolytic enzymes to remove various PAHs, rather than typical ligninolytic enzymes known for playing important roles in PAH degradation. PAH removal by non-ligninolytic enzymes was initiated by both different PAH-specific and common upregulation of P450s, followed by downstream PAH-transforming enzymes such as epoxide hydrolases, dehydrogenases, FAD-dependent monooxygenases, dioxygenases, and glycosyl- or glutathione transferases. Among the various PAHs, phenanthrene induced a more dynamic transcriptomic response possibly due to its greater cytotoxicity, leading to highly upregulated genes involved in the translocation of PAHs, a defense system against reactive oxygen species, and ATP synthesis. Our genomic and transcriptomic data provide a foundation of understanding regarding the mycoremediation of PAHs and the application of this strain for polluted environments.


Assuntos
Basidiomycota/genética , Basidiomycota/metabolismo , Perfilação da Expressão Gênica , Genômica , Redes e Vias Metabólicas/genética , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Biotransformação
13.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(12): 158525, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31513923

RESUMO

Clear cell renal cell carcinoma (ccRCC), which accounts for the majority of kidney cancer, is known to accumulate excess cholesterol. However, the mechanism and functional significance of the lipid accumulation for development of the cancer remains obscure. In this study, we analyzed 42 primary ccRCC samples, and determined that cholesterol levels of ~ 70% of the tumors were at least two-fold higher than that of benign kidney tissues. Compared to tumors without cholesterol accumulation, those containing excess cholesterol expressed higher levels of scavenger receptor BI (SR-B1), a receptor for uptake of HDL-associated cholesterol, but not genes involved in cholesterol synthesis and uptake of LDL-associated cholesterol. To further determine the roles of sterol accumulation for cancer development, we implanted ccRCC from patients into mouse kidneys using a mouse ccRCC xenograft model. Feeding mice with probucol, a compound lowing HDL-cholesterol, markedly reduced levels of cholesterol in tumors containing excess cholesterol. This treatment, however, did not affect growth of these tumors. Our study suggests that cholesterol overaccumulation in ccRCC is the consequence of increased uptake of HDL-cholesterol as a result of SR-B1 overexpression, but the lipid accumulation by itself may not play a significant role in progression of the cancer.


Assuntos
Carcinoma de Células Renais/metabolismo , HDL-Colesterol/metabolismo , Neoplasias Renais/metabolismo , Animais , Transporte Biológico , Carcinoma de Células Renais/patologia , Humanos , Rim/metabolismo , Rim/patologia , Neoplasias Renais/patologia , Metabolismo dos Lipídeos , Lipidômica , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID
14.
Food Chem Toxicol ; 129: 344-353, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31055000

RESUMO

Porphyromonas gingivalis (P. gingivalis) is one of the major periodontal pathogens leading to inflammation and alveolar bone resorption. Bone resorption is induced by osteoclasts, which are multinucleated giant cells. Osteoclastic bone resorption is mediated by enhanced receptor activator of nuclear factor-kappa B ligand (RANKL) signaling. Therefore, the down-regulation of RANKL downstream signals is regarded as an effective therapeutic target in the treatment of bone loss-associated disorders. The aim of this study was to evaluate whether purified bee venom (BV) could attenuate P. gingivalis-induced inflammatory periodontitis and RANKL-induced osteoclast differentiation. Inflammatory periodontitis induced by P. gingivalis increased alveolar bone resorption and increased expression of TNF-α and IL-1ß, while BV treatment resulted in decreased bone loss and pro-inflammatory cytokines. Similarly, RANKL-induced multinucleated osteoclast differentiation and osteoclast-specific gene expression, such as nuclear factor of activated T cells 1 (NFATc1), cathepsin K, tartrate-resistant acid phosphatase (TRAP), and integrin αvß3 were significantly suppressed by treatment with BV. We show that BV reduces P. gingivalis-induced inflammatory bone loss-related periodontitis in vivo and RANKL-induced osteoclast differentiation, activation, and function in vitro. These results suggest that BV exerts positive effects on inflammatory periodontitis associated osteoclastogenesis.


Assuntos
Venenos de Abelha/toxicidade , Reabsorção Óssea , Diferenciação Celular/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Porphyromonas gingivalis/efeitos dos fármacos , Ligante RANK/fisiologia , Animais , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Osteoclastos/citologia , Porphyromonas gingivalis/fisiologia , Células RAW 264.7
15.
Molecules ; 23(8)2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30103395

RESUMO

Hepatic fibrosis is the wound-healing process of chronic hepatic disease that leads to the end-stage of hepatocellular carcinoma and demolition of hepatic structures. Epithelial⁻mesenchymal transition (EMT) has been identified to phenotypic conversion of the epithelium to mesenchymal phenotype that occurred during fibrosis. Smad decoy oligodeoxynucleotide (ODN) is a synthetic DNA fragment containing a complementary sequence of Smad transcription factor. Thus, this study evaluated the antifibrotic effects of Smad decoy ODN on carbon tetrachloride (CCl4)-induced hepatic fibrosis in mice. As shown in histological results, CCl4 treatment triggered hepatic fibrosis and increased Smad expression. On the contrary, Smad decoy ODN administration suppressed fibrogenesis and EMT process. The expression of Smad signaling and EMT-associated protein was markedly decreased in Smad decoy ODN-treated mice compared with CCl4-injured mice. In conclusion, these data indicate the practicability of Smad decoy ODN administration for preventing hepatic fibrosis and EMT processes.


Assuntos
Cirrose Hepática/patologia , Oligodesoxirribonucleotídeos/farmacologia , Proteínas Smad/genética , Animais , Sequência de Bases , Tetracloreto de Carbono/efeitos adversos , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Matriz Extracelular/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Masculino , Camundongos , Oligodesoxirribonucleotídeos/síntese química , Oligodesoxirribonucleotídeos/química , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/química , Proteínas Smad/metabolismo , Transfecção
16.
Mol Med Rep ; 18(4): 3711-3718, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30132547

RESUMO

Atopic dermatitis (AD) is a chronic skin inflammatory disease characterized by recurrent eczema and itching. It is caused by a poorly controlled immune response and damage to the skin barrier. Purified bee venom (BV) is a natural toxin produced by honeybees (Apis mellifera L.), and is well known for its anti­inflammatory, analgesic and anti­cancer effects against various types of disease. However, treatment strategies based on anti­inflammatory properties have not been adequately studied in AD. Thus, the present study examined the progression of AD­like skin lesions induced by ovalbumin (OVA) and the mechanism of action of BV. BV, administered by intraperitoneal inoculation, was observed to reduce the symptoms of AD, in addition to the serum immunoglobulin E levels, according to dorsal skin thickness and histopathologic analysis. The treatment also inhibited the infiltration of eosinophils and mast cells. These results suggested that it is possible to develop novel AD alternative therapy using BV by effectively suppressing allergic skin inflammation in AD.


Assuntos
Anti-Inflamatórios/uso terapêutico , Venenos de Abelha/uso terapêutico , Dermatite Atópica/tratamento farmacológico , Pele/efeitos dos fármacos , Animais , Abelhas , Dermatite Atópica/sangue , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/patologia , Modelos Animais de Doenças , Feminino , Imunoglobulina E/análise , Imunoglobulina E/sangue , Mastócitos/efeitos dos fármacos , Mastócitos/patologia , Camundongos Endogâmicos BALB C , Ovalbumina , Pele/patologia
17.
J Biotechnol ; 272-273: 7-13, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29499237

RESUMO

Lipid production by oleaginous Yarrowia lipolytica depends highly on culture environments, such as carbon sources, carbon/nitrogen (C/N) ratios, types of media, and cellular growth phases. In this study, the effects of media and carbon sources on lipid and metabolite production were investigated by profiling fatty acids and intracellular metabolites of Y. lipolytica grown in various media. The highest total fatty acid yield 114.04 ±â€¯6.23 mg/g dry cell weight was achieved by Y. lipolytica grown in minimal medium with glycerol (SCG) in the exponential phase. The high lipid production by Y. lipolytica in SCG was presumed to be due to the higher C/N ratio in SCG than in the complex media. Moreover, glycerol promoted lipid production better than glucose in both complex and minimal media because glycerol can easily incorporate into the core of triglycerides. Metabolite profiling revealed that levels of long-chain fatty acids, such as stearic acid, palmitic acid, and arachidic acid, increased in SCG medium. Meanwhile, in complex media supplemented with either glucose or glycerol, levels of amino acids, such as cysteine, methionine, and glycine, highly increased. This metabolomic approach could be applied to modulate the global metabolic network of Y. lipolytica for producing lipids and other valuable products.


Assuntos
Meios de Cultura , Ácidos Graxos/metabolismo , Glicerol/metabolismo , Yarrowia/metabolismo , Esterificação , Glucose/metabolismo , Metabolômica
18.
Molecules ; 23(2)2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29401750

RESUMO

Periodontitis is a chronic inflammatory disease that contributes to the destruction of the gingiva. Porphyromonas gingivalis (P. gingivalis) can cause periodontitis via its pathogenic lipopolysaccharides (LPS). Melittin, a major component of bee venom, is known to have anti-inflammatory and antibacterial effects. However, the role of melittin in the inflammatory response has not been elucidated in periodontitis-like human keratinocytes. Therefore, we investigated the anti-inflammatory effects of melittin on a P. gingivalis LPS (PgLPS)-treated HaCaT human keratinocyte cell line. The cytotoxicity of melittin was measured using a human keratinocyte cell line, HaCaT, and a Cell Counting Kit-8. The effect of melittin on PgLPS-induced inflammation was determined with Western blot, real-time quantitative PCT, and immunofluorescence. PgLPS increased the expression of toll-like receptor (TLR) 4 and proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-8, and interferon-γ (IFN-γ). Moreover, PgLPS induced activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), extracellular signal-regulated kinase (ERK), and protein kinase B/Akt. Melittin also inhibited the expression of proinflammatory cytokines by suppressing the activation of the NF-κB signaling pathway, ERK, and Akt. Melittin attenuates the PgLPS-induced inflammatory response and could therefore be applied in the treatment of periodontitis for anti-inflammatory effects.


Assuntos
Anti-Inflamatórios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Lipopolissacarídeos/antagonistas & inibidores , Meliteno/farmacologia , Porphyromonas gingivalis/metabolismo , Linhagem Celular Transformada , Regulação da Expressão Gênica/imunologia , Humanos , Interferon gama/genética , Interferon gama/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-8/genética , Interleucina-8/imunologia , Queratinócitos/imunologia , Queratinócitos/patologia , Lipopolissacarídeos/isolamento & purificação , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/imunologia , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/imunologia , NF-kappa B/genética , NF-kappa B/imunologia , Porphyromonas gingivalis/patogenicidade , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Transdução de Sinais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
19.
Joint Bone Spine ; 85(3): 337-343, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28549946

RESUMO

OBJECTIVES: Although many diagnostic criteria of Behcet's disease (BD) have been developed and revised by experts, diagnosing BD is still complicated and challenging. No metabolomic studies on serum have been attempted to improve the diagnosis and to identify potential biomarkers of BD. The purposes of this study were to investigate distinctive metabolic changes in serum samples of BD patients and to identify metabolic candidate biomarkers for reliable diagnosis of BD using the metabolomics platform. METHODS: Metabolomic profiling of 90 serum samples from 45 BD patients and 45 healthy controls (HCs) were performed via gas chromatography with time-of-flight mass spectrometry (GC/TOF-MS) with multivariate statistical analyses. RESULTS: A total of 104 metabolites were identified from samples. The serum metabolite profiles obtained from GC/TOF-MS analysis can distinguish BD patients from HC group in discovery set. The variation values of the partial least squared-discrimination analysis (PLS-DA) model are R2X of 0.246, R2Y of 0.913 and Q2 of 0.852, respectively, indicating strong explanation and prediction capabilities of the model. A panel of five metabolic biomarkers, namely, decanoic acid, fructose, tagatose, linoleic acid and oleic acid were selected and adequately validated as putative biomarkers of BD (sensitivity 100%, specificity 97.1%, area under the curve 0.998) in the discovery set and independent set. The PLS_DA model showed clear discrimination of BD and HC groups by the five metabolic biomarkers in independent set. CONCLUSIONS: This is the first report on characteristic metabolic profiles and potential metabolite biomarkers in serum for reliable diagnosis of BD using GC/TOF-MS.


Assuntos
Síndrome de Behçet/sangue , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metaboloma , Metabolômica/métodos , Adulto , Síndrome de Behçet/diagnóstico , Biomarcadores/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC , Valores de Referência , Reprodutibilidade dos Testes , República da Coreia , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Adulto Jovem
20.
Int J Mol Sci ; 18(11)2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29099052

RESUMO

Diagnosing Behcet's disease (BD) is challenging because of the lack of a diagnostic biomarker. The purposes of this study were to investigate distinctive metabolic changes in urine samples of BD patients and to identify urinary metabolic biomarkers for diagnosis of BD using gas chromatography/time-of-flight-mass spectrometry (GC/TOF-MS). Metabolomic profiling of urine samples from 44 BD patients and 41 healthy controls (HC) were assessed using GC/TOF-MS, in conjunction with multivariate statistical analysis. A total of 110 urinary metabolites were identified. The urine metabolite profiles obtained from GC/TOF-MS analysis could distinguish BD patients from the HC group in the discovery set. The parameter values of the orthogonal partial least squared-discrimination analysis (OPLS-DA) model were R²X of 0.231, R²Y of 0.804, and Q² of 0.598. A biomarker panel composed of guanine, pyrrole-2-carboxylate, 3-hydroxypyridine, mannose, l-citrulline, galactonate, isothreonate, sedoheptuloses, hypoxanthine, and gluconic acid lactone were selected and adequately validated as putative biomarkers of BD (sensitivity 96.7%, specificity 93.3%, area under the curve 0.974). OPLS-DA showed clear discrimination of BD and HC groups by a biomarker panel of ten metabolites in the independent set (accuracy 88%). We demonstrated characteristic urinary metabolic profiles and potential urinary metabolite biomarkers that have clinical value in the diagnosis of BD using GC/TOF-MS.


Assuntos
Síndrome de Behçet/metabolismo , Síndrome de Behçet/urina , Metaboloma , Adulto , Síndrome de Behçet/diagnóstico , Biomarcadores/metabolismo , Biomarcadores/urina , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA