Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Prog Neurobiol ; 204: 102110, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34166773

RESUMO

Mitochondrial dysfunction is associated with neuronal damage in Huntington's disease (HD), but the precise mechanism of mitochondria-dependent pathogenesis is not understood yet. Herein, we found that colocalization of XIAP and p53 was prominent in the cytosolic compartments of normal subjects but reduced in HD patients and HD transgenic animal models. Overexpression of mutant Huntingtin (mHTT) reduced XIAP levels and elevated mitochondrial localization of p53 in striatal cells in vitro and in vivo. Interestingly, XIAP interacted directly with the C-terminal domain of p53 and decreased its stability via autophagy. Overexpression of XIAP prevented mitochondrially targeted-p53 (Mito-p53)-induced mitochondrial oxidative stress and striatal cell death, whereas, knockdown of XIAP exacerbated Mito-p53-induced neuronal damage in vitro. In vivo transduction of AAV-shRNA XIAP in the dorsal striatum induced rapid onset of disease and reduced the lifespan of HD transgenic (N171-82Q) mice compared to WT littermate mice. XIAP dysfunction led to ultrastructural changes of the mitochondrial cristae and nucleus morphology in striatal cells. Knockdown of XIAP exacerbated neuropathology and motor dysfunctions in N171-82Q mice. In contrast, XIAP overexpression improved neuropathology and motor behaviors in both AAV-mHTT-transduced mice and N171-82Q mice. Our data provides a molecular and pathological mechanism that deregulation of XIAP triggers mitochondria dysfunction and other neuropathological processes via the neurotoxic effect of p53 in HD. Together, the XIAP-p53 pathway is a novel pathological marker and can be a therapeutic target for improving the symptoms in HD.


Assuntos
Doença de Huntington , Animais , Corpo Estriado , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Proteína Supressora de Tumor p53/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética
2.
Biochem Biophys Rep ; 25: 100871, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33367116

RESUMO

Human prostaglandin E2 receptor 4 (EP4) is one of the four subtypes of prostaglandin E2 (PGE2) receptors and belongs to the rhodopsin-type G protein-coupled receptor (GPCR) family. Particularly, EP4 is expressed in various cancer cells and is involved in cancer-cell proliferation by a G protein signaling cascade. To prepare an active form of EP4 for biochemical characterization and pharmaceutical application, this study designed a recombinant protein comprising human EP4 fused to the P9 protein (a major envelope protein of phi6 phage) and overexpressed the P9-EP4 fusion protein in the membrane fraction of E. coli. The solubilized P9-EP4 with sarkosyl (a strong anionic detergent) was purified by affinity chromatography. The purified protein was stabilized with amphiphilic polymers derived from poly-γ-glutamate. The polymer-stabilized P9-EP4 showed specific interaction with the alpha subunits of Gs or Gi proteins, and a high content of α-helical structure by a circular dichroism spectroscopy. Furthermore, the polymer-stabilized P9-EP4 showed strong heat resistance compared with P9-EP4 in detergents. The functional preparation of EP4 and its stabilization with amphiphilic polymers could facilitate both the biochemical characterization and pharmacological applications targeting EP4.

3.
Oncol Lett ; 13(5): 3681-3687, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28521470

RESUMO

Human ribosomal protein S3 (hRpS3) is a component of the 40S ribosomal subunit that associated in protein synthesis. hRpS3 has additional ribosomal functions such as DNA repair, transcription, metastasis, and apoptosis via interaction with numerous signaling molecules and has different modifications. Cyclin-dependent kinases (CDKs) are heterodimeric serine/threonine protein kinases that regulate cell cycle progression. Among its members, the Cdk1-cyclin B complex is known to control cell progression in the G2/M phase, while Cdk2-cyclin E/A complexes function in G1/S and S/G2 transition. In our previous study, we observed interaction between hRpS3 and Cdk1. The present study investigated the interaction between hRpS3 and Cdk2. Cdk2 phosphorylated hRps3 at amino acid residues S6 and T221 during the S-phase. Furthermore, hRpS3 knockdown delayed cell cycle progression by modulating the expression of cell cycle-related proteins, including cyclin B1 and cyclin E1. These findings suggest that hRpS3 is involved in Cdk2-mediated cell cycle regulation.

4.
Eur J Med Chem ; 101: 754-68, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26218653

RESUMO

New 2-amido and ureido quinoline derivatives substituted with 2-N-methylamido-pyridin-4-yloxy group at the 5-position of quinoline (18 final compounds) have been designed and synthesized as anticancer sorafenib congeners. Among the synthesized derivatives, fourteen compounds were selected for evaluation of their antiproliferative activity over a panel of 60 cancer cell lines at a single dose concentration of 10 µM at National Cancer Institute (NCI, USA). Four compounds, 9b-d and 9f showed promising mean growth inhibitions and thus were further tested at five-dose testing mode to determine their IC50 values. The data revealed that 2,4-difluorophenyl (9b) and 4-chloro-3-trifluoromethylphenyl (9d) urea compounds are the most active derivatives with significant efficacies and superior potencies than sorafenib in 36 and 12 cancer cell lines, respectively, belonging particularly to renal carcinoma cell (RCC), ovarian, and non small cell lung cancer (NSCL). Compound 9b and 9d were found to be six and two times more potent than sorafenib against A498 RCC line, with IC50 values of 0.42 µM and 1.36 µM, respectively. Accordingly, compound 9d was screened over a panel of 41 oncogenic kinases at a single dose concentration of 10 µM to profile its kinase inhibitory activity. Interestingly, the compound showed highly selective inhibitory activities ( 81.8% and 96.3%) against BRAF(V600E) and C-RAF kinases with IC50 values of 316 nM and 61 nM, respectively. In addition, molecular docking, cell cycle analysis, compliance to Lipinski's rule of five, and in silico toxicity assessment have been reported.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Ácidos Picolínicos/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Quinolinas/farmacologia , Amidas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade
5.
Nat Commun ; 5: 3351, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24548998

RESUMO

Adenylate kinase 2 (AK2), which balances adenine nucleotide pool, is a multi-functional protein. Here we show that AK2 negatively regulates tumour cell growth. AK2 forms a complex with dual-specificity phosphatase 26 (DUSP26) phosphatase and stimulates DUSP26 activity independently of its AK activity. AK2/DUSP26 phosphatase protein complex dephosphorylates fas-associated protein with death domain (FADD) and regulates cell growth. AK2 deficiency enhances cell proliferation and induces tumour formation in a xenograft assay. This anti-growth function of AK2 is associated with its DUSP26-stimulating activity. Downregulation of AK2 is frequently found in tumour cells and human cancer tissues showing high levels of phospho-FADD(Ser194). Moreover, reconstitution of AK2 in AK2-deficient tumour cells retards both cell proliferation and tumourigenesis. Consistent with this, AK2(+/-) mouse embryo fibroblasts exhibit enhanced cell proliferation with a significant alteration in phospho-FADD(Ser191). These results suggest that AK2 is an associated activator of DUSP26 and suppresses cell proliferation by FADD dephosphorylation, postulating AK2 as a negative regulator of tumour growth.


Assuntos
Adenilato Quinase/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Adenilato Quinase/genética , Animais , Linhagem Celular , Proliferação de Células/genética , Proliferação de Células/fisiologia , Fosfatases de Especificidade Dupla/genética , Eletroforese em Gel Bidimensional , Proteína de Domínio de Morte Associada a Fas/genética , Proteína de Domínio de Morte Associada a Fas/metabolismo , Células HeLa , Humanos , Técnicas In Vitro , Células MCF-7 , Masculino , Camundongos , Camundongos Nus , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosforilação , Espectrometria de Massas em Tandem , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Biosci ; 35(2): 241-8, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20689180

RESUMO

The antioxidant protein, adhesin thiol peroxidase (HpTpx or HP0390), plays an important role in enabling Helicobacter pylori to survive gastric oxidative stress. The bacterium colonizes the host stomach and produces gastric cancer. However, little information is available about the biochemical characteristics of HpTpx. We expressed recombinant HpTpx in Escherichia coli, purified to homogeneity, and characterized it. The results showed that HpTpx existed in a monomeric hydrodynamic form and the enzyme fully retained its peroxidase and antioxidant activities. The catalytic reaction of the enzyme was similar to an atypical 2-cysteine peroxiredoxin (Prx). The conformation of the enzyme was observed in the presence and absence of dithiothreitol (DTT); similar to other known thiol peroxidases, conformational change was observed in HpTpx by the addition of DTT.


Assuntos
Proteínas de Bactérias , Escherichia coli/enzimologia , Helicobacter pylori/enzimologia , Peroxidases , Antioxidantes/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ditiotreitol/química , Escherichia coli/genética , Helicobacter pylori/genética , Dados de Sequência Molecular , Estresse Oxidativo , Peroxidases/química , Peroxidases/genética , Peroxidases/metabolismo , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
Mol Cells ; 30(1): 51-7, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20652495

RESUMO

We previously reported that KHG21834, a benzothiazole derivative, attenuates the beta-amyloid (Abeta)-induced degeneration of both cortical and mesencephalic neurons in vitro. Central nervous system inflammation mediated by activated microglia is a key event in the development of neurodegenerative disease. In this study, we show that KHG21834 suppresses inflammation-mediated cytokine upregulation. Specifically, KHG21834 induces significant reductions in the lipopolysaccharide-induced activation of microglia and production of proinflammatory mediators such as tumor necrosis factor-alpha, interlukin-1beta, nitric oxide, and inducible nitric oxide synthase. In addition, KHG21834 blocks the expression of mitogen-activated protein kinases, including ERK, p38 MAPK, JNK, and Akt. In vivo intracerebroventricular infusion of KHG21834 also leads to decreases the level of interleukin-1beta and tumor necrosis factor-alpha in brain. These results, in combination with our previous findings on Abeta-induced degeneration, support the potential therapeutic efficacy of KHG21834 for the treatment of neurodegenerative disorders via the targeting of key glial activation pathways.


Assuntos
Benzotiazóis/farmacologia , Lipopolissacarídeos/farmacologia , Microglia/efeitos dos fármacos , Animais , Células Cultivadas , Citocinas/biossíntese , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Proteína Oncogênica v-akt/metabolismo , Ratos , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/metabolismo
8.
Cell Mol Neurobiol ; 30(5): 807-15, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20198420

RESUMO

We have screened new drugs with a view to developing effective drugs against glutamate-induced excitotoxicity. In the present work, we show effects of a new drug, 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride against glutamate-induced excitotoxicity in primary rat glial cultures. Pretreatment of glial cells with 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride for 2 h significantly protected glial cells against glutamate-induced excitotoxicity in a time- and dose-dependent manner with an optimum concentration of 100 microM. The drug significantly reduced production of proinflammatory cytokines, tumor necrosis factor-alpha, and interlukin-1beta in glutamate-induced excitotoxicity. The drug also prevented glutamate-induced intracellular Ca2+ influx and reduced the subsequent overproduction of nitric oxide and reactive oxygen species. Furthermore, the drug preserved the mitochondrial potential and inhibited the overproduction of cytochrome c. In addition, the drug effectively attenuated the protein level changes of beta-catenin and glycogen synthase kinase-3beta. These results suggest that 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride effectively protected primary cultures of rat glial cells against glutamate-induced excitotoxicity.


Assuntos
Ácido Glutâmico/toxicidade , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Tiazóis/farmacologia , Animais , Cálcio/metabolismo , Células Cultivadas , Citocromos c/metabolismo , Citocinas/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Mediadores da Inflamação/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neuroglia/enzimologia , Nitritos/metabolismo , Substâncias Protetoras/química , Substâncias Protetoras/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Tiazóis/química , beta Catenina/metabolismo
9.
Biochem Biophys Res Commun ; 394(3): 515-21, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20206602

RESUMO

This study reports the crystal structures of Bcl-xl wild type and three Bcl-xl mutants (Y101A, F105A, and R139A) with amino acid substitutions in the hydrophobic groove of the Bcl-xl BH3 domain. An additional 12 ordered residues were observed in a highly flexible loop between the alpha1 and alpha2 helices, and were recognized as an important deamidation site for the regulation of apoptosis. The autophagy-effector protein, Beclin 1, contains a novel BH3 domain (residues 101-125), which binds to the surface cleft of Bcl-xl, as confirmed by nuclear magnetic resonance (NMR) spectroscopy and analytical gel-filtration results. Gossypol, a potent inhibitor of Bcl-xl, had a K(d) value of 0.9 microM. In addition, the structural and biochemical analysis of five Bcl-xl substitution mutants will provide structural insights into the design and development of anti-cancer drugs.


Assuntos
Proteínas Reguladoras de Apoptose/química , Gossipol/química , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/química , Substituição de Aminoácidos , Animais , Antineoplásicos/química , Proteína Beclina-1 , Cromatografia em Gel , Cristalografia por Raios X , Desenho de Fármacos , Camundongos , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteína bcl-X/genética
10.
Biochemistry ; 49(7): 1435-47, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20070122

RESUMO

The death effector domain (DED) of the mammalian apoptosis mediator, Fas-associated death domain protein (FADD), induces Escherichia coli cell death under aerobic culture conditions, yet the mechanisms by which FADD-DED induces cell death are not fully understood. Oxidative stress has been implicated as one of the mechanisms. Using a proteomic approach and validation by coexpression analysis, we illustrate that overexpression of FADD-DED in E. coli invokes protein expression changes that facilitate conversion of pro-oxidant NADH into antioxidant NADPH. Typically, isocitrate dehydrogenase, phosphoenolpyruvate carboxykinase, and pyruvate kinase are downregulated and malate dehydrogenase is upregulated. We reasoned that such a change in E. coli cells is an active response to reduce the size of the NADH pool, thereby decreasing the level of ROS generation. From the coexpression studies, we observed that DNA binding protein Hns, which induces growth arrest when overexpressed heterologously, alleviated the cell killing effect of FADD-DED. FADD-DED was expressed as a noncovalently linked multimeric protein in the membrane of E. coli. Exogenous treatment of E. coli cells with FADD-DED in the presence of a membrane component induced cell death, which was accompanied by a shift of the redox balance and a decrease in the cellular ATP level. Cell death was blocked by prior expression of thioredoxin. Localization of FADD-DED to the membrane may shift the cells into a state that stimulates and fuels ROS generation. The cell death mechanism mediated by ROS may mimic antibiotic-mediated bacterial cell death or Bax-mediated apoptosis in mammalian cells. Our results provide a common mechanistic feature of ROS-involved cell death throughout prokaryotes and eukaryotes.


Assuntos
Apoptose , Membrana Celular/metabolismo , Escherichia coli/citologia , Escherichia coli/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor fas/metabolismo , Apoptose/genética , Membrana Celular/genética , Regulação para Baixo/genética , Metabolismo Energético/genética , Escherichia coli/genética , Proteína de Domínio de Morte Associada a Fas/biossíntese , Proteína de Domínio de Morte Associada a Fas/genética , Proteína de Domínio de Morte Associada a Fas/fisiologia , Humanos , Domínios e Motivos de Interação entre Proteínas/genética , Estrutura Terciária de Proteína/genética , Espécies Reativas de Oxigênio/farmacologia , Regulação para Cima/genética , Receptor fas/biossíntese , Receptor fas/genética , Receptor fas/fisiologia
11.
PLoS Pathog ; 4(2): e25, 2008 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-18248095

RESUMO

All gammaherpesviruses express homologues of antiapoptotic B-cell lymphoma-2 (BCL-2) to counter the clearance of infected cells by host antiviral defense machineries. To gain insights into the action mechanisms of these viral BCL-2 proteins, we carried out structural and biochemical analyses on the interactions of M11, a viral BCL-2 of murine gamma-herpesvirus 68, with a fragment of proautophagic Beclin1 and BCL-2 homology 3 (BH3) domain-containing peptides derived from an array of proapoptotic BCL-2 family proteins. Mainly through hydrophobic interactions, M11 bound the BH3-like domain of Beclin1 with a dissociation constant of 40 nanomole, a markedly tighter affinity compared to the 1.7 micromolar binding affinity between cellular BCL-2 and Beclin1. Consistently, M11 inhibited autophagy more efficiently than BCL-2 in NIH3T3 cells. M11 also interacted tightly with a BH3 domain peptide of BAK and those of the upstream BH3-only proteins BIM, BID, BMF, PUMA, and Noxa, but weakly with that of BAX. These results collectively suggest that M11 potently inhibits Beclin1 in addition to broadly neutralizing the proapoptotic BCL-2 family in a similar but distinctive way from cellular BCL-2, and that the Beclin1-mediated autophagy may be a main target of the virus.


Assuntos
Apoptose/fisiologia , Autofagia/fisiologia , Proteínas/metabolismo , Rhadinovirus/fisiologia , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose , Proteína Beclina-1 , Regulação Viral da Expressão Gênica , Genes Supressores de Tumor , Interações Hospedeiro-Patógeno , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Camundongos , Dados de Sequência Molecular , Proteínas/química , Proteínas/genética , Rhadinovirus/patogenicidade , Transativadores/genética , Transativadores/metabolismo , Proteínas Virais/química , Proteínas Virais/genética
12.
Nat Cell Biol ; 9(11): 1303-10, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17952061

RESUMO

Mitochondrial proteins function as essential regulators in apoptosis. Here, we show that mitochondrial adenylate kinase 2 (AK2) mediates mitochondrial apoptosis through the formation of an AK2-FADD-caspase-10 (AFAC10) complex. Downregulation of AK2 attenuates etoposide- or staurosporine-induced apoptosis in human cells, but not that induced by tumour-necrosis-factor-related apoptosis-inducing ligand (TRAIL) or Fas ligand (FasL). During intrinsic apoptosis, AK2 translocates to the cytoplasm, whereas this event is diminished in Apaf-1 knockdown cells and prevented by Bcl-2 or Bcl-X(L). Addition of purified AK2 protein to cell extracts first induces activation of caspase-10 via FADD and subsequently caspase-3 activation, but does not affect caspase-8. AFAC10 complexes are detected in cells undergoing intrinsic cell death and AK2 promotes the association of caspase-10 with FADD. In contrast, AFAC10 complexes are not detected in several etoposide-resistant human tumour cell lines. Taken together, these results suggest that, acting in concert with FADD and caspase-10, AK2 mediates a novel intrinsic apoptotic pathway that may be involved in tumorigenesis.


Assuntos
Adenilato Quinase/fisiologia , Apoptose/fisiologia , Caspase 10/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Isoenzimas/fisiologia , Adenilato Quinase/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Células Cultivadas , Células HeLa , Humanos , Isoenzimas/farmacologia , Complexos Multienzimáticos/metabolismo , Frações Subcelulares/metabolismo
13.
Phytochemistry ; 67(9): 870-5, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16603211

RESUMO

Kachri fruit, Cucumis trigonus Roxburghi, contains high protease activity and has been used as meat tenderizer in the Indian subcontinent. A 67 kDa serine protease from Kachri fruit was purified by DEAE-Sepharose and CM-Sepharose chromatography, whose optimum activity was at pH 11 and 70 degrees C. Its activity was strongly inhibited by PMSF, but not by EDTA, pepstatin, or cysteine protease inhibitors. The substrate specificity of the purified protease towards synthetic peptides was comparable to cucumisin, the first characterized subtilisin class plant protease from the sarcocarp of melon fruit (Cucumis melo). These characteristics, along with the N-terminal amino acid sequence, indicated that the isolated protease from Cucumis trigonus Roxburghi is a cucumisin homologue, which belongs to the serine protease family.


Assuntos
Cucumis/enzimologia , Serina Endopeptidases/química , Serina Endopeptidases/isolamento & purificação , Sequência de Aminoácidos , Cucumis/química , Frutas/química , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Extratos Vegetais/química , Subtilisinas/química
14.
Brain Res ; 1054(1): 22-9, 2005 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-16054119

RESUMO

We constructed a new cell line which stably expressed Cav3.1 and Kir2.1 subunits in HEK293 cells (HEK293/Cav3.1/Kir2.1) in order to investigate the unknown cellular signaling pathways of T-type voltage-dependent calcium channels. The new cell line has a stable resting membrane potential and can activate T-type Ca(2+) channels by KCl-mediated depolarization. We showed that Cav3.1 activation resulted in the level of p21(ras)-GTP in the cells being rapidly decreased during the first 2 min, and then recovering between 2 min and 15 min. The kinetics of ERK activation following Cav3.1 stimulation was also investigated. ERK activation was decreased from 2 min to 5 min after KCl stimulation, which means that Cav3.1 activation reduced ERK activity in the very early stages of activation. In addition, similar results for Cav3.1 activation were also shown in the case of Sos1, Grb2, and Shc, which means that Cav3.1 activation triggers p21(ras) and that this signal is transferred to ERK by Sos1, Grb2, and Shc.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína Oncogênica p21(ras)/metabolismo , Transdução de Sinais/fisiologia , Western Blotting/métodos , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Linhagem Celular , Clonagem Molecular/métodos , Interações Medicamentosas , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunoprecipitação/métodos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Mibefradil/farmacologia , Fosforilação/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Cloreto de Potássio/farmacologia , Fatores de Tempo , Domínios de Homologia de src/fisiologia
15.
Biochem Biophys Res Commun ; 314(2): 646-53, 2004 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-14733956

RESUMO

Eotaxin selectively binds CC chemokine receptor (CCR) 3, whereas monocyte chemotactic protein (MCP)-3 binds CCR1, CCR2, and CCR3. To identify the functional determinants of the chemokines, we generated four reciprocal chimeric chemokines-M10E9, M22E21, E8M11, and E20M23-by shuffling the N-terminus and N-loop of eotaxin and MCP-3. M22E21 and E8M11, which shared the N-loop from MCP-3, bound to monocytes with high affinity, and activated monocytes. In contrast, M10E9 and E20M23, which lacked the N-loop, failed to bind and transduce monocyte responses, identifying the N-loop of MCP-3 as the selectivity determinant for CCR1/CCR2. A BIAcore assay with an N-terminal peptide of CCR3 (residues 1-35) revealed that all chimeras except E20M23 exhibited varying degrees of binding affinity with commensurate chemotaxis activity of eosinophils. Surprisingly, E20M23 could neither bind the CCR3 peptide nor activate eosinophils, despite having both N-terminal motifs from eotaxin. These results suggest that the two N-terminal motifs of eotaxin must cooperate with other regions to successfully bind and activate CCR3.


Assuntos
Quimiocinas CC/fisiologia , Citocinas , Proteínas Quimioatraentes de Monócitos/fisiologia , Sequência de Aminoácidos , Cálcio/metabolismo , Quimiocina CCL11 , Quimiocina CCL7 , Quimiotaxia , Relação Dose-Resposta a Droga , Eosinófilos/metabolismo , Escherichia coli/metabolismo , Humanos , Concentração Inibidora 50 , Cinética , Dados de Sequência Molecular , Proteínas Quimioatraentes de Monócitos/metabolismo , Monócitos/metabolismo , Peptídeos/química , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores CCR2 , Receptores CCR3 , Receptores de Quimiocinas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Tempo
16.
Biochem Biophys Res Commun ; 298(3): 392-7, 2002 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-12413953

RESUMO

Eotaxin is a potent chemokine that acts via CC chemokine receptor 3 (CCR3) to induce chemotaxis, mainly on eosinophils. Here we show that eotaxin also induces chemotactic migration in rat basophilic leukemia (RBL-2H3) mast cells. This effect was dose-dependently inhibited by compound X, a selective CCR3 antagonist, indicating that, as in eosinophils, the effect was mediated by CCR3. Eotaxin-induced cell migration was completely blocked in RBL-RacN17 cells expressing a dominant negative Rac1 mutant, suggesting a crucial role for Rac1 in eotaxin signaling to chemotactic migration. ERK activation also proved essential for eotaxin signaling and it too was absent in RBL-RacN17 cells. Finally, we found that activation of Rac and ERK was correlated with eotaxin-induced actin reorganization known to be necessary for cell motility. It thus appears that Rac1 acts upstream of ERK to signal chemotaxis in these cells, and that a Rac-ERK-dependent cascade mediates the eotaxin-induced chemotactic motility of RBL-2H3 mast cells.


Assuntos
Quimiocinas CC/fisiologia , Quimiotaxia/fisiologia , Mastócitos/citologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Sequência de Bases , Western Blotting , Quimiocina CCL11 , Primers do DNA , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Quinase C/metabolismo , Ratos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA