Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Cell Res ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777859

RESUMO

Parkinson's disease (PD) stands as the second most common neurodegenerative disorder after Alzheimer's disease, and its prevalence continues to rise with the aging global population. Central to the pathophysiology of PD is the specific degeneration of midbrain dopamine neurons (mDANs) in the substantia nigra. Consequently, cell replacement therapy (CRT) has emerged as a promising treatment approach, initially supported by various open-label clinical studies employing fetal ventral mesencephalic (fVM) cells. Despite the initial favorable results, fVM cell therapy has intrinsic and logistical limitations that hinder its transition to a standard treatment for PD. Recent efforts in the field of cell therapy have shifted its focus towards the utilization of human pluripotent stem cells, including human embryonic stem cells and induced pluripotent stem cells, to surmount existing challenges. However, regardless of the transplantable cell sources (e.g., xenogeneic, allogeneic, or autologous), the poor and variable survival of implanted dopamine cells remains a major obstacle. Emerging evidence highlights the pivotal role of host immune responses following transplantation in influencing the survival of implanted mDANs, underscoring an important area for further research. In this comprehensive review, building upon insights derived from previous fVM transplantation studies, we delve into the functional ramifications of host immune responses on the survival and efficacy of grafted dopamine cells. Furthermore, we explore potential strategic approaches to modulate the host immune response, ultimately aiming for optimal outcomes in future clinical applications of CRT for PD.

2.
Clin Cancer Res ; 30(8): 1619-1629, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295144

RESUMO

PURPOSE: We recently reported on clinical trials for patients with recurrent glioblastoma where low-intensity pulsed ultrasound and microbubbles (LIPU/MB) improved paclitaxel or carboplatin delivery into the brain. Here, we report variable local tumor control with paclitaxel at the maximal/target dose in our phase I trial (NCT04528680). To address this, we investigated the combination of paclitaxel with carboplatin in preclinical glioma models. EXPERIMENTAL DESIGN: We performed MRI-based analysis to evaluate disease control in patients from our trial. We studied the cytotoxicity of paclitaxel and carboplatin against 11 human glioma lines as monotherapy and in combination at concentrations derived from human intraoperative studies. Synergy was assessed with the Loewe model and the survival benefit evaluated in two xenografts. We examined the effects on cell cycle progression, DNA damage, and apoptosis. RESULTS: Patients treated with paclitaxel and LIPU/MB exhibited variable local tumor control, which correlated with overall survival. We observed limited cross-resistance to paclitaxel and carboplatin in glioma lines, with almost a third of them being exclusively susceptible to one drug. This combination led to susceptibility of 81% of lines and synergy in 55% of them. The combination proved more efficacious in two intracranial xenografts when administered with LIPU/MB, leading to complementary effects on cell cycle arrest. CONCLUSIONS: Combining paclitaxel and carboplatin in gliomas may be more efficacious than monotherapy, as in other cancers, due to synergy and independent susceptibility to each drug. These results form the basis for an ongoing phase II trial (NCT04528680) where we investigate this combination with LIPU/MB.


Assuntos
Glioblastoma , Glioma , Humanos , Carboplatina , Paclitaxel , Glioblastoma/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Recidiva Local de Neoplasia/tratamento farmacológico , Glioma/tratamento farmacológico
3.
Clin Cancer Res ; 30(2): 379-388, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37939133

RESUMO

PURPOSE: Evidence suggests that MAPK pathway activation, as measured by ERK1/2 phosphorylation (p-ERK), predicts overall survival (OS) in patients with recurrent glioblastoma receiving anti-PD-1 therapy. We aimed to validate these findings in independent cohorts. EXPERIMENTAL DESIGN: In a 24-patient clinical trial on recurrent glioblastoma and high-grade gliomas, we examined the link between p-ERK levels and OS. Patients received intravenous nivolumab, followed by maximal safe resection and an intracerebral injection of either ipilimumab alone or combined with nivolumab. Biweekly adjuvant nivolumab was then administered up to five times (NCT03233152). Using REporting recommendations for tumor MARKER prognostic studies (REMARK) criteria, we conducted independent analyses for p-ERK quantification and statistical evaluations. Additional comparative analysis included prior cohorts, totaling 65 patients. Cox proportional hazards models and meta-analysis were employed to assess p-ERK as a predictive biomarker after immunotherapy. RESULTS: Lower median p-ERK+ cell density was observed compared with prior studies, likely due to variable tissue processing across cohorts. Nonetheless, high p-ERK was associated with prolonged OS, particularly in isocitrate dehydrogenase wild-type glioblastomas (P = 0.036). Median OS for high and low p-ERK patients were 55.6 and 30 weeks, respectively. Multivariable analysis reinforced p-ERK's significance in survival prediction (P = 0.011). Upon p-ERK normalization across cohorts (n = 65), meta-analysis supported the survival benefit of elevated tumor p-ERK levels (P = 0.0424). CONCLUSIONS: This study strengthens the role of p-ERK as a predictive biomarker for OS in patients with glioblastoma on immune checkpoint blockade. Future research should focus on further validation in prospective trials and the standardization of preanalytical variables influencing p-ERK quantification.


Assuntos
Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Antígeno CTLA-4 , Nivolumabe/uso terapêutico , Receptor de Morte Celular Programada 1 , Fosforilação , Sistema de Sinalização das MAP Quinases , Estudos Prospectivos , Recidiva Local de Neoplasia/tratamento farmacológico , Ipilimumab/uso terapêutico , Adjuvantes Imunológicos/uso terapêutico , Imunoterapia
4.
Nature ; 619(7970): 606-615, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438521

RESUMO

The specific loss of midbrain dopamine neurons (mDANs) causes major motor dysfunction in Parkinson's disease, which makes cell replacement a promising therapeutic approach1-4. However, poor survival of grafted mDANs remains an obstacle to successful clinical outcomes5-8. Here we show that the surgical procedure itself (referred to here as 'needle trauma') triggers a profound host response that is characterized by acute neuroinflammation, robust infiltration of peripheral immune cells and brain cell death. When midbrain dopamine (mDA) cells derived from human induced pluripotent stem (iPS) cells were transplanted into the rodent striatum, less than 10% of implanted tyrosine hydroxylase (TH)+ mDANs survived at two weeks after transplantation. By contrast, TH- grafted cells mostly survived. Notably, transplantation of autologous regulatory T (Treg) cells greatly modified the response to needle trauma, suppressing acute neuroinflammation and immune cell infiltration. Furthermore, intra-striatal co-transplantation of Treg cells and human-iPS-cell-derived mDA cells significantly protected grafted mDANs from needle-trauma-associated death and improved therapeutic outcomes in rodent models of Parkinson's disease with 6-hydroxydopamine lesions. Co-transplantation with Treg cells also suppressed the undesirable proliferation of TH- grafted cells, resulting in more compact grafts with a higher proportion and higher absolute numbers of TH+ neurons. Together, these data emphasize the importance of the initial inflammatory response to surgical injury in the differential survival of cellular components of the graft, and suggest that co-transplanting autologous Treg cells effectively reduces the needle-trauma-induced death of mDANs, providing a potential strategy to achieve better clinical outcomes for cell therapy in Parkinson's disease.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Neurônios Dopaminérgicos , Sobrevivência de Enxerto , Doenças Neuroinflamatórias , Doença de Parkinson , Linfócitos T Reguladores , Tirosina 3-Mono-Oxigenase , Humanos , Dopamina/análogos & derivados , Dopamina/metabolismo , Neurônios Dopaminérgicos/imunologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/transplante , Mesencéfalo/patologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/prevenção & controle , Doenças Neuroinflamatórias/terapia , Doença de Parkinson/complicações , Doença de Parkinson/patologia , Doença de Parkinson/cirurgia , Doença de Parkinson/terapia , Tirosina 3-Mono-Oxigenase/deficiência , Tirosina 3-Mono-Oxigenase/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/transplante , Terapia Baseada em Transplante de Células e Tecidos/métodos , Animais , Camundongos , Ratos , Oxidopamina/metabolismo , Sobrevivência de Enxerto/imunologia , Morte Celular , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Neostriado/metabolismo , Fatores de Tempo , Proliferação de Células , Resultado do Tratamento
5.
Chemosphere ; 338: 139503, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37453522

RESUMO

Sulfur dioxide (SO2) gas at trace levels challenges the consumption of fuel gases and cleaning of flue gases originating from diverse anthropogenic sources. We have demonstrated Zn-Al layered double hydroxide (LDH) and layered double oxide (LDO) as low-cost and effective adsorbents in removing lowly concentrated SO2 gas at room temperature. Water in the adsorbent bed significantly improved the performance, where the maximum adsorption capacity of 38.0 mg g-1 was achieved for LDO. Based on the spectroscopic findings, the adsorbed gas molecules were oxidized to surface-bound sulfate/bisulfate species, showing complete mineralization of SO2 molecules. By employing an inexpensive NaOH-H2O2 solution-based regeneration strategy, we successfully regenerated the spent LDO, significantly restoring its gas uptake capacity. The regenerated oxide exhibited an increased gas uptake capacity ranging from 38.0 to 98.5 mg g-1, highlighting the practicality and economic feasibility of our approach. LDH/LDO materials are promising regenerable adsorbents for removing low concentrations of SO2 gas in ambient conditions.


Assuntos
Alumínio , Dióxido de Enxofre , Dióxido de Enxofre/química , Alumínio/química , Óxidos , Hidróxido de Alumínio , Zinco , Temperatura , Peróxido de Hidrogênio , Hidróxidos , Ácidos , Adsorção
6.
Nat Commun ; 14(1): 1566, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949040

RESUMO

Whereas the contribution of tumor microenvironment to the profound immune suppression of glioblastoma (GBM) is clear, tumor-cell intrinsic mechanisms that regulate resistance to CD8 T cell mediated killing are less understood. Kinases are potentially druggable targets that drive tumor progression and might influence immune response. Here, we perform an in vivo CRISPR screen to identify glioma intrinsic kinases that contribute to evasion of tumor cells from CD8 T cell recognition. The screen reveals checkpoint kinase 2 (Chek2) to be the most important kinase contributing to escape from CD8 T-cell recognition. Genetic depletion or pharmacological inhibition of Chek2 with blood-brain-barrier permeable drugs that are currently being evaluated in clinical trials, in combination with PD-1 or PD-L1 blockade, lead to survival benefit in multiple preclinical glioma models. Mechanistically, loss of Chek2 enhances antigen presentation, STING pathway activation and PD-L1 expression in mouse gliomas. Analysis of human GBMs demonstrates that Chek2 expression is inversely associated with antigen presentation and T-cell activation. Collectively, these results support Chek2 as a promising target for enhancement of response to immune checkpoint blockade therapy in GBM.


Assuntos
Glioblastoma , Glioma , Humanos , Animais , Camundongos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Antígeno B7-H1 , Quinase 1 do Ponto de Checagem , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Linfócitos T CD8-Positivos , Imunidade , Microambiente Tumoral
7.
J Mov Disord ; 16(1): 22-41, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36628428

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease, affecting 1%-2% of the population over the age of 65. As the population ages, it is anticipated that the burden on society will significantly escalate. Although symptom reduction by currently available pharmacological and/or surgical treatments improves the quality of life of many PD patients, there are no treatments that can slow down, halt, or reverse disease progression. Because the loss of a specific cell type, midbrain dopamine neurons in the substantia nigra, is the main cause of motor dysfunction in PD, it is considered a promising target for cell replacement therapy. Indeed, numerous preclinical and clinical studies using fetal cell transplantation have provided proof of concept that cell replacement therapy may be a viable therapeutic approach for PD. However, the use of human fetal cells remains fraught with controversy due to fundamental ethical, practical, and clinical limitations. Groundbreaking work on human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, coupled with extensive basic research in the stem cell field offers promising potential for hPSC-based cell replacement to become a realistic treatment regimen for PD once several major issues can be successfully addressed. In this review, we will discuss the prospects and challenges of hPSC-based cell therapy for PD.

8.
Nanomaterials (Basel) ; 12(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36500736

RESUMO

In the last decades, the removal of benzene, toluene, ethylbenzene, and xylene (BTEX) has been considered a major environmental crisis. In this study, two novel nanocomposite materials (Fe2O3/SiO2 and Fe2O3-Mn2O3/SiO2) that have regeneration ability by UV irradiation have been fabricated to remove BTEX at ambient temperature. This research revealed that both nanocomposites could remove more than 85% of the BTEX in the first cycle. The adsorption capacities followed the order of ethylbenzene > m-xylene > toluene > benzene as in the molecular weight order. The reusability test using UV irradiation showed that the performance of Fe2O3/SiO2 decreased drastically after the fifth cycle for benzene. On the other hand, when Mn is located in the nanocomposite structure, Fe2O3-Mn2O3/SiO2 could maintain its adsorption performance with more than 80% removal efficiency for all the BTEX for ten consecutive cycles. The difference in the reusability of the two nanocomposites is that the electron energy (from the valence band to the conduction band) for BTEX decomposition is changed due to the presence of manganese. This study provides a promising approach for designing an economical reusable nanomaterial, which can be used for VOC-contaminated indoor air.

9.
J Extracell Vesicles ; 11(12): e12287, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36447429

RESUMO

T cell-derived small extracellular vesicles (sEVs) exhibit anti-cancer effects. However, their anti-cancer potential should be reinforced to enhance clinical applicability. Herein, we generated interleukin-2-tethered sEVs (IL2-sEVs) from engineered Jurkat T cells expressing IL2 at the plasma membrane via a flexible linker to induce an autocrine effect. IL2-sEVs increased the anti-cancer ability of CD8+ T cells without affecting regulatory T (Treg ) cells and down-regulated cellular and exosomal PD-L1 expression in melanoma cells, causing their increased sensitivity to CD8+ T cell-mediated cytotoxicity. Its effect on CD8+ T and melanoma cells was mediated by several IL2-sEV-resident microRNAs (miRNAs), whose expressions were upregulated by the autocrine effects of IL2. Among the miRNAs, miR-181a-3p and miR-223-3p notably reduced the PD-L1 protein levels in melanoma cells. Interestingly, miR-181a-3p increased the activity of CD8+ T cells while suppressing Treg cell activity. IL2-sEVs inhibited tumour progression in melanoma-bearing immunocompetent mice, but not in immunodeficient mice. The combination of IL2-sEVs and existing anti-cancer drugs significantly improved anti-cancer efficacy by decreasing PD-L1 expression in vivo. Thus, IL2-sEVs are potential cancer immunotherapeutic agents that regulate both immune and cancer cells by reprogramming miRNA levels.


Assuntos
Vesículas Extracelulares , Melanoma , MicroRNAs , Camundongos , Animais , Interleucina-2 , MicroRNAs/genética , Antígeno B7-H1 , Linfócitos T CD8-Positivos , Melanoma/terapia
10.
Sci Rep ; 12(1): 15387, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100623

RESUMO

A ternary Mn-Zn-Fe oxide nanocomposite was fabricated by a one-step coprecipitation method for the remotion of H2S and SO2 gases at room temperature. The nanocomposite has ZnO, MnO2, and ferrites with a surface area of 21.03 m2 g-1. The adsorbent was effective in mineralizing acidic sulfurous gases better in wet conditions. The material exhibited a maximum H2S and SO2 removal capacity of 1.31 and 0.49 mmol g-1, respectively, in the optimized experimental conditions. The spectroscopic analyses confirmed the formation of sulfide, sulfur, and sulfite as the mineralized products of H2S. Additionally, the nanocomposite could convert SO2 to sulfate as the sole oxidation by-product. The oxidation of these toxic gases was driven by the dissolution and dissociation of gas molecules in surface adsorbed water, followed by the redox behaviour of transition metal ions in the presence of molecular oxygen and water. Thus, the study presented a potential nanocomposite adsorbent for deep desulfurization applications.

11.
Sci Rep ; 12(1): 15388, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100662

RESUMO

A bivalent Cu(I,II) metal-organic framework (MOF) based on the 4,4',4″-s-Triazine-2,4,6-triyl-tribenzoate linker was synthesized via a solvothermal method. The MOF possessed 43.8% of the Cu sites as Cu+ with a surface area of 1257 m2 g-1. The detailed spectroscopic analysis confirmed dimethylformamide (DMF) solvent as the reductant responsible for Cu+ sites in the synthesized MOF. The Cu+ sites were easily accessible and prone to oxidation in hot water or acidic gas environment. The MOF showed water-induced structural change, which could be partially recovered after soaking in DMF solvent. The synthesized MOF showed a high hydrogen sulfide (H2S) uptake capacity of 4.3 mmol g-1 at 298 K and an extremely low H2S pressure of 0.0005 bar. The adsorption capacity was the highest among Cu-based MOFs with PCN-6-M being regenerable, which made it useful for deep desulfurization applications. The adsorbed H2S was mineralized to sulfide, sulfur, and sulfates, mediated by the Cu+/Cu2+ redox cycle in the presence of adsorbed water and molecular oxygen. Thus, the study confirmed that DMF as a reductant is responsible for the origin of bivalency in PCN-6-M and possibly in other Cu-based MOFs reported in the literature. Also, the developed MOF could be a potential candidate for flue gas desulfurization and gas purification applications.

12.
J Nanobiotechnology ; 20(1): 428, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175895

RESUMO

Ferroptosis provides an opportunity to overcome the cancer cell therapeutic resistance and modulate the immune system. Here an interaction between ferroptosis of cancer cells and natural killer (NK) cells was investigated with a clinical grade iron oxide nanoparticle (ferumoxytol) for potential synergistic anti-cancer effect of ferroptosis and NK cell therapy in prostate cancer. When ferumoxytol mediated ferroptosis of cancer cells was combined with NK cells, the NK cells' cytotoxic function was increased. Observed ferroptosis mediated NK cell activation was also confirmed with IFN-γ secretion and lytic degranulation. Upregulation of ULBPs, which is one of the ligands for NK cell activating receptor NKG2D, was observed in the co-treatment of ferumoxytol mediated ferroptosis and NK cells. Additionally, HMGB1 and PD-L1 expression of cancer cells were observed in the treatment of ferroptosis + NK cells. Finally, in vivo therapeutic efficacy of ferumoxytol mediated ferroptosis and NK cell therapy was observed with significant tumor volume regression in a prostate cancer mice model. These results suggest that the NK cells' function can be enhanced with ferumoxytol mediated ferroptosis.


Assuntos
Ferroptose , Proteína HMGB1 , Nanopartículas , Neoplasias da Próstata , Animais , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Óxido Ferroso-Férrico , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacologia , Humanos , Células Matadoras Naturais , Masculino , Camundongos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Neoplasias da Próstata/metabolismo
13.
J Immunother Cancer ; 10(7)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35858708

RESUMO

BACKGROUND: Triple negative breast cancer (TNBC) is the most lethal subtype of breast cancer due to its aggressive behavior and frequent development of resistance to chemotherapy. Although natural killer (NK) cell-based immunotherapy is a promising strategy for overcoming barriers to cancer treatment, the therapeutic efficacy of NK cells against TNBC is below expectations. E26 transformation-specific transcription factor ELK3 (ELK3) is highly expressed in TNBCs and functions as a master regulator of the epithelial-mesenchymal transition. METHODS: Two representative human TNBC cell lines, MDA-MB231 and Hs578T, were exposed to ELK3-targeting shRNA or an ELK3-expressing plasmid to modulate ELK3 expression. The downstream target genes of ELK3 were identified using a combined approach comprising gene expression profiling and molecular analysis. The role of ELK3 in determining the immunosensitivity of TNBC to NK cells was investigated in terms of mitochondrial fission-fusion transition and reactive oxygen species concentration both in vitro and in vivo. RESULTS: ELK3-dependent mitochondrial fission-fusion status was linked to the mitochondrial superoxide concentration in TNBCs and was a main determinant of NK cell-mediated immune responses. We identified mitochondrial dynamics proteins of 51 (Mid51), a major mediator of mitochondrial fission, as a direct downstream target of ELK3 in TNBCs. Also, we demonstrated that expression of ELK3 correlated inversely with that of Mid51, and that the ELK3-Mid51 axis is associated directly with the status of mitochondrial dynamics. METABRIC analysis revealed that the ELK3-Mid51 axis has a direct effect on the immune score and survival of patients with TNBC. CONCLUSIONS: Taken together, the data suggest that NK cell responses to TNBC are linked directly to ELK3 expression levels, shedding new light on strategies to improve the efficacy of NK cell-based immunotherapy of TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Humanos , Células Matadoras Naturais , Dinâmica Mitocondrial , Proteínas Proto-Oncogênicas c-ets , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/terapia
14.
Cell Rep ; 37(13): 110155, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34965411

RESUMO

During somatic reprogramming, cellular energy metabolism fundamentally switches from predominantly mitochondrial oxidative phosphorylation toward glycolysis. This metabolic reprogramming, also called the Warburg effect, is critical for the induction of pluripotency, but its molecular mechanisms remain poorly defined. Notably, SIRT2 is consistently downregulated during the reprogramming process and regulates glycolytic switch. Here, we report that downregulation of SIRT2 increases acetylation of mitogen-activated protein kinase (MAPK) kinase-1 (MEK1) at Lys175, resulting in activation of extracellular signal-regulated kinases (ERKs) and subsequent activation of the pro-fission factor dynamin-related protein 1 (DRP1). In parallel, downregulation of SIRT2 hyperacetylates the serine/threonine protein kinase AKT1 at Lys20 in a non-canonical way, activating DRP1 and metabolic reprogramming. Together, our study identified two axes, SIRT2-MEK1-ERK-DRP1 and SIRT2-AKT1-DRP1, that critically link mitochondrial dynamics and oxidative phosphorylation to the somatic reprogramming process. These upstream signals, together with SIRT2's role in glycolytic switching, may underlie the Warburg effect observed in human somatic cell reprogramming.


Assuntos
Reprogramação Celular , Dinaminas/metabolismo , MAP Quinase Quinase 1/metabolismo , Dinâmica Mitocondrial , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirtuína 2/metabolismo , Acetilação , Dinaminas/genética , Metabolismo Energético , Fibroblastos/metabolismo , Glicólise , Humanos , MAP Quinase Quinase 1/genética , Mitocôndrias/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Fosforilação Oxidativa , Proteínas Proto-Oncogênicas c-akt/genética , Sirtuína 2/genética
15.
Int J Mol Sci ; 22(19)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34639162

RESUMO

Female endocrinological symptoms, such as premature ovarian inefficiency (POI) are caused by diminished ovarian reserve and chemotherapy. The etiology of POI remains unknown, but this can lead to infertility. This has accelerated the search for master regulator genes or other molecules that contribute as enhancers or silencers. The impact of regulatory microRNAs (miRNAs) on POI has gained attention; however, their regulatory function in this condition is not well known. RNA sequencing was performed at four stages, 2-(2 W), 6-(6 W), 15-(15 W), and 20-(20 W) weeks, on ovarian tissue samples and 5058 differentially expressed genes (DEGs) were identified. Gene expression and enrichment were analyzed based on the gene ontology and KEGG databases, and their association with other proteins was assessed using the STRING database. Gene set enrichment analysis was performed to identify the key target genes. The DEGs were most highly enriched in 6 W and 15 W groups. Figla, GDF9, Nobox, and Pou51 were significantly in-creased at 2 W compared with levels at 6 W and 20 W, whereas the expression of Foxo1, Inha, and Taf4b was significantly de-creased at 20 W. Ccnd2 and Igf1 expression was maintained at similar levels in each stage. In total, 27 genes were upregulated and 26 genes interacted with miRNAs; moreover, stage-specific upregulated and downregulated interactions were demonstrated. Increased and decreased miRNAs were identified at each stage in the ovaries. The constitutively expressed genes, Ccnd2 and Igf1, were identified as the major targets of many miRNAs (p < 0.05), and Fshr and Foxo3 interacted with miRNAs, namely mmu-miR-670-3p and mmu-miR-153-3p. miR-26a-5p interacted with Piwil2, and its target genes were downregulated in the 20 W mouse ovary. In this study, we aimed to identify key miRNAs and their target genes encompassing the reproductive span of mouse ovaries using mRNA and miRNA sequencing. These results indicated that gene sets are regulated in the reproductive stage-specific manner via interaction with miRNAs. Furthermore, consistent expression of Ccnd2 and Igf1 is considered crucial for the ovarian reserve and is regulated by many interactive miRNAs.


Assuntos
Proteínas Argonautas/metabolismo , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , MicroRNAs/genética , Reserva Ovariana , Transcriptoma , Animais , Proteínas Argonautas/genética , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Mapas de Interação de Proteínas , Análise de Sequência de RNA
16.
ACS Nano ; 15(8): 12780-12793, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34165964

RESUMO

Natural killer (NK) cell-based immunotherapy has been considered a promising cell-based cancer treatment strategy with low side effects for early tumors and metastasis. However, the therapeutic efficacy is generally low in established solid tumors. Ex vivo activation of NK cells with exogenous cytokines is often essential but ineffective to generate high doses of functional NK cells for cancer treatment. Image-guided local delivery of NK cells is also suggested for the therapy. However, there is a lack of noninvasive tools for monitoring NK cells. Herein, magnetic nanocomplexes are fabricated with clinically available materials (hyaluronic acid, protamine, and ferumoxytol; HAPF) for labeling NK cells. The prepared HAPF-nanocomplexes effectively attach to the NK cells (HAPF-NK). An exogenous magnetic field application effectively achieves magneto-activation of NK cells, promoting the generation and secretion of lytic granules of NK cells. The magneto-activated HAPF-NK cells also allow an MR image-guided NK cell therapy to treat hepatocellular carcinoma (HCC) solid tumors via transcatheter intra-arterial infusion. Suppressed tumor growth after the treatment of IA infused magneto-activated NK cells demonstrated a potential enhanced therapeutic efficacy of image guided local delivery of magneto-activated HAPF-NK cells. Given the potential challenges of NK cell cancer immunotherapy against established solid tumors, the effective NK cell labeling with HAPF, magneto-activation, and MRI contrast effect of NK cells will be beneficial to enhance the NK cell-therapeutic efficacy in various cancers.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Células Matadoras Naturais , Imageamento por Ressonância Magnética , Imunoterapia/métodos
17.
Pharmaceutics ; 13(4)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918941

RESUMO

Among various immunotherapies, natural killer (NK) cell cancer immunotherapy using adoptive transfer of NK cells takes a unique position by targeting tumor cells that evade the host immune surveillance. As the first-line innate effector cell, it has been revealed that NK cells have distinct mechanisms to both eliminate cancer cells directly and amplify the anticancer immune system. Over the last 40 years, NK cell cancer immunotherapy has shown encouraging reports in pre-clinic and clinic settings. In total, 288 clinical trials are investigating various NK cell immunotherapies to treat hematologic and solid malignancies in 2021. However, the clinical outcomes are unsatisfying, with remained challenges. The major limitation is attributed to the immune-suppressive tumor microenvironment (TME), low activity of NK cells, inadequate homing of NK cells, and limited contact frequency of NK cells with tumor cells. Innovative strategies to promote the cytolytic activity, durable persistence, activation, and tumor-infiltration of NK cells are required to advance NK cell cancer immunotherapy. As maturing nanotechnology and nanomedicine for clinical applications, there is a greater opportunity to augment NK cell therapeutic efficacy for the treatment of cancers. Active molecules/cytokine delivery, imaging, and physicochemical properties of nanoparticles are well equipped to overcome the challenges of NK cell cancer immunotherapy. Here, we discuss recent clinical trials of NK cell cancer immunotherapy, NK cell cancer immunotherapy challenges, and advances of nanoparticle-mediated NK cell therapeutic efficacy augmentation.

18.
Cytokine ; 143: 155542, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33926775

RESUMO

Interferon-γ (IFNG) is one of the key cytokines that regulates both innate and adaptive immune responses in the body. However, the role of IFNG in the regulation of vascularization, especially in the context of Vascular endothelial growth factor A (VEGFa)-induced angiogenesis is not clarified. Here, we report that IFNG shows potent anti-angiogenic potential against VEGFa-induced angiogenesis. IFNG significantly inhibited proliferation, migration, and tube formation of Human umbilical vein endothelial cells (HUVECs) both under basal and VEGFa-treated conditions. Intriguingly, Knockdown (KD) of STAT1 abolished the inhibitory effect of IFNG on VEGFa-induced angiogenic processes in HUVECs. Furthermore, IFNG exhibited potent anti-angiogenic efficacy in the mouse model of oxygen-induced retinopathy (OIR), an in vivo model for hypoxia-induced retinal neovascularization, without induction of functional side effects. Taken together, these results show that IFNG plays a crucial role in the regulation of VEGFa-dependent angiogenesis, suggesting its potential therapeutic applicability in neovascular diseases.


Assuntos
Interferon gama/uso terapêutico , Isquemia/complicações , Neovascularização Retiniana/complicações , Neovascularização Retiniana/tratamento farmacológico , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Hipóxia/complicações , Interferon gama/administração & dosagem , Interferon gama/farmacologia , Injeções Intravítreas , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Retina/efeitos dos fármacos , Retina/patologia , Retina/fisiopatologia , Neovascularização Retiniana/fisiopatologia , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
Cell Stem Cell ; 28(4): 595-597, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33798419

RESUMO

In a recent report in Nature Medicine, Tao et al. (2021) demonstrate that MPTP-treated monkeys receiving autologous, but not allogeneic, transplantation showed significant long-term improvement in motor and depressive behaviors, supporting the feasibility of autologous cell therapy for Parkinson's disease (PD).


Assuntos
Doença de Parkinson , Animais , Terapia Baseada em Transplante de Células e Tecidos , Haplorrinos , Doença de Parkinson/terapia , Transplante Autólogo , Transplante Homólogo
20.
ACS Appl Mater Interfaces ; 12(51): 56731-56740, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33290037

RESUMO

Natural killer (NK) cells have been recognized as a next-generation therapy for cancer as they are less likely to trigger adverse events (e.g., cytokine storm or graft-versus-host disease) than T cell-based therapeutics. Although NK cell activation strategies through genetic engineering and cytokine treatment have been actively studied for successful cancer treatment, the approaches are inefficient, expensive, and involve complex processing. Here, we developed a facile and efficient method of activating NK cells using cationic nanoparticles (cNPs). The cytotoxic activity of cNP-treated primary NK and NK-92MI cells against triple-negative breast cancer cells was over 2-fold higher than that of control NK cells in vitro. Molecular biological analyses confirmed that cNPs altered the expression of CCR4 and CXCR4 of NK cells that function as chemokine receptors. In vitro live cell imaging showed that the NK cells treated with cNPs were better than control NK cells at interacting with cancer cells. Consistent with these in vitro results, cNP-treated NK cells effectively inhibited tumor growth in an in vivo tumor animal model of triple-negative breast cancer. Additionally, NK cells treated with cNPs were tracked effectively in vivo by magnetic resonance imaging. Thus, cNP-mediated activation of NK cells has great potential as an NK cell-based cancer immunotherapy. Most of all, activating NK cells using cNPs has a great advantage over conventional methods in that immune cells can be activated by a one-step facile process with exogenously charged nanomaterials, without the need for genetic engineering or cytokine treatment.


Assuntos
Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Ativação Linfocitária/efeitos dos fármacos , Nanopartículas/química , Neoplasias/terapia , Polietilenoimina/farmacologia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Indóis/química , Células Matadoras Naturais/efeitos dos fármacos , Camundongos Nus , Polietilenoimina/química , Polímeros/química , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA