Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Pharmacol ; 100(1): 63-72, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34016717

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is a plausible therapeutic target in the treatment of retinoblastoma, the most common intraocular malignant tumor in children. STAT3, a transcription factor of several genes related to tumorigenesis, is activated in retinoblastoma tumors as well as other cancers. In this study, we investigated the structure-activity relationship of a library of STAT3 inhibitors, including a novel series of derivatives of the previously reported compound with a Michael acceptor (compound 1). We chose two novel STAT3 inhibitors, compounds 11 and 15, from the library based on their inhibitory effects on the phosphorylation and transcription activity of STAT3. These STAT3 inhibitors effectively suppressed the phosphorylation of STAT3 and inhibited the expression of STAT3-related genes CCND1, CDKN1A, BCL2, BCL2L1, BIRC5, MYC, MMP1, MMP9, and VEGFA Intraocularly administered STAT3 inhibitors decreased the degree of tumor formation in the vitreous cavity of BALB/c nude mice of an orthotopic transplantation model. It is noteworthy that compounds 11 and 15 did not induce in vitro and in vivo toxicity on retinal constituent cells and retinal tissues, respectively, despite their potent antitumor effects. We suggest that these novel STAT3 inhibitors be used in the treatment of retinoblastoma. SIGNIFICANCE STATEMENT: The current study suggests the novel STAT3 inhibitors with Michael acceptors possess antitumor activity on retinoblastoma, the most common intraocular cancer in children. Based on detailed structure-activity relationship studies, we found a 4-fluoro and 3-trifluoro analog (compound 11) and a monochloro analog (compound 15) of the parental compound (compound 1) inhibited STAT3 phosphorylation, leading to suppressed retinoblastoma in vitro and in vivo.


Assuntos
Neoplasias da Retina/tratamento farmacológico , Retinoblastoma/tratamento farmacológico , Fator de Transcrição STAT3/metabolismo , Bibliotecas de Moléculas Pequenas/administração & dosagem , Animais , Linhagem Celular Tumoral , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosforilação/efeitos dos fármacos , Neoplasias da Retina/metabolismo , Retinoblastoma/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Antioxidants (Basel) ; 10(3)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803551

RESUMO

Taurine chloramine (TauCl) is an endogenous anti-inflammatory substance which is derived from taurine, a semi-essential sulfur-containing ß-amino acid found in some foods including meat, fish, eggs and milk. In general, TauCl as well as its parent compound taurine downregulates production of tissue-damaging proinflammatory mediators, such as chemokines and cytokines in many different types of cells. In the present study, we investigated the protective effects of TauCl on experimentally induced colon inflammation. Oral administration of TauCl protected against mouse colitis caused by 2,4,6-trinitrobenzene sulfonic acid (TNBS). TauCl administration attenuated apoptosis in the colonic mucosa of TNBS-treated mice. This was accompanied by reduced expression of an oxidative stress marker, 4-hydroxy-2-nonenal and proinflammatory molecules including tumor necrosis factor-α, interleukin-6 and cyclooxygenase-2 in mouse colon. TauCl also inhibited activation of NFκB and STAT3, two key transcription factors mediating proinflammatory signaling. Notably, the protective effect of TauCl on oxidative stress and inflammation in the colon of TNBS-treated mice was associated with elevated activation of Nrf2 and upregulation of its target genes encoding heme oxygenase-1, NAD(P)H:quinone oxidoreductase, glutamate cysteine ligase catalytic subunit, and glutathione S-transferase. Taken together, these results suggest that TauCl exerts the protective effect against colitis through upregulation of Nrf2-dependent cytoprotective gene expression while blocking the proinflammatory signaling mediated by NFκB and STAT3.

3.
Eur J Med Chem ; 218: 113405, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-33831781

RESUMO

Recently, non-canonical roles of Lysyl-tRNA Synthetase (KRS), which is associated with cell migration and cancer metastasis, have been reported. Therefore, KRS has emerged as a promising target for the treatment of cell migration-related diseases, especially cancer metastasis, although the satisfying chemical inhibitors targeting KRS have not yet been identified. Here, we report the discovery of novel, mechanistically unique, and potent cell migration inhibitors targeting KRS, including the chemical and biological studies on the most effective N,N-dialkylthiazolo [5,4-b]pyridin-2-amine (SL-1910). SL-1910 exhibited highly potent migration inhibition (EC50 = 81 nM against the mutant KRS-overexpressed MDA-MB-231 cells) and was superior to the previously reported KRS inhibitor (migration inhibitory EC50 = 8.5 µM against H226 cells). The KRS protein binding study via fluorescence-based binding titration and KRS protein 2D-NMR mapping study, in vitro concentration-dependent cell migration inhibition, and in vivo anti-metastatic activity of SL-1910, which consists of a new scaffold, have been reported in this study. In addition, in vitro absorption, distribution, metabolism, and excretion studies and mouse pharmacokinetics experiments for SL-1910 were conducted.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Lisina-tRNA Ligase/antagonistas & inibidores , Piridinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Feminino , Humanos , Lisina-tRNA Ligase/metabolismo , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade
4.
FEBS Lett ; 595(5): 604-622, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33452674

RESUMO

Signal transducer and activator of transcription 3 (STAT3) has been considered as a potential target for development of anticancer therapeutics. Here, we report a novel mechanism by which the cyclopentenone prostaglandin, 15-deoxy-Δ12,14 -prostaglandin J2 (15d-PGJ2 ) functions as an allosteric inhibitor of STAT3. 15d-PGJ2 inhibits phosphorylation, dimerization, nuclear translocation, and transcriptional activity of STAT3 in H-Ras-transformed human mammary epithelial cells (MCF10A-Ras) through the Michael addition reaction at cysteine 259 of STAT3. Comparative studies with 15d-PGJ2 analogues reveal that both C12-C13 and C9-C10 double bonds conjugated to the carbonyl group in the cyclopentenone ring of 15d-PGJ2 are essential for STAT3 binding. Antiproliferative and pro-apoptotic activities of 15d-PGJ2 in MCF10A-Ras cells are attributable to covalent modification of STAT3 on Cys259, and mimic the effects induced by mutation of this amino acid.


Assuntos
Antineoplásicos/farmacologia , Cisteína/química , Células Epiteliais/efeitos dos fármacos , Prostaglandina D2/análogos & derivados , Proteínas Proto-Oncogênicas p21(ras)/genética , Fator de Transcrição STAT3/antagonistas & inibidores , Sequência de Aminoácidos , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Transformada , Proliferação de Células/efeitos dos fármacos , Cisteína/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Fosforilação/efeitos dos fármacos , Prostaglandina D2/química , Prostaglandina D2/farmacologia , Ligação Proteica , Multimerização Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Relação Estrutura-Atividade , Transcrição Gênica
5.
Biomedicines ; 8(10)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053804

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is a point of convergence for numerous oncogenic signals that are often constitutively activated in many cancerous or transformed cells and some stromal cells in the tumor microenvironment. Persistent STAT3 activation in malignant cells stimulates proliferation, survival, angiogenesis, invasion, and tumor-promoting inflammation. STAT3 undergoes activation through phosphorylation on tyrosine 705, which facilitates its dimerization. Dimeric STAT3 translocates to the nucleus, where it regulates the transcription of genes involved in cell proliferation, survival, etc. In the present study, a synthetic deguelin analogue SH48, discovered by virtual screening, inhibited the phosphorylation, nuclear translocation, and transcriptional activity of STAT3 in H-ras transformed human mammary epithelial MCF-10A cells (MCF10A-ras). We speculated that SH48 bearing an α,ß-unsaturated carbonyl group could interact with a thiol residue of STAT3, thereby inactivating this transcription factor. Non-electrophilic analogues of SH48 failed to inhibit STAT3 activation, lending support to the above supposition. By utilizing a biotinylated SH48, we were able to demonstrate the complex formation between SH48 and STAT3. SH48 treatment to MCF10A-ras cells induced autophagy, which was verified by staining with a fluorescent acidotropic probe, LysoTracker Red, as well as upregulating the expression of LC3II and p62. In conclusion, the electrophilic analogue of deguelin interacts with STAT3 and inhibits its activation in MCF10A-ras cells, which may account for its induction of autophagic death.

6.
J Med Chem ; 63(8): 3908-3914, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32208684

RESUMO

Aminoacyl-tRNA synthetase interacting multifunctional proteins (AIMPs) have recently been considered novel therapeutic targets in several cancers. In this publication we report the development of novel 2-aminophenylpyrimidines as new AIMP2-DX2 inhibitors. In particular, aminophenylpyrimidine 3 not only exhibited promising in vitro and in vivo potency but also exerted selective inhibition of H460 and A549 cells and AIMP2-DX2 rather than WI-26 cells and AIMP2. Aminophenylpyrimidine 3 offers possible therapeutic potential in the treatment of lung cancer.


Assuntos
Aminoacil-tRNA Sintetases/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Células A549 , Aminoacil-tRNA Sintetases/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Nucleares/metabolismo , Pirimidinas/química , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
7.
Redox Biol ; 23: 101175, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31129031

RESUMO

Overproduction of prostaglandin E2 (PGE2) has been linked to enhanced tumor cell proliferation, invasiveness and metastasis as well as resistance to apoptosis. 15-Keto prostaglandin E2 (15-keto PGE2), a product formed from 15-hydroxyprostaglandin dehydrogenase-catalyzed oxidation of PGE2, has recently been shown to have anti-inflammatory and anticarcinogenic activities. In this study, we observed that 15-keto PGE2 suppressed the phosphorylation, dimerization and nuclear translocation of signal transducer and activator of transcription 3 (STAT3) in human mammary epithelial cells transfected with H-ras (MCF10A-ras). 15-Keto PGE2 inhibited the migration and clonogenicity of MCF10A-ras cells. In addition, subcutaneous injection of 15-keto PGE2 attenuated xenograft tumor growth and phosphorylation of STAT3 induced by breast cancer MDA-MB-231 cells. However, a non-electrophilic analogue, 13,14-dihydro-15-keto PGE2 failed to inhibit STAT3 signaling and was unable to suppress the growth and transformation of MCF10A-ras cells. These findings suggest that the α,ß-unsaturated carbonyl moiety of 15-keto PGE2 is essential for its suppression of STAT3 signaling. We observed that the thiol reducing agent, dithiothreitol abrogated 15-keto PGE2-induced STAT3 inactivation and disrupted the direct interaction between 15-keto PGE2 and STAT3. Furthermore, a molecular docking analysis suggested that Cys251 and Cys259 residues of STAT3 could be preferential binding sites for this lipid mediator. Mass spectral analysis revealed the covalent modification of recombinant STAT3 by 15-keto PGE2 at Cys259. Taken together, thiol modification of STAT3 by 15-keto PGE2 inactivates STAT3 which may account for its suppression of breast cancer cell proliferation and progression.


Assuntos
Neoplasias da Mama/metabolismo , Dinoprostona/análogos & derivados , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Animais , Biomarcadores , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Cromatografia Líquida , Dinoprostona/química , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Camundongos , Fosforilação , Ligação Proteica , Proteômica/métodos , Fator de Transcrição STAT3/química , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Cell Immunol ; 327: 36-46, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29477410

RESUMO

Phagocytosis of pathogens by macrophages is crucial for the successful resolution of inflammation induced by microbial infection. Taurine chloramine (TauCl), an endogenous anti-inflammatory and antioxidative substance, is produced by reaction between taurine and hypochlorous acid by myeloperoxidase activity in neutrophils under inflammatory conditions. In the present study, we investigated the effect of TauCl on resolution of acute inflammation caused by fungal infection using a zymosan A-induced murine peritonitis model. TauCl administration reduced the number of the total peritoneal leukocytes, while it increased the number of peritoneal monocytes. Furthermore, TauCl promoted clearance of pathogens remaining in the inflammatory environment by macrophages. When the macrophages isolated from thioglycollate-treated mice were treated with TauCl, their phagocytic capability was enhanced. In the murine macrophage-like RAW264.7 cells treated with TauCl, the proportion of macrophages clearing the zymosan A particles was also increased. TauCl administration resulted in elevated expression of heme oxygenase-1 (HO-1) in the peritoneal macrophages. Pharmacologic inhibition of HO-1 activity or knockdown of HO-1 in the murine macrophage RAW264.7 cells abolished the TauCl-induced phagocytosis, whereas the overexpression of HO-1 augmented the phagocytic ability of macrophages. Moreover, peritoneal macrophages isolated from HO-1 null mice failed to mediate TauCl-induced phagocytosis. Our results suggest that TauCl potentiates phagocytic activity of macrophages through upregulation of HO-1 expression.


Assuntos
Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/fisiologia , Taurina/análogos & derivados , Animais , Antioxidantes , Inflamação , Macrófagos/fisiologia , Macrófagos Peritoneais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peritonite/induzido quimicamente , Peritonite/fisiopatologia , Fagócitos , Fagocitose/fisiologia , Células RAW 264.7 , Taurina/metabolismo , Taurina/farmacologia , Regulação para Cima , Zimosan/farmacologia
9.
Chembiochem ; 17(20): 1900-1904, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27453569

RESUMO

Mechanism-based chemical transformation of 15-deoxy-Δ12, 14 -PGJ2 (15d-PGJ2 ) resulted in a series of new NF-E2-related factor-2 (Nrf2) activators and detailed elucidation of the function of each electrophilic binding site. In addition, HO-1 expression resulting from Nrf2 activation through enhanced dissociation of the Keap1-Nrf2 complex by the new activators was proved.


Assuntos
Heme Oxigenase-1/biossíntese , Fator 2 Relacionado a NF-E2/metabolismo , Prostaglandina D2/análogos & derivados , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Modelos Moleculares , Estrutura Molecular , Prostaglandina D2/síntese química , Prostaglandina D2/química , Prostaglandina D2/farmacologia
10.
Bioorg Med Chem Lett ; 25(22): 5444-8, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26392052

RESUMO

A series of novel STAT3 inhibitors consisting of Michael acceptor has been identified through assays of the focused in-house library. In addition, their mode of action and structural feature responsible for the STAT3 inhibition were investigated. In particular, analog 6 revealed promising STAT3 inhibitory activity in HeLa cell lines. The analog also exhibited selective inhibition of STAT3 phosphorylation without affecting STAT1 phosphorylation and cytostatic effect in human breast epithelial cells (MCF10A-ras), which supports cancer cell-specific inhibitory properties.


Assuntos
Fator de Transcrição STAT3/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Células HeLa , Humanos , Immunoblotting , Fosforilação/efeitos dos fármacos
11.
Antioxid Redox Signal ; 23(2): 163-77, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25816687

RESUMO

AIMS: To examine the pro-resolving effects of taurine chloramine (TauCl). RESULTS: TauCl injected into the peritoneum of mice enhanced the resolution of zymosan A-induced peritonitis. Furthermore, when the macrophages obtained from peritoneal exudates were treated with TauCl, their efferocytic ability was elevated. In the murine macrophage-like RAW264.7 cells exposed to TauCl, the proportion of macrophages engulfing the apoptotic neutrophils was also increased. In these macrophages treated with TauCl, expression of heme oxygenase-1 (HO-1) was elevated along with increased nuclear translocation of the nuclear factor E2-related factor 2 (Nrf2). TauCl binds directly to Kelch-like ECH association protein 1 (Keap1), which appears to retard the Keap1-driven degradation of Nrf2. This results in stabilization and enhanced nuclear translocation of Nrf2 and upregulation of HO-1 expression. TauCl, when treated to peritoneal macrophages isolated from either Nrf2 or HO-1 wild-type mice, stimulated efferocytosis (phagocytic engulfment of apoptotic neutrophils by macrophages), but not in the macrophages from Nrf2 or HO-1 knockout mice. Furthermore, transcriptional expression of some scavenger receptors recognizing the phosphatidylserines exposed on the surface of apoptotic cells was increased in RAW264.7 cells treated with TauCl. Pharmacologic inhibition of HO-1 activity or knockdown of HO-1 gene in RAW264.7 cells abolished the TauCl-induced efferocytosis, whereas both overexpression of HO-1 and treatment with carbon monoxide (CO), the product of HO, potentiated the efferocytic activity of macrophages. INNOVATION: This work provides the first evidence that TauCl stimulates efferocytosis by macrophages. The results of this study suggest the therapeutic potential of TauCl in the management of inflammatory disorders. CONCLUSION: TauCl can facilitate resolution of inflammation by increasing the efferocytic activity of macrophages through Nrf2-mediated HO-1 upregulation and subsequent production of CO.


Assuntos
Monóxido de Carbono/metabolismo , Heme Oxigenase-1/metabolismo , Macrófagos Peritoneais/metabolismo , Macrófagos/metabolismo , Fagocitose/efeitos dos fármacos , Taurina/análogos & derivados , Regulação para Cima/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Humanos , Inflamação/metabolismo , Células Jurkat , Proteína 1 Associada a ECH Semelhante a Kelch , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Taurina/farmacologia , Zimosan/metabolismo
12.
Biochem Biophys Res Commun ; 450(4): 1320-6, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-25003323

RESUMO

Tumor blood vessels are often leaky because of poor covering by mural cells and loose cell-to-cell contacts. Leaky vessels result in hemorrhage and limited vascular perfusion, which lead to hypoxic tumor microenvironment. Antiangiogenic agents have been shown to normalize the tumor blood vessels, albeit temporarily. Continued administration has been found to be associated with increased tumor hypoxia, a major driving force behind chemoresistance and metastasis. Sac-1004 was recently demonstrated to prevent vascular leakage, normalize tumor vessels and prevent metastasis in sustained manner. Here, we sought that combining antiangiogenic agent, sunitinib with Sac-1004 could have better inhibitory effect upon tumor growth. We found that B16F10 tumor growth was significantly reduced and tumor-bearing mice survival was increased upon combining sunitinib therapy with Sac-1004. In concordance with this observation, tumor vascular perfusion was substantially improved in tumors receiving combination therapy. In addition, tumor vascular leakage was reduced to higher extent in combination treatment group as compared to either therapy alone, an effect attributed to improved vascular junction. Interestingly, hypoxia in tumor environment was significantly reduced, when sunitinib was combined with Sac-1004. Taken together, our data demonstrates that combining antiangiogenic therapy with vascular-leakage inhibiting agent might be a beneficial strategy to combat cancer.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Indóis/uso terapêutico , Melanoma Experimental/irrigação sanguínea , Neovascularização Patológica/tratamento farmacológico , Pirróis/uso terapêutico , Saponinas/uso terapêutico , Inibidores da Angiogênese/administração & dosagem , Animais , Linhagem Celular Tumoral , Quimioterapia Combinada , Indóis/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Pirróis/administração & dosagem , Saponinas/administração & dosagem , Sunitinibe
13.
Oncotarget ; 5(9): 2761-77, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24811731

RESUMO

Tumor blood vessels are leaky and immature, which causes inadequate blood supply to tumor tissues resulting in hypoxic microenvironment and promotes metastasis. Here we have explored tumor vessel modulating activity of Sac-1004, a recently developed molecule in our lab, which directly potentiates VE-cadherin-mediated endothelial cell junction. Sac-1004 could enhance vascular junction integrity in tumor vessels and thereby inhibit vascular leakage and enhance vascular perfusion. Improved perfusion enabled Sac-1004 to have synergistic anti-tumor effect on cisplatin-mediated apoptosis of tumor cells. Interestingly, characteristics of normalized blood vessels namely reduced hypoxia, improved pericyte coverage and decreased basement membrane thickness were readily observed in tumors treated with Sac-1004. Remarkably, Sac-1004 was also able to inhibit lung and lymph node metastasis in MMTV and B16BL6 tumor models. This was in correlation with a reduction in epithelial-to-mesenchymal transition of tumor cells with considerable diminution in expression of related transcription factors. Moreover, cancer stem cell population dropped substantially in Sac-1004 treated tumor tissues. Taken together, our results showed that direct restoration of vascular junction could be a significant strategy to induce normalization of tumor blood vessels and reduce metastasis.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Carcinoma Pulmonar de Lewis/prevenção & controle , Endotélio Vascular/efeitos dos fármacos , Neoplasias Pulmonares/prevenção & controle , Melanoma Experimental/prevenção & controle , Neovascularização Patológica/prevenção & controle , Saponinas/farmacologia , Animais , Antígenos CD/genética , Apoptose/efeitos dos fármacos , Western Blotting , Caderinas/genética , Carcinoma Pulmonar de Lewis/irrigação sanguínea , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Retinopatia Diabética/prevenção & controle , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Células HeLa , Humanos , Técnicas Imunoenzimáticas , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Metástase Linfática , Células MCF-7 , Masculino , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Biochem Biophys Res Commun ; 435(3): 420-7, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23665326

RESUMO

The maintenance of endothelial barrier is critical for the vascular homeostasis and is maintained by the interaction of adherens junction (AJ) and tight junction (TJ) proteins between adjacent cells. This interaction is stabilized by actin cytoskeleton forming cortical actin ring. Here, we developed a novel vascular leakage blocker, Sac-1004 and investigated its mechanism of action in endothelial cells (ECs). Sac-1004 inhibited endothelial hyperpermeability induced by vascular endothelial growth factor, histamine and thrombin via stabilization of cortical actin ring and AJ proteins at the cell-cell junction. Treatment of Sac-1004 in ECs increased cAMP levels and activated Rac, both of which are known to strengthen endothelial barrier. Furthermore, Sac-1004 induced phosphorylation of cortactin and its localization at cell membrane that is essential for the stabilization of cortical actin ring. These effects of Sac-1004 on ECs were significantly abrogated by dideoxyadenosine (adenylyl cyclase inhibitor) and NSC23766 (Rac inhibitor). Taken together, our findings indicate that Sac-1004 blocks vascular leakage by enhancing endothelial integrity via the cAMP/Rac/cortactin pathway and imply the potential usefulness of Sac-1004 in the development of therapeutic means for vascular leakage-related diseases.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Permeabilidade Capilar/fisiologia , AMP Cíclico/fisiologia , Endotélio Vascular/efeitos dos fármacos , Pregnenolona/análogos & derivados , Saponinas/farmacologia , Transdução de Sinais/fisiologia , Proteínas rac de Ligação ao GTP/fisiologia , Células Cultivadas , Cortactina/fisiologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Pregnenolona/farmacologia , Transdução de Sinais/efeitos dos fármacos
15.
Eur J Pharmacol ; 657(1-3): 35-40, 2011 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-21296064

RESUMO

Endothelium integrity is important for the normal functioning of vessels, the disruption of which can lead to disease. The blood-retinal barrier required for normal retinal function is compromised in diabetic retinopathy, causing retinal vascular leakage. Previously, we demonstrated the ability of Sac-0601[((2R,3S)-3-acetoxy-6-((3S,10R,13R,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yloxy)-3,6-dihydro-2H-pyran-2-yl)methyl acetate], a pseudo-sugar derivative of cholesterol, to increase survival of retinal endothelial cells. In the present study, we evaluated the ability of Sac-0601 to prevent retinal vascular leakages in vitro and in vivo. Sac-0601 treatment blocked VEGF-induced formation of actin stress fibers and stabilized the cortical actin ring in retinal endothelial cells. It also inhibited degradation of occludin, an important tight junction protein, and blocked VEGF-induced disruption of its linear pattern at the cell border. The [(14)C] sucrose permeability assay demonstrated that Sac-0601 was able to prevent VEGF-induced retinal endothelial permeability. The compound inhibited the vascular leakage in retina of mice intravitreally injected with VEGF. And it also significantly reduced the leakage in retina of diabetic retinopathy mice model. Taken together, our findings suggest the potential therapeutic usefulness of Sac-0601 for retinal vascular permeability diseases.


Assuntos
Retinopatia Diabética/complicações , Fenantrenos/farmacologia , Piranos/farmacologia , Vasos Retinianos/efeitos dos fármacos , Doenças Vasculares/complicações , Doenças Vasculares/prevenção & controle , Animais , Permeabilidade Capilar/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Ocludina , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Fibras de Estresse/efeitos dos fármacos , Fibras de Estresse/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Doenças Vasculares/metabolismo , Doenças Vasculares/patologia , Fator A de Crescimento do Endotélio Vascular/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA