Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur Radiol ; 33(5): 3322-3331, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36547671

RESUMO

OBJECTIVES: To investigate the utility of hyperpolarized xenon-129 (HPX) gas-exchange magnetic resonance imaging (MRI) and modeling in a chronic obstructive pulmonary disease (COPD) cohort in comparison to a minimal CT-diagnosed emphysema (MCTE) cohort and a healthy cohort. METHODS: A total of 25 subjects were involved in this study including COPD (n = 8), MCTE (n = 3), and healthy (n = 14) subjects. The COPD subjects were scanned using HPX ventilation, gas-exchange MRI, and volumetric CT. The healthy subjects were scanned using the same HPX gas-exchange MRI protocol with 9 of them scanned twice, 3 weeks apart. The coefficient of variation (CV) was used to quantify image heterogeneities. A three-dimensional computational fluid dynamic (CFD) model of gas exchange was used to derive functional volumes of pulmonary tissue, capillaries, and veins. RESULTS: The CVs of gas distributions in the images showed that there was a statistically significant difference between the COPD and healthy subjects (p < 0.0001). The functional volumes of pulmonary tissue, capillaries, and veins were significantly lower in the subjects with COPD than in the healthy subjects (p < 0.001). The functional volume of pulmonary tissue was found to be (i) statistically different between the healthy and MCTE groups (p = 0.02) and (ii) dependent on the age of the subjects in the healthy group (p = 0.0008) while their CVs (p = 0.13) were not. CONCLUSION: The novel HPX gas-exchange MRI and CFD model distinguished the healthy cohort from the MCTE and COPD cohorts. The proposed technique also showed that the functional volume of pulmonary tissue decreases with aging in the healthy group. KEY POINTS: • The ventilation and gas-exchange imaging with hyperpolarized xenon-129 MRI has enabled the identification of gas-exchange variation between COPD and healthy groups. • This novel technique was promising to be sensitive to minimal CT-diagnosed emphysema and age-related changes in gas-exchange parameter in a small pilot cohort.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Pulmão/patologia , Imageamento por Ressonância Magnética/métodos , Xenônio
2.
J Biomech Eng ; 134(2): 021005, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22482672

RESUMO

Modeling of the cerebrospinal fluid (CSF) system in the spine is strongly motivated by the need to understand the origins of pathological conditions such as the emergence and growth of fluid-filled cysts in the spinal cord. In this study, a one-dimensional (1D) approximation for the flow in elastic conduits was used to formulate a model of the spinal CSF compartment. The modeling was based around a coaxial geometry in which the inner elastic cylinder represented the spinal cord, middle elastic tube represented the dura, and the outermost tube represented the vertebral column. The fluid-filled annuli between the cord and dura, and the dura and vertebral column, represented the subarachnoid and epidural spaces, respectively. The system of governing equations was constructed by applying a 1D form of mass and momentum conservation to all segments of the model. The developed 1D model was used to simulate CSF pulse excited by pressure disturbances in the subarachnoid and epidural spaces. The results were compared to those obtained from an equivalent two-dimensional finite element (FE) model which was implemented using a commercial software package. The analysis of linearized governing equations revealed the existence of three types of waves, of which the two slower waves can be clearly related to the wave modes identified in previous similar studies. The third, much faster, wave emanates directly from the vertebral column and has little effect on the deformation of the spinal cord. The results obtained from the 1D model and its FE counterpart were found to be in good general agreement even when sharp spatial gradients of the spinal cord stiffness were included; both models predicted large radial displacements of the cord at the location of an initial cyst. This study suggests that 1D modeling, which is computationally inexpensive and amenable to coupling with the models of the cranial CSF system, should be a useful approach for the analysis of some aspects of the CSF dynamics in the spine. The simulation of the CSF pulse excited by a pressure disturbance in the epidural space, points to the possibility that regions of the spinal cord with abnormally low stiffness may be prone to experiencing large strains due to coughing and sneezing.


Assuntos
Líquido Cefalorraquidiano , Modelos Biológicos , Coluna Vertebral , Fenômenos Biomecânicos , Líquido Cefalorraquidiano/fisiologia , Dura-Máter/fisiologia , Elasticidade , Análise de Elementos Finitos , Pressão , Medula Espinal/fisiologia , Coluna Vertebral/fisiologia , Espaço Subaracnóideo/fisiologia
3.
Med Image Anal ; 16(3): 721-30, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20627664

RESUMO

INTRODUCTION: Minimally invasive treatment approaches, like the implantation of percutaneous stents, are becoming more popular every day for the treatment of intracranial aneurysms. The outcome of such treatments is related to factors like vessel and aneurysm geometry, hemodynamic conditions and device design. For this reason, having a tool for assessing stenting alternatives beforehand is crucial. METHODOLOGY: The Fast Virtual Stenting (FVS) method, which provides an estimation of the configuration of intracranial stents when released in realistic geometries, is proposed in this paper. This method is based on constrained simplex deformable models. The constraints are used to account for the stent design. An algorithm for its computational implementation is also proposed. The performance of the proposed methodology was contrasted with real stents released in a silicone phantom. RESULTS: In vitro experiments were performed on the phantom where a contrast injection was performed. Subsequently, corresponding Computational Fluid Dynamics (CFD) analyzes were carried out on a digital replica of the phantom with the virtually released stent. Virtual angiographies are used to compare in vitro experiments and CFD analysis. Contrast time-density curves for in vitro and CFD data were generated and used to compare them. CONCLUSIONS: Results of both experiments resemble very well, especially when comparing the contrast density curves. The use of FVS methodology in the clinical environment could provide additional information to clinicians before the treatment to choose the therapy that best fits the patient.


Assuntos
Prótese Vascular , Angiografia Cerebral/métodos , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/cirurgia , Reconhecimento Automatizado de Padrão/métodos , Stents , Cirurgia Assistida por Computador/métodos , Humanos , Implantação de Prótese/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/métodos
4.
Med Image Comput Comput Assist Interv ; 14(Pt 1): 355-62, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22003637

RESUMO

Coiling is possibly the most widespread endovascular treatment for intracranial aneurysms. It consists in the placement of metal wires inside the aneurysm to promote blood coagulation. This work presents a virtual coiling technique for pre-interventional planning and post-operative assessment of coil embolization procedure of aneurysms. The technique uses a dynamic path planning algorithm to mimic coil insertion inside a 3D aneurysm model, which allows to obtain a plausible distribution of coils within a patient-specific anatomy. The technique was tested on two idealized geometries: an sphere and a hexahedron. Subsequently, the proposed technique was applied in 10 realistic aneurysm geometries to show its reliability in anatomical models. The results of the technique was compared to digital substraction angiography images of two aneurysms.


Assuntos
Embolização Terapêutica/instrumentação , Imageamento Tridimensional/métodos , Aneurisma Intracraniano/patologia , Aneurisma Intracraniano/cirurgia , Cirurgia Assistida por Computador/métodos , Algoritmos , Aneurisma , Angiografia/métodos , Simulação por Computador , Embolização Terapêutica/métodos , Desenho de Equipamento , Humanos , Metais/química , Modelos Anatômicos , Modelos Teóricos
5.
Ann Biomed Eng ; 36(5): 726-41, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18264766

RESUMO

There is a general lack of quantitative understanding about how specific design features of endovascular stents (struts and mesh design, porosity) affect the hemodynamics in intracranial aneurysms. To shed light on this issue, we studied two commercial high-porosity stents (Tristar stent and Wallstent) in aneurysm models of varying vessel curvature as well as in a patient-specific model using Computational Fluid Dynamics. We investigated how these stents modify hemodynamic parameters such as aneurysmal inflow rate, stasis, and wall shear stress, and how such changes are related to the specific designs. We found that the flow damping effect of stents and resulting aneurysmal stasis and wall shear stress are strongly influenced by stent porosity, strut design, and mesh hole shape. We also confirmed that the damping effect is significantly reduced at higher vessel curvatures, which indicates limited usefulness of high-porosity stents as a stand-alone treatment. Finally, we showed that the stasis-inducing performance of stents in 3D geometries can be predicted from the hydraulic resistance of their flat mesh screens. From this, we propose a methodology to cost-effectively compare different stent designs before running a full 3D simulation.


Assuntos
Velocidade do Fluxo Sanguíneo , Pressão Sanguínea , Prótese Vascular , Artérias Cerebrais/fisiopatologia , Artérias Cerebrais/cirurgia , Aneurisma Intracraniano/fisiopatologia , Aneurisma Intracraniano/cirurgia , Modelos Cardiovasculares , Simulação por Computador , Análise de Falha de Equipamento , Humanos , Desenho de Prótese , Cirurgia Assistida por Computador/métodos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA