Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Pediatr Allergy Immunol ; 35(8): e14199, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39092605

RESUMO

BACKGROUND: The coexistence of childhood asthma and mental health (MH) conditions can impact management and health outcomes but we need to better understand the etiology of multimorbidity. We investigated the association between childhood asthma and MH conditions as well as the determinants of their coexistence. METHODS: We used data from the Canadian Health Survey of Children and Youth 2019 (3-17 years; n = 47,871), a cross-sectional, nationally representative Statistics Canada dataset. Our primary outcome was condition status (no asthma or MH condition; asthma only; MH condition only; both asthma, and a MH condition (AMHM)). Predictors of condition status were assessed using multiple multinomial logistic regression. Sensitivity analyses considered individual MH conditions. RESULTS: MH condition prevalence was almost two-fold higher among those with asthma than those without asthma (21.1% vs. 11.6%, respectively). There were increased risks of each condition category associated with having allergies, other chronic conditions, and family members smoking in the home while there were protective associations with each condition status category for being female and born outside of Canada. Four additional variables were associated with AMHM and MH condition presence with one additional variable associated with both AMHM and asthma. In sensitivity analyses, the associations tended to be similar for most characteristics, although there was some variability. CONCLUSION: There are common risk factors of asthma and MH conditions along with their multimorbidity with a tendency for MH risk factors to be associated with multimorbidity. MH condition presence is common and important to assess among children with asthma.


Assuntos
Asma , Multimorbidade , Fatores de Proteção , Humanos , Asma/epidemiologia , Canadá/epidemiologia , Feminino , Criança , Masculino , Estudos Transversais , Adolescente , Fatores de Risco , Pré-Escolar , Prevalência , Inquéritos Epidemiológicos , Saúde Mental , Transtornos Mentais/epidemiologia
2.
Nutrients ; 16(16)2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39203895

RESUMO

BACKGROUND: Hyperhomocysteinemia can increase the risk of cardiovascular disease (CVD), cancer, and neurological disorders; however, hypohomocysteinemia is generally not considered harmful. This study aimed to evaluate the relationship between all levels of homocysteine, both low and high homocysteine levels, and the risk of all-cause and cause-specific mortality in adult Korean men. METHODS: Adult Korean men (n = 221,356) were categorized into quintiles based on their homocysteine levels. The primary endpoints were all-cause, CVD, cancer, and dementia mortality. Hazard ratios were calculated using Cox proportional hazards models, and the dose-response relationship between homocysteine levels and mortality risk was further explored using restricted cubic spline models. RESULTS: Compared with the reference category (Q2, 8.8-9.9 µmol/L), there was a significant increase in all-cause mortality associated with both low and high levels after multivariable adjustment (Pinteraction = 0.002). Additionally, in spline regression, a U-shaped association between homocysteine levels and all-cause and CVD mortality was observed (inflection point = 9.1 µmol/L). This association was not observed in the vitamin supplementation subgroup. CONCLUSION: Among Korean adult men, both low and high homocysteine levels increased the risk of all-cause and CVD mortality, indicating a U-shaped relationship. However, this relationship was not statistically significant with vitamin supplementation, suggesting a potential protective role for vitamins.


Assuntos
Doenças Cardiovasculares , Homocisteína , Humanos , Masculino , Homocisteína/sangue , República da Coreia/epidemiologia , Pessoa de Meia-Idade , Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/sangue , Adulto , Estudos de Coortes , Hiper-Homocisteinemia/sangue , Hiper-Homocisteinemia/mortalidade , Fatores de Risco , Causas de Morte , Modelos de Riscos Proporcionais , Idoso , Neoplasias/mortalidade , Neoplasias/sangue
3.
Biomol Ther (Seoul) ; 32(4): 481-491, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38835145

RESUMO

Paxlovid is the first approved oral treatment for coronavirus disease 2019 and includes nirmatrelvir, a protease inhibitor targeting the main protease (Mpro) of SARS-CoV-2, as one of the key components. While some specific mutations emerged in Mpro were revealed to significantly reduce viral susceptibility to nirmatrelvir in vitro, there is no report regarding resistance to nirmatrelvir in patients and animal models for SARS-CoV-2 infection yet. We recently developed xenograft tumors derived from Calu-3 cells in immunodeficient mice and demonstrated extended replication of SARS-CoV-2 in the tumors. In this study, we investigated the effect of nirmatrelvir administration on SARS-CoV-2 replication. Treatment with nirmatrelvir after virus infection significantly reduced the replication of the parental SARS-CoV-2 and SARS-CoV-2 Omicron at 5 days post-infection (dpi). However, the virus titers were completely recovered at the time points of 15 and 30 dpi. The virus genomes in the tumors at 30 dpi were analyzed to investigate whether nirmatrelvir-resistant mutant viruses had emerged during the extended replication of SARS-CoV-2. Various mutations in several genes including ORF1ab, ORF3a, ORF7a, ORF7b, ORF8, and N occurred in the SARS-CoV-2 genome; however, no mutations were induced in the Mpro sequence by a single round of nirmatrelvir treatment, and none were observed even after two rounds of treatment. The parental SARS-CoV-2 and its sublineage isolates showed similar IC50 values of nirmatrelvir in Vero E6 cells. Therefore, it is probable that inducing viral resistance to nirmatrelvir in vivo is challenging differently from in vitro passage.

4.
Chembiochem ; 25(13): e202400237, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38712989

RESUMO

C-terminal truncated variants (A, VA, NVA, ANVA, FANVA and GFANVA) of our recently identified Cu(II) specific peptide "HGFANVA" were displayed on filamentous fd phages. Wild type fd-tet and engineered virus variants were treated with 100 mM Cu(II) solution at a final phage concentration of 1011 vir/ml and 1012 vir/ml. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) imaging before Cu(II) exposure showed ≈6-8 nm thick filamentous virus layer formation. Cu(II) treatment resulted in aggregated bundle-like assemblies with mineral deposition. HGFANVA phage formed aggregates with an excessive mineral coverage. As the virus concentration was 10-fold decreased, nanowire-like assemblies were observed for shorter peptide variants A, NVA and ANVA. Wild type fd phages did not show any mineral formation. Energy dispersive X-ray spectroscopy (EDX) analyses revealed the presence of C and N peaks on phage organic material. Cu peak was only detected for engineered viruses. Metal ion binding of viruses was next investigated by enzyme-linked immunosorbent assay (ELISA) analyses. Engineered viruses were able to bind Cu(II) forming mineralized intertwined structures although no His (H) unit was displayed. Such genetically reprogrammed virus based biological materials can be further applied for bioremediation studies to achieve a circular economy.


Assuntos
Cobre , Cobre/química , Cobre/metabolismo , Íons/química , Íons/metabolismo , Peptídeos/química , Peptídeos/metabolismo
5.
Virus Genes ; 60(3): 251-262, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38587722

RESUMO

SARS-CoV-2 Omicron has the largest number of mutations among all the known SARS-CoV-2 variants. The presence of these mutations might explain why Omicron is more infectious and vaccines have lower efficacy to Omicron than other variants, despite lower virulence of Omicron. We recently established a long-term in vivo replication model by infecting Calu-3 xenograft tumors in immunodeficient mice with parental SARS-CoV-2 and found that various mutations occurred majorly in the spike protein during extended replication. To investigate whether there are differences in the spectrum and frequency of mutations between parental SARS-CoV-2 and Omicron, we here applied this model to Omicron. At 30 days after infection, we found that the virus was present at high titers in the tumor tissues and had developed several rare sporadic mutations, mainly in ORF1ab with additional minor spike protein mutations. Many of the mutant isolates had higher replicative activity in Calu-3 cells compared with the original SARS-CoV-2 Omicron virus, suggesting that the novel mutations contributed to increased viral replication. Serial propagation of SARS-CoV-2 Omicron in cultured Calu-3 cells resulted in several rare sporadic mutations in various viral proteins with no mutations in the spike protein. Therefore, the genome of SARS-CoV-2 Omicron seems largely stable compared with that of the parental SARS-CoV-2 during extended replication in Calu-3 cells and xenograft model. The sporadic mutations and modified growth properties observed in Omicron might explain the emergence of Omicron sublineages. However, we cannot exclude the possibility of some differences in natural infection.


Assuntos
COVID-19 , Neoplasias Pulmonares , Mutação , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Replicação Viral , Animais , Replicação Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Camundongos , Humanos , COVID-19/virologia , Neoplasias Pulmonares/virologia , Neoplasias Pulmonares/genética , Glicoproteína da Espícula de Coronavírus/genética , Modelos Animais de Doenças , Linhagem Celular Tumoral
6.
J Med Virol ; 96(2): e29459, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38345153

RESUMO

We recently established a long-term SARS-CoV-2 infection model using lung-cancer xenograft mice and identified mutations that arose in the SARS-CoV-2 genome during long-term propagation. Here, we applied our model to the SARS-CoV-2 Delta variant, which has increased transmissibility and immune escape compared with ancestral SARS-CoV-2. We observed limited mutations in SARS-CoV-2 Delta during long-term propagation, including two predominant mutations: R682W in the spike protein and L330W in the nucleocapsid protein. We analyzed two representative isolates, Delta-10 and Delta-12, with both predominant mutations and some additional mutations. Delta-10 and Delta-12 showed lower replication capacity compared with SARS-CoV-2 Delta in cultured cells; however, Delta-12 was more lethal in K18-hACE2 mice compared with SARS-CoV-2 Delta and Delta-10. Mice infected with Delta-12 had higher viral titers, more severe histopathology in the lungs, higher chemokine expression, increased astrocyte and microglia activation, and extensive neutrophil infiltration in the brain. Brain tissue hemorrhage and mild vacuolation were also observed, suggesting that the high lethality of Delta-12 was associated with lung and brain pathology. Our long-term infection model can provide mutant viruses derived from SARS-CoV-2 Delta and knowledge about the possible contributions of emergent mutations to the properties of new variants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Camundongos , Xenoenxertos , SARS-CoV-2/genética , Encéfalo
7.
BMC Womens Health ; 24(1): 116, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347568

RESUMO

BACKGROUND: The present study aimed to evaluate the long-term oncological and obstetric outcomes following the loop electrosurgical excision procedure (LEEP) in patients with cervical intraepithelial neoplasia (CIN) and investigate the risk factors for recurrence and preterm birth. METHODS: This retrospective cohort study included patients who underwent LEEP for CIN 2-3 between 2011 and 2019. Demographic information, histopathological findings, postoperative cytology, and human papillomavirus (HPV) status were collected and analyzed. The Cox proportional hazards model and Kaplan-Meier curves with the log-rank test were used for risk factor analysis. RESULTS: A total of 385 patients treated with the LEEP were analyzed. Treatment failure, including recurrence or residual disease following surgery, was observed in 13.5% of the patients. Positive surgical margins and postoperative HPV detection were independent risk factors for CIN1 + recurrence or residual disease (HR 1.948 [95%CI 1.020-3.720], p = 0.043, and HR 6.848 [95%CI 3.652-12.840], p-value < 0.001, respectively). Thirty-one patients subsequently delivered after LEEP, and the duration between LEEP and delivery was significantly associated with preterm-related complications, such as a short cervix, preterm labor, and preterm premature rupture of the membrane (p = 0.009). However, only a history of preterm birth was associated with preterm delivery. CONCLUSIONS: Positive HPV status after LEEP and margin status were identified as independent risk factors for treatment failure in patients with CIN who underwent LEEP. However, combining these two factors did not improve the prediction accuracy for recurrence.


Assuntos
Infecções por Papillomavirus , Nascimento Prematuro , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Gravidez , Feminino , Recém-Nascido , Humanos , Estudos Retrospectivos , Margens de Excisão , Papillomavirus Humano , Eletrocirurgia/métodos , Infecções por Papillomavirus/complicações , Nascimento Prematuro/epidemiologia , Displasia do Colo do Útero/patologia , Recidiva Local de Neoplasia/cirurgia
8.
Biotechnol J ; 19(1): e2300482, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38009643

RESUMO

Phage display technology employs a library of engineered filamentous M13 viruses infecting only bacteria. In this study, the genuine phage display selection technique was applied to identify a Pb(II) specific peptide. After three rounds of positive selection against Pb(II) coated agarose-based beads and the consecutive negative screenings against interfering metal ions (Al(III), Co(II), Fe(III), Ni(II), and Zn(II)), a final phage library with enhanced Pb(II) binding was obtained. Enzyme Linked Immunosorbent Assay (ELISA) analyses confirmed the selective Pb(II) binding of the enriched viruses. Twenty monoclonal phage plaques were randomly selected, single stranded DNAs (ssDNAs) were isolated and sequenced. Sequencing results revealed four different peptide sequences. Pb9 peptide (KASPYIT) showing the most specific Pb(II) binding was selected for detection studies. Pb9 was synthetically synthesized with additional three cysteine (3xCys) units at C-terminal. Twenty nanometers AuNPs were functionalized with Pb9-3xCys peptides through Au-thiol (Au-S) interaction. A colorimetric Pb(II) detection system was validated using the engineered peptide-AuNP complex at a calculated LOD of around 11 nM (3σ/k, n = 6) for the case study. The detection system was Pb(II) selective over various metal ions (Ag(II), Al(III), Au(III), Cd(II), Co(II), Cr (III), Cu(II), Fe(III), Hg(II), Mg(II), Mn(II), Ni(II), and Zn(II)). Such metal ion specific peptides can be further studied to develop simple, user friendly and cost-effective tools to design alternative detection and bioremediation systems for a circular economy.


Assuntos
Bacteriófagos , Nanopartículas Metálicas , Ouro , Chumbo , Colorimetria/métodos , Compostos Férricos , Peptídeos , Íons , Bacteriófagos/genética
9.
Front Cell Infect Microbiol ; 13: 1280686, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029235

RESUMO

Introduction: The spectrum of SARS-CoV-2 mutations have increased over time, resulting in the emergence of several variants of concern. Persistent infection is assumed to be involved in the evolution of the variants. Calu-3 human lung cancer cells persistently grow without apoptosis and release low virus titers after infection. Methods: We established a novel in vivo long-term replication model using xenografts of Calu-3 human lung cancer cells in immunodeficient mice. Virus replication in the tumor was monitored for 30 days and occurrence of mutations in the viral genome was determined by whole-genome deep sequencing. Viral isolates with mutations were selected after plaque forming assays and their properties were determined in cells and in K18-hACE2 mice. Results: After infection with parental SARS-CoV-2, viruses were found in the tumor tissues for up to 30 days and acquired various mutations, predominantly in the spike (S) protein, some of which increased while others fluctuated for 30 days. Three viral isolates with different combination of mutations produced higher virus titers than the parental virus in Calu-3 cells without cytopathic effects. In K18-hACE2 mice, the variants were less lethal than the parental virus. Infection with each variant induced production of cross-reactive antibodies to the receptor binding domain of parental SARS-CoV-2 S protein and provided protective immunity against subsequent challenge with parental virus. Discussion: These results suggest that most of the SARS-CoV-2 variants acquired mutations promoting host adaptation in the Calu-3 xenograft mice. This model can be used in the future to further study SARS-CoV-2 variants upon long-term replication in vivo.


Assuntos
SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Camundongos , COVID-19/virologia , Neoplasias Pulmonares , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Linhagem Celular Tumoral
10.
Drug Test Anal ; 15(11-12): 1439-1448, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37667448

RESUMO

Due to athletes' misuse of recombinant human growth hormone (rhGH) for performance improvement, the World Anti-Doping Agency has designated rhGH as a prohibited substance. This study focuses on the development and improvement of a simple and fast rhGH detection method using a fluorescence-incorporated antibody sensor "Quenchbody (Q-body)" that activates upon antigen binding. Camelid-derived nanobodies were used to produce stable Q-bodies that withstand high temperatures and pH levels. Notably, pituitary human growth hormone (phGH) comprises two major isoforms, namely 22 and 20 kDa GH, which exist in a specific ratio, and the rhGH variant shares the same sequence as the 22 kDa GH isoform. Therefore, we aimed to discriminate rhGH abuse by analyzing its specific isoform ratio. Two nanobodies, NbPit (recognizing phGH) and NbRec (preferentially recognizing 22 kDa rhGH), were used to develop the Q-bodies. Nanobody production in Escherichia coli involved the utilization of a vector containing 6xHis-tag, and Q-bodies were obtained using a maleimide-thiol reaction between the N-terminal of the cysteine tag and a fluorescent dye. The addition of tryptophan residue through antibody engineering resulted in increased fluorescence intensity (FI) (from 2.58-fold to 3.04-fold). The limit of detection (LOD) was determined using a fluorescence response, with TAMRA-labeled NbRec successfully detecting 6.38 ng/ml of 22 kDa rhGH while unable to detect 20 kDa GH. However, ATTO520-labeled NbPit detected 7.00 ng/ml of 20 kDa GH and 2.20 ng/ml 22 kDa rhGH. Q-bodies successfully detected changes in the GH concentration ratio from 10 to 40 ng/ml in human serum within 10 min without requiring specialized equipment and kits. Overall, these findings have potential applications in the field of anti-doping measures and can contribute to improved monitoring and enforcement of rhGH misuse, ultimately enhancing fairness and integrity in competitive sports.


Assuntos
Hormônio do Crescimento Humano , Anticorpos de Domínio Único , Humanos , Hormônio do Crescimento , Proteínas Recombinantes , Isoformas de Proteínas
11.
Nanoscale ; 15(33): 13685-13691, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37555310

RESUMO

Metal-assisted chemical etching (MACE) has received much attention from researchers because it can be used to fabricate plasma-free anisotropic etching profiles for semiconductors. However, the etching mechanism of MACE is based on the catalytic reaction of noble metals, which restricts its use in complementary metal oxide semiconductor (CMOS) processes. To obtain process compatibility, we developed catalytic Ni after alloying it with Si as a substitute for noble metals in the MACE of Si substrates. Nickel silicide is a material commonly used as a contact electrode in CMOS processes. When NiSi was used as the catalyst, the anisotropic etching of Si with a smooth surface was successfully demonstrated. Silicidation increased the standard reduction potential of the Ni alloy and enhanced the electrochemical stability in the MACE of Si. In contrast, when pure Ni was used as the catalyst, a rough-etched surface was fabricated because of the low standard reduction potential. Based on the experimental results, the factors affecting the MACE of Si were systematically analyzed to optimize the catalytic NiSi properties. The implementation of the NiSi alloy potentially eliminates the use of noble metals in MACE and allows the technology to be adopted in contemporary CMOS processes.

12.
Ther Innov Regul Sci ; 57(4): 759-768, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37183236

RESUMO

INTRODUCTION: Since introducing the positive listing system in 2007, the South Korean government has undergone multiple changes in its drug listing system. As there is a lack of studies that evaluate the system from an industry perspective, this paper examined South Korea's new drug listing system from the suppliers' perspective. METHODS: We surveyed members of the three main pharmaceutical industry associations online. The survey (a 5-point Likert scale) covered their satisfactory levels, demands, and updates on the current new drug listing system, especially pharmacoeconomic evaluation, pharmacoeconomic evaluation exemption, and risk-sharing agreement. RESULTS: A total of 56 respondents participated in the survey. The self-reported satisfaction level for value recognition of new drugs was 1.6 (± 0.7) points (5 points = very satisfied). The most highly demanded reforms for PE, RSA, and PEE were incremental cost-effectiveness ratio threshold (92.9%), reimbursement scope expansion (91.1%), and eligible disease (83.9%). Lastly, they also claimed that the indication-based pricing system must be introduced (83.9%). CONCLUSIONS: Pricing and reimbursement policies need to improve in such a way that would enable better access to new drugs while still facilitating their development. Given the nature of the current system, some innovative rare disease treatments and anticancer drugs remain unreimbursed, resulting in low satisfaction levels across the pharmaceutical industry. Hence, pathways to speed up the reimbursement assessment process and expand the range of reimbursable diseases are required. Pharmaceutical companies are also important stakeholders, like in the case of clinicians and patients, and their opinions should also be considered in the process of pricing and reimbursement policy reforms.


Assuntos
Custos de Medicamentos , Reembolso de Seguro de Saúde , Humanos , Farmacoeconomia , Inquéritos e Questionários , República da Coreia
13.
J Cancer ; 14(4): 600-610, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37057288

RESUMO

Background: This study aimed to determine the optimal combination of biomarkers that can predict epithelial ovarian cancer (EOC) and compare the combination with the risk of ovarian malignancy algorithm (ROMA) or Copenhagen index (CPH-I). Methods: Data from 66 patients with EOC and 599 patients with benign ovarian masses who underwent definitive tissue diagnosis of adnexal masses between January 2017 and March 2021 were analyzed. The Mann-Whitney U test or Kruskal-Wallis test was used for between-group comparisons of medians. Logistic regression was used to establish an EOC predictor model. Area under the curve (AUC) comparisons between models were performed using the Delong nonparametric approach. Results: The median age of the patients was 43 years. Twenty-nine (43.9%) patients had early-stage disease (stages I-II) and 37 (56.1%) patients had advanced-stage disease (stages III-IV). The median age, body mass index, white blood cell count, hemoglobin-to-red cell distribution width ratio (HRR), platelet count, platelet-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, serum albumin level, cancer antigen 125, human epididymal secretory protein 4 (HE4), ROMA, and CPH-I were significantly different between the stage I-IV EOC and benign ovarian mass groups. Multivariate logistic regression analysis revealed that HE4, HRR, and computed tomography (CT) imaging were significant predictors of both stages I-IV and I-II EOC. Using these covariates, an interim model (IM) (consisting of HE4 and HRR) and a full model (FM) (consisting of HE4, HRR, and CT imaging) were constructed. When predicting stage I-IV EOC, the AUC of IM was comparable to that of ROMA or CPH-I, whereas the AUC of FM outperformed ROMA or CPH-I. In predicting stage I-II EOC, the AUC of IM was comparable to that of CPH-I but higher than that of ROMA, and the AUC of FM outperformed ROMA or CPH-I. Conclusion: FM outperformed ROMA or CPH-I in predicting stage I-IV EOC and stage I-II EOC. Therefore, FM could be a promising model for improving preoperative prediction of EOC at an early stage. However, further prospective studies are required to validate these results.

14.
EMBO J ; 42(11): e111901, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36917141

RESUMO

Changes in mitochondrial morphology are associated with nutrient utilization, but the precise causalities and the underlying mechanisms remain unknown. Here, using cellular models representing a wide variety of mitochondrial shapes, we show a strong linear correlation between mitochondrial fragmentation and increased fatty acid oxidation (FAO) rates. Forced mitochondrial elongation following MFN2 over-expression or DRP1 depletion diminishes FAO, while forced fragmentation upon knockdown or knockout of MFN2 augments FAO as evident from respirometry and metabolic tracing. Remarkably, the genetic induction of fragmentation phenocopies distinct cell type-specific biological functions of enhanced FAO. These include stimulation of gluconeogenesis in hepatocytes, induction of insulin secretion in islet ß-cells exposed to fatty acids, and survival of FAO-dependent lymphoma subtypes. We find that fragmentation increases long-chain but not short-chain FAO, identifying carnitine O-palmitoyltransferase 1 (CPT1) as the downstream effector of mitochondrial morphology in regulation of FAO. Mechanistically, we determined that fragmentation reduces malonyl-CoA inhibition of CPT1, while elongation increases CPT1 sensitivity to malonyl-CoA inhibition. Overall, these findings underscore a physiologic role for fragmentation as a mechanism whereby cellular fuel preference and FAO capacity are determined.


Assuntos
Ácidos Graxos , Malonil Coenzima A , Ácidos Graxos/metabolismo , Malonil Coenzima A/metabolismo , Malonil Coenzima A/farmacologia , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Oxirredução , Mitocôndrias/metabolismo
15.
Am J Cancer Res ; 13(2): 638-653, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895965

RESUMO

KIF5B-RET gene rearrangement occurs in ~1% of lung adenocarcinomas. Recently, targeted agents that inhibit RET phosphorylation have been evaluated in several clinical studies; however, little is known about the role of this gene fusion in driving lung cancer. Immunohistochemistry was used to evaluate the expression of the FOXA2 protein in tumor tissues of patients with lung adenocarcinoma. KIF5B-RET fusion cells proliferated in a cohesive form and grew tightly packed with variable-sized colonies. The expression of RET and its downstream signaling molecules, including p-BRAF, p-ERK, and p-AKT, increased. In KIF5B-RET fusion cells, the intracellular expression of p-ERK was higher in the cytoplasm than in the nucleus. Two transcription factors, STAT5A and FOXA2, exhibiting significantly different expressions at the mRNA level, were finally selected. p-STAT5A was highly expressed in the nucleus and cytoplasm, whereas the expression of the FOXA2 protein was lower; however, it was much higher in the nucleus than in the cytoplasm. Compared with the expression of FOXA2 in the RET rearrangement-wild NSCLC (45.0%), high expression (3+) were observed in most RET rearrangement NSCLCs (94.4%). Meanwhile, KIF5B-RET fusion cells began to increase belatedly from day 7 and only doubled on day 9 in 2D cell culture. However, tumors in mice injected with KIF5B-RET fusion cells began to rapidly increase from day 26. In cell cycle analyses, the KIF5B-RET fusion cells in G0/G1 were increased on day 4 (50.3 ± 2.6%) compared with the empty cells (39.3 ± 5.2%; P = 0.096). Cyclin D1 and E2 expressions were reduced, whereas CDK2 expression slightly increased. pRb and p21 expression was diminished compared with the empty cells, TGF-ß1 mRNA was highly expressed, and the proteins were accumulated mostly in the nucleus. Twist mRNA and protein expression was increased, whereas Snail mRNA and protein expression was decreased. Particularly, in KIF5B-RET fusion cells treated with FOXA2 siRNA, the expression of TGF-ß 1 mRNA was remarkably reduced but Twist1 and Snail mRNA were increased. Our data suggest that cell proliferation and invasiveness in KIF5B-RET fusion cells are regulated by the upregulation of STAT5A and FOXA2 through the continuous activation of multiple RET downstream signal cascades, including the ERK and AKT signaling pathways. We found that TGF-ß1 mRNA, where significant increments were observed in KIF5B-RET fusion cells, is regulated at the transcriptional level by FOXA2.

16.
Expert Rev Pharmacoecon Outcomes Res ; 23(5): 519-525, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36922505

RESUMO

OBJECTIVE: This study aims to analyze the effect of the copayment reduction system on accessibility to orphan drugs (ODs) in South Korea. METHODS: Data on approval and reimbursement for drugs designated as ODs for the last 10 years (2012-2021) in South Korea were extracted. Among them, with 136 approved products as of 31 December 2022, the reimbursement rates and lead time to reimbursement between drugs for rare diseases (DRDs) and nondrugs for rare diseases (non-DRDs) were analyzed. The pricing and reimbursement (P&R) pathways between drugs for only rare diseases (DORDs) and drugs for rare and cancerous diseases (DRCDs) were compared. RESULTS: The reimbursement rates for DRDs and non-DRDs were 54.8% and 33.3%, respectively, and the lead time to reimbursement for DRDs and non-DRDs were 16.1 months and 31.2 months, respectively. The P&R pathways for DORDs and DRCDs were pharmacoeconomic evaluation waivers (21.7% and 52.6%), weighted average price (52.2% and 13.2%), and risk-sharing agreement (30.4% and 81.6%). CONCLUSION: The copayment reduction system may act as a driver and also barrier for the reimbursement of ODs. To expand treatment accessibility to ODs, it is necessary to consistently grants benefits in all processes from OD designation to market access.


Assuntos
Produção de Droga sem Interesse Comercial , Doenças Raras , Humanos , Doenças Raras/tratamento farmacológico , Farmacoeconomia , Custos e Análise de Custo , República da Coreia
17.
Talanta ; 258: 124455, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36933297

RESUMO

A genetic approach targeted toward improving athletic performance is called gene doping and is prohibited by the World Anti-Doping Agency. Currently, the clustered regularly interspaced short palindromic repeats-associated protein (Cas)-related assays have been utilized to detect genetic deficiencies or mutations. Among the Cas proteins, deadCas9 (dCas9), a nuclease-deficient mutant of Cas9, acts as a DNA binding protein with a target-specific single guide RNA. On the basis of the principles, we developed a dCas9-based high-throughput gene doping analysis for exogenous gene detection. The assay comprises two distinctive dCas9s, a magnetic bead immobilized capture dCas9 for exogenous gene isolation and a biotinylated dCas9 with streptavidin-polyHRP that enables rapid signal amplification. For efficient biotin labeling via maleimide-thiol chemistry, two cysteine residues of dCas9 were structurally validated, and the Cys574 residue was identified as an essential labeling site. As a result, we succeeded in detecting the target gene in a concentration as low as 12.3 fM (7.41 × 105 copies) and up to 10 nM (6.07 × 1011 copies) in a whole blood sample within 1 h with HiGDA. Assuming an exogenous gene transfer scenario, we added a direct blood amplification step to establish a rapid analytical procedure while detecting target genes with high sensitivity. Finally, we detected the exogenous human erythropoietin gene at concentrations as low as 2.5 copies within 90 min in 5 µL of the blood sample. Herein, we propose that HiGDA is a very fast, highly sensitive, and practical detection method for actual doping field in the future.


Assuntos
Sistemas CRISPR-Cas , Eritropoetina , Humanos , Eritropoetina/genética
18.
Stem Cells Dev ; 32(7-8): 170-179, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36734415

RESUMO

Most pediatric patients with global developmental delay (GDD) or intellectual disability (ID) have disrupted development. Since allogeneic umbilical cord blood (UCB) may exert neurotrophic effects, a prospective clinical trial was conducted to assess the efficacy and safety of UCB therapy for GDD and ID. A total of 13 children (ages 23-149 months) with GDD and ID were enrolled and followed up for 12 months. Under criteria of histocompatibility and cell number, allogeneic UCB units were selected and infused once intravenously, and adverse events were monitored. The Bayley Scale of Infant Development-II (BSID-II) was used as primary outcome measurement tool, and evaluations for various functional abilities were also implemented. Safety assessment did not reveal significant adverse effects. Functional improvements in mental and motor developments along with daily living activities and languages were observed at 12 months postintervention compared with the baseline abilities (P < 0.05). Furthermore, mental developmental quotient derived from BSID-II mental scale revealed significantly facilitated improvement during the first 3 months (P < 0.05). In the survey conducted 80.7 ± 13.0 months after UCB infusion to assess satisfaction and long-term safety, no long-term adverse effects were reported, and 70% of the guardians reported satisfaction with the UCB infusion. Long-term changes in two patients who were regularly followed up beyond the study completion were noticeable. One case observed for 4 years showed dramatic improvement until 12 months after UCB therapy, whereas she showed insignificant improvement beyond 12 months after the therapy. Another case showed alleviation of autism with findings of anti-inflammatory response in his peripheral blood after UCB infusion. This clinical study provides support for further applications of UCB as a therapeutic avenue for children with GDD or ID owing to its safety and partial efficacy. Due to patient heterogeneity, further studies focusing on specific clinical manifestations and etiologies are required. Registered at www.clinicaltrials.gov (NCT01769716).


Assuntos
Transplante de Células-Tronco Hematopoéticas , Deficiência Intelectual , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Contagem de Células , Sangue Fetal , Deficiência Intelectual/terapia , Estudos Prospectivos
19.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36430531

RESUMO

Renal fibrosis, the final pathway of chronic kidney disease, is caused by genetic and epigenetic mechanisms. Although DNA methylation has drawn attention as a developing mechanism of renal fibrosis, its contribution to renal fibrosis has not been clarified. To address this issue, the effect of zebularine, a DNA methyltransferase inhibitor, on renal inflammation and fibrosis in the murine unilateral ureteral obstruction (UUO) model was analyzed. Zebularine significantly attenuated renal tubulointerstitial fibrosis and inflammation. Zebularine decreased trichrome, α-smooth muscle actin, collagen IV, and transforming growth factor-ß1 staining by 56.2%. 21.3%, 30.3%, and 29.9%, respectively, at 3 days, and by 54.6%, 41.9%, 45.9%, and 61.7%, respectively, at 7 days after UUO. Zebularine downregulated mRNA expression levels of matrix metalloproteinase (MMP)-2, MMP-9, fibronectin, and Snail1 by 48.6%. 71.4%, 31.8%, and 42.4%, respectively, at 7 days after UUO. Zebularine also suppressed the activation of nuclear factor-κB (NF-κB) and the expression of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6, by 69.8%, 74.9%, and 69.6%, respectively, in obstructed kidneys. Furthermore, inhibiting DNA methyltransferase buttressed the nuclear expression of nuclear factor (erythroid-derived 2)-like factor 2, which upregulated downstream effectors such as catalase (1.838-fold increase at 7 days, p < 0.01), superoxide dismutase 1 (1.494-fold increase at 7 days, p < 0.05), and NAD(P)H: quinone oxidoreduate-1 (1.376-fold increase at 7 days, p < 0.05) in obstructed kidneys. Collectively, these findings suggest that inhibiting DNA methylation restores the disrupted balance between pro-inflammatory and anti-inflammatory pathways to alleviate renal inflammation and fibrosis. Therefore, these results highlight the possibility of DNA methyltransferases as therapeutic targets for treating renal inflammation and fibrosis.


Assuntos
Nefrite , Insuficiência Renal Crônica , Obstrução Ureteral , Camundongos , Animais , Fibrose , Nefrite/patologia , Obstrução Ureteral/complicações , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/genética , Inflamação/patologia , Insuficiência Renal Crônica/complicações , Metilases de Modificação do DNA , DNA/uso terapêutico
20.
Front Neurol ; 13: 813597, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392634

RESUMO

Objective: Post-stroke cognitive impairment (PSCI) is resistant to treatment. Recent studies have widely applied repetitive transcranial magnetic stimulation (rTMS) to treat various brain dysfunctions, such as post-stroke syndromes. Nonetheless, a protocol for PSCI has not been established. Therefore, this study is aimed to evaluate the therapeutic effect of our high-frequency rTMS protocol for PSCI during the chronic phase of stroke. Methods: In this prospective study, ten patients with PSCI were enrolled and received high-frequency rTMS on the ipsilesional dorsolateral prefrontal cortex (DLPFC) for 10 sessions (5 days per week for 2 weeks). Cognitive and affective abilities were assessed at baseline and 2 and 14 weeks after rTMS initiation. To investigate the therapeutic mechanism of rTMS, the mRNA levels of pro-inflammatory cytokines (interleukin (IL)-6, IL-1ß, transforming growth factor beta [TGF-ß], and tumor necrosis factor alpha [TNF-α]) in peripheral blood samples were quantified using reverse transcription polymerase chain reaction, and cognitive functional magnetic resonance imaging (fMRI) was conducted at baseline and 14 weeks in two randomly selected patients after rTMS treatment. Results: The scores of several cognitive evaluations, i.e., the Intelligence Quotient (IQ) of Wechsler Adult Intelligence Scale, auditory verbal learning test (AVLT), and complex figure copy test (CFT), were increased after completion of the rTMS session. After 3 months, these improvements were sustained, and scores on the Mini-Mental Status Examination and Montreal Cognitive Assessment (MoCA) were also increased (p < 0.05). While the Geriatric Depression Scale (GeDS) did not show change among all patients, those with moderate-to-severe depression showed amelioration of the score, with marginal significance. Expression of pro-inflammatory cytokines was decreased immediately after the ten treatment sessions, among which, IL-1ß remained at a lower level after 3 months. Furthermore, strong correlations between the decrease in IL-6 and increments in AVLT (r = 0.928) and CFT (r = 0.886) were found immediately after the rTMS treatment (p < 0.05). Follow-up fMRI revealed significant activation in several brain regions, such as the medial frontal lobe, hippocampus, and angular area. Conclusions: High-frequency rTMS on the ipsilesional DLPFC may exert immediate efficacy on cognition with the anti-inflammatory response and changes in brain network in PSCI, lasting at least 3 months.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA