Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 25(2): e14157, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37820316

RESUMO

Radioembolization using Yttrium-90 (90 Y) microspheres is widely used to treat primary and metastatic liver tumors. The present work provides minimum practice guidelines for establishing and supporting such a program. Medical physicists play a key role in patient and staff safety during these procedures. Products currently available are identified and their properties and suppliers summarized. Appropriateness for use is the domain of the treating physician. Patient work up starts with pre-treatment imaging. First, a mapping study using Technetium-99m (Tc-99m ) is carried out to quantify the lung shunt fraction (LSF) and to characterize the vascular supply of the liver. An MRI, CT, or a PET-CT scan is used to obtain information on the tumor burden. The tumor volume, LSF, tumor histology, and other pertinent patient characteristics are used to decide the type and quantity of 90 Y to be ordered. On the day of treatment, the appropriate dose is assayed using a dose calibrator with a calibration traceable to a national standard. In the treatment suite, the care team led by an interventional radiologist delivers the dose using real-time image guidance. The treatment suite is posted as a radioactive area during the procedure and staff wear radiation dosimeters. The treatment room, patient, and staff are surveyed post-procedure. The dose delivered to the patient is determined from the ratio of pre-treatment and residual waste exposure rate measurements. Establishing such a treatment modality is a major undertaking requiring an institutional radioactive materials license amendment complying with appropriate federal and state radiation regulations and appropriate staff training commensurate with their respective role and function in the planning and delivery of the procedure. Training, documentation, and areas for potential failure modes are identified and guidance is provided to ameliorate them.


Assuntos
Embolização Terapêutica , Neoplasias Hepáticas , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Microesferas , Neoplasias Hepáticas/radioterapia , Radioisótopos de Ítrio/uso terapêutico , Embolização Terapêutica/métodos , Física
2.
Phys Med ; 68: 132-145, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31785502

RESUMO

Radioembolization gains continuous traction as a primarily palliative radiation treatment for hepatic tumours. A form of nuclear medicine therapy, Yttrium-90 containing microspheres are catheter guided and injected into the right, left, or a specifically selected hepatic artery. A multitude of comprehensive planning steps exist to ensure a thorough and successful treatment. Clear clinical and physiological guidelines have been established and nuclear imaging is used to plan and verify dose distributions. Radioembolization's treatment rationale is based on tumour and blood vessel dynamics that allow a targeted treatment approach. However, radioembolization's dosimetry is grossly oversimplified. In fact, the currently utilized clinical dosimetric standards (e.g. partition method) have persisted since the 1990s. Moreover, the multitude of radioembolization's intertwining components lies disjointed within the literature. Particularly relevant to new readers, this review provides a methodical guide that presents the treatment rationale behind every clinical step. The emerging dosimetry methods and its factors are further discussed to provide a comprehensive review on an essential research direction.


Assuntos
Embolização Terapêutica/métodos , Radioisótopos de Ítrio/uso terapêutico , Humanos , Radiometria , Planejamento da Radioterapia Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA