Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 105(6): 1636-1644, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27174442

RESUMO

Titanium (Ti) screw has excellent mechanical property, and osseointegration capacity. However, they require surgery for removal. In contrast, polymer screws are resorbable, but they have poor mechanical properties. In this research, magnesium alloy screws (WE43: Mg-Y-Nd-Zr) that have advantages of titanium and polymer were manufactured. In addition, to increase biocompatibility and control degradation rate, the Mg alloy was coated with hydroxyapatite (HA). Torsion test and corrosion test were performed in vitro. For clinical, radiological and histological evaluation, on the eight rabbits, two HA-coated screws were installed in left tibia, and two noncoated screws were installed in right tibia. Each four rabbits were sacrificed 6 and 12 weeks postoperatively. For hematological evaluation, the same type of screws were installed on both legs. Complete blood count (CBC), Mg2+ concentrate were sampled from the ear central artery on the operation day for a control point, and at 1, 2, 4, 6, 8, and 12 weeks. Mg alloy screws have no differences of biocompatibility according to the HA coating. However, resorption of screw was slower in case of the HA coating. The hematological problem related releasing of Mg was not found. The results suggest that Mg alloy screws have feasibility for clinical application. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1636-1644, 2017.


Assuntos
Implantes Absorvíveis , Parafusos Ósseos , Durapatita , Magnésio , Teste de Materiais , Animais , Contagem de Células Sanguíneas , Durapatita/química , Durapatita/farmacologia , Magnésio/química , Magnésio/farmacologia , Masculino , Coelhos , Tíbia , Fatores de Tempo
2.
Biomed Mater ; 11(3): 035003, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27147643

RESUMO

Magnesium (Mg) and its alloys have gained considerable attention as a promising biomaterial for bioresorbable orthopedic implants, but the corrosion behavior of Mg-based implants is still the major issue for clinical use. In order to improve the corrosion stability and implant-tissue interfaces of these implants, methods for coating Mg have been actively investigated. In this study, poly(ether imide) (PEI)-silica hybrid material was coated on Mg, for the tunable degradation and enhanced biological behavior. Homogeneous PEI-silica hybrid materials with various silica contents were coated on Mg substrates without any cracks, where silica nanoparticles were well dispersed in the PEI matrix without significant particle agglomeration up the 30 vol% silica. The hybrid coatings maintained good adhesion strength of PEI to Mg. The corrosion rate of hybrid-coated Mg was increased along with the increment of the silica content, due to improved hydrophilicity of the hybrid coating layers. Moreover, the biocompatibility of the hybrid-coated Mg specimens was significantly improved, mainly due to the higher Mg ion concentrations associated with faster corrosion, compared to PEI-coated Mg. Therefore, PEI-silica hybrid systems have significant potential as a coating material of Mg for load-bearing orthopedic applications by providing tunable corrosion behavior and enhanced biological performance.


Assuntos
Implantes Absorvíveis , Materiais Revestidos Biocompatíveis/química , Imidas/química , Magnésio/química , Polímeros/química , Dióxido de Silício/química , Células 3T3 , Ligas/química , Animais , Corrosão , Concentração de Íons de Hidrogênio , Íons , Teste de Materiais , Camundongos , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Estresse Mecânico , Suporte de Carga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA