Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Molecules ; 29(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675621

RESUMO

Allogeneic hematopoietic cell transplantation (allo-HCT) is a highly effective, well-established treatment for patients with various hematologic malignancies and non-malignant diseases. The therapeutic benefits of allo-HCT are mediated by alloreactive T cells in donor grafts. However, there is a significant risk of graft-versus-host disease (GvHD), in which the donor T cells recognize recipient cells as foreign and attack healthy organs in addition to malignancies. We previously demonstrated that targeting JAK1/JAK2, mediators of interferon-gamma receptor (IFNGR) and IL-6 receptor signaling, in donor T cells using baricitinib and ruxolitinib results in a significant reduction in GvHD after allo-HCT. Furthermore, we showed that balanced inhibition of JAK1/JAK2 while sparing JAK3 is important for the optimal prevention of GvHD. Thus, we have generated novel JAK1/JAK2 inhibitors, termed WU derivatives, by modifying baricitinib. Our results show that WU derivatives have the potential to mitigate GvHD by upregulating regulatory T cells and immune reconstitution while reducing the frequencies of antigen-presenting cells (APCs) and CD80 expression on these APCs in our preclinical mouse model of allo-HCT. In addition, WU derivatives effectively downregulated CXCR3 and T-bet in primary murine T cells. In summary, we have generated novel JAK inhibitors that could serve as alternatives to baricitinib or ruxolitinib.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Pirazóis , Transplante Homólogo , Animais , Camundongos , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/metabolismo , Azetidinas/farmacologia , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/prevenção & controle , Doença Enxerto-Hospedeiro/tratamento farmacológico , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/metabolismo , Janus Quinase 2/metabolismo , Janus Quinase 2/antagonistas & inibidores , Inibidores de Janus Quinases/farmacologia , Camundongos Endogâmicos C57BL , Purinas/farmacologia , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos
2.
Biomater Res ; 28: 0008, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532906

RESUMO

Background: Cancer recurrence and metastasis are major contributors to treatment failure following tumor resection surgery. We developed a novel implantable drug delivery system utilizing glycol chitosan to address these issues. Glycol chitosan is a natural adjuvant, inducing dendritic cell activation to promote T helper 1 cell immune responses, macrophage activation, and cytokine production. Effective antigen production by dendritic cells initiates T-cell-mediated immune responses, aiding tumor growth control. Methods: In this study, we fabricated multifunctional methacrylated glycol chitosan (MGC) hydrogels with extended release of DNA/doxorubicin (DOX) complex for cancer immunotherapy. We constructed the resection model of breast cancer to verify the anticancer effects of MGC hydrogel with DNA/DOX complex. Results: This study demonstrated the potential of MGC hydrogel with extended release of DNA/DOX complex for local and efficient cancer therapy. The MGC hydrogel was implanted directly into the surgical site after tumor resection, activating tumor-related immune cells both locally and over a prolonged period of time through immune-reactive molecules. Conclusions: The MGC hydrogel effectively suppressed tumor recurrence and metastasis while enhancing immunotherapeutic efficacy and minimizing side effects. This biomaterial-based drug delivery system, combined with cancer immunotherapy, can substantial improve treatment outcomes and patient prognosis.

3.
J Allergy Clin Immunol ; 153(3): 705-717.e11, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38000697

RESUMO

BACKGROUND: Neutrophil extracellular traps (NETs) are observed in chronic rhinosinusitis (CRS), although their role remains unclear. OBJECTIVES: This study aimed to investigate the influence of NETs on the CRS epithelium. METHODS: Forty-five sinonasal biopsy specimens were immunofluorescence-stained to identify NETs and p63+ basal stem cells. Investigators treated human nasal epithelial cells with NETs and studied them with immunofluorescence staining, Western blotting, and quantitative real-time PCR. NET inhibitors were administered to a murine neutrophilic nasal polyp model. RESULTS: NETs existed in tissues in patients with CRS with nasal polyps, especially in noneosinophilic nasal polyp tissues. p63+ basal cell expression had a positive correlation with the release of NETs. NETs induced the expansion of Ki-67+p63+ cells. We found that ΔNp63, an isoform of p63, was mainly expressed in the nasal epithelium and controlled by NETs. Treatment with deoxyribonuclease (DNase) I or Sivelestat (NET inhibitors) prevented the overexpression of ΔNp63+ epithelial stem cells and reduced polyp formation. CONCLUSIONS: These results reveal that NETs are implicated in CRS pathogenesis via basal cell hyperplasia. This study suggests a novel possibility of treating CRS by targeting NETs.


Assuntos
Armadilhas Extracelulares , Pólipos Nasais , Rinite , Rinossinusite , Sinusite , Humanos , Animais , Camundongos , Rinite/patologia , Pólipos Nasais/patologia , Hiperplasia/patologia , Sinusite/patologia , Mucosa Nasal/patologia , Doença Crônica
4.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686186

RESUMO

S100A8 and S100A9 are multifunctional proteins that can initiate various signaling pathways and modulate cell function both inside and outside immune cells, depending on their receptors, mediators, and molecular environment. They have been reported as dysregulated genes and proteins in a wide range of cancers, including hematologic malignancies, from diagnosis to response to therapy. The role of S100A8 and S100A9 in hematologic malignancies is highlighted due to their ability to work together or as antagonists to modify cell phenotype, including viability, differentiation, chemosensitivity, trafficking, and transcription strategies, which can lead to an oncogenic phase or reduced symptoms. In this review article, we discuss the critical roles of S100A8, S100A9, and calprotectin (heterodimer or heterotetramer forms of S100A8 and S100A9) in forming and promoting the malignant bone marrow microenvironment. We also focus on their potential roles as biomarkers and therapeutic targets in various stages of hematologic malignancies from diagnosis to treatment.


Assuntos
Calgranulina A , Calgranulina B , Neoplasias Hematológicas , Humanos , Diferenciação Celular , Neoplasias Hematológicas/tratamento farmacológico , Complexo Antígeno L1 Leucocitário , Microambiente Tumoral
5.
Front Immunol ; 14: 1264496, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744381

RESUMO

Solid organ transplant represents a potentially lifesaving procedure for patients suffering from end-stage heart, lung, liver, and kidney failure. However, rejection remains a significant source of morbidity and immunosuppressive medications have significant toxicities. Janus kinase (JAK) inhibitors are effective immunosuppressants in autoimmune diseases and graft versus host disease after allogeneic hematopoietic cell transplantation. Here we examine the role of JAK inhibition in preclinical fully major histocompatibility mismatched skin and heart allograft models. Baricitinib combined with cyclosporine A (CsA) preserved fully major histocompatibility mismatched skin grafts for the entirety of a 111-day experimental period. In baricitinib plus CsA treated mice, circulating CD4+T-bet+ T cells, CD8+T-bet+ T cells, and CD4+FOXP3+ regulatory T cells were reduced. Single cell RNA sequencing revealed a unique expression profile in immune cells in the skin of baricitinib plus CsA treated mice, including decreased inflammatory neutrophils and increased CCR2- macrophages. In a fully major histocompatibility mismatched mismatched heart allograft model, baricitinib plus CsA prevented graft rejection for the entire 28-day treatment period compared with 9 days in controls. Our findings establish that the combination of baricitinib and CsA prevents rejection in allogeneic skin and heart graft models and supports the study of JAK inhibitors in human solid organ transplantation.


Assuntos
Ciclosporina , Transplante de Coração , Humanos , Animais , Camundongos , Ciclosporina/uso terapêutico , Rejeição de Enxerto/prevenção & controle , Transplante de Coração/efeitos adversos , Sulfonamidas
6.
Nano Converg ; 10(1): 36, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550567

RESUMO

Cancer immunotherapy, which harnesses the power of the immune system, has shown immense promise in the fight against malignancies. Messenger RNA (mRNA) stands as a versatile instrument in this context, with its capacity to encode tumor-associated antigens (TAAs), immune cell receptors, cytokines, and antibodies. Nevertheless, the inherent structural instability of mRNA requires the development of effective delivery systems. Lipid nanoparticles (LNPs) have emerged as significant candidates for mRNA delivery in cancer immunotherapy, providing both protection to the mRNA and enhanced intracellular delivery efficiency. In this review, we offer a comprehensive summary of the recent advancements in LNP-based mRNA delivery systems, with a focus on strategies for optimizing the design and delivery of mRNA-encoded therapeutics in cancer treatment. Furthermore, we delve into the challenges encountered in this field and contemplate future perspectives, aiming to improve the safety and efficacy of LNP-based mRNA cancer immunotherapies.

7.
Bioeng Transl Med ; 8(3): e10477, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206221

RESUMO

Chemodynamic therapy (CDT) is based on the production of cytotoxic reactive oxygen species, such as hydroxyl radicals (•OH). Thus, CDT can be advantageous when it is cancer-specific, in terms of efficacy and safety. Therefore, we propose NH2-MIL-101(Fe), a Fe-containing metal-organic framework (MOF), as a carrier of Cu (copper)-chelating agent, d-penicillamine (d-pen; i.e., the NH2-MIL-101(Fe)/d-pen), as well as a catalyst with Fe-metal clusters for Fenton reaction. NH2-MIL-101(Fe)/d-pen in the form of nanoparticles was efficiently taken into cancer cells and released d-pen in a sustained manner. The released d-pen chelated Cu that is highly expressed in cancer environments and this produces extra H2O2, which is then decomposed by Fe in NH2-MIL-101(Fe) to generate •OH. Therefore, the cytotoxicity of NH2-MIL-101(Fe)/d-pen was observed in cancer cells, not in normal cells. We also suggest a formulation of NH2-MIL-101(Fe)/d-pen combined with NH2-MIL-101(Fe) loaded with the chemotherapeutic drug, irinotecan (CPT-11; NH2-MIL-101(Fe)/CPT-11). When intratumorally injected into tumor-bearing mice in vivo, this combined formulation exhibited the most prominent anticancer effects among all tested formulations, owing to the synergistic effect of CDT and chemotherapy.

8.
Small ; 19(39): e2302023, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37246275

RESUMO

Deoxyribonuclease-I (DNase-I), a representative endonuclease, is an important biomarker for the diagnosis of infectious diseases and cancer progression. However, enzymatic activity decreases rapidly ex vivo, which highlights the need for precise on-site detection of DNase-I. Here, a localized surface plasmon resonance (LSPR) biosensor that enables the simple and rapid detection of DNase-I is reported. Moreover, a novel technique named electrochemical deposition and mild thermal annealing (EDMIT) is applied to overcome signal variations. By taking advantage of the low adhesion of gold clusters on indium tin oxide substrates, both the uniformity and sphericity of gold nanoparticles are increased under mild thermal annealing conditions via coalescence and Ostwald ripening. This ultimately results in an approximately 15-fold decrease in LSPR signal variations. The linear range of the fabricated sensor is 20-1000 ng mL-1 with a limit of detection (LOD) of 127.25 pg mL-1 , as demonstrated by spectral absorbance analyses. The fabricated LSPR sensor stably measured DNase-I concentrations from samples collected from both an inflammatory bowel disease (IBD) mouse model, as well as human patients with severe COVID-19 symptoms. Therefore, the proposed LSPR sensor fabricated via the EDMIT method can be used for early diagnosis of other infectious diseases.


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanopartículas Metálicas , Animais , Camundongos , Humanos , Ressonância de Plasmônio de Superfície/métodos , Ouro/química , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , Desoxirribonucleases
10.
Tissue Eng Regen Med ; 20(3): 371-387, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36867402

RESUMO

Adoptive cell therapy with chimeric antigen receptor (CAR)-engineered T cells (CAR-Ts) has emerged as an innovative immunotherapy for hematological cancer treatment. However, the limited effect on solid tumors, complex processes, and excessive manufacturing costs remain as limitations of CAR-T therapy. Nanotechnology provides an alternative to the conventional CAR-T therapy. Owing to their unique physicochemical properties, nanoparticles can not only serve as a delivery platform for drugs but also target specific cells. Nanoparticle-based CAR therapy can be applied not only to T cells but also to CAR-natural killer and CAR-macrophage, compensating for some of their limitations. This review focuses on the introduction of nanoparticle-based advanced CAR immune cell therapy and future perspectives on immune cell reprogramming.


Assuntos
Nanopartículas , Neoplasias , Receptores de Antígenos Quiméricos , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T , Imunoterapia , Neoplasias/terapia
11.
Biomater Res ; 27(1): 5, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721212

RESUMO

The tumor microenvironment (TME) is a unique environment that is developed by the tumor and controlled by tumor-induced interactions with host cells during tumor progression. The TME includes immune cells, which can be classified into two types: tumor- antagonizing and tumor-promoting immune cells. Increasing the tumor treatment responses is associated with the tumor immune microenvironment. Targeting the TME has become a popular topic in research, which includes polarizing macrophage phenotype 2 into macrophage phenotype 1 using Toll-like receptor agonists with cytokines, anti-CD47, and anti-SIPRα. Moreover, inhibiting regulatory T cells through blockades and depletion restricts immunosuppressive cells in the TME. Reprogramming T cell infiltration and T cell exhaustion improves tumor infiltrating lymphocytes, such as CD8+ or CD4+ T cells. Targeting metabolic pathways, including glucose, lipid, and amino acid metabolisms, can suppress tumor growth by restricting the absorption of nutrients and adenosine triphosphate energy into tumor cells. In conclusion, these TME reprogramming strategies exhibit more effective responses using combination treatments, biomaterials, and nanoparticles. This review highlights how biomaterials and immunotherapy can reprogram TME and improve the immune activity.

12.
Blood ; 141(8): 945-950, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36477272

RESUMO

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative treatment for both malignant and nonmalignant hematologic disorders. However, graft-versus-host disease (GVHD) and malignant relapse limit its therapeutic success. We previously demonstrated that the blockade of interferon-gamma receptor (IFNGR) signaling in donor T cells resulted in a reduction in GVHD while preserving graft-versus-leukemia (GVL) effects. However, the underlying molecular mechanisms remain inconclusive. In this study, we found that S100A9 is a novel GVHD suppressor upregulated when IFNGR is blocked in T cells. Both Ifngr1-/- and S100a9-overexpressing T cells significantly reduced GVHD without compromising GVL, altering donor T-cell trafficking to GVHD target organs in our mouse model of allo-HSCT. In addition, in vivo administration of recombinant murine S100A9 proteins prolongs the overall survival of recipient mice. Furthermore, in vivo administration of anti-human IFNGRα neutralizing antibody (αhGR-Nab) significantly upregulates the expression of S100A9 in human T cells and improved GVHD in our mouse model of xenogeneic human peripheral blood mononuclear cell transplantation. Consistent with S100a9-overexpressing T cells in our allo-HSCT model, αhGR-Nab reduced human T-cell trafficking to the GVHD target organs. Taken together, S100A9, a downstream molecule suppressed by IFNGR signaling, functions as a novel GVHD suppressor without compromising GVL.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Camundongos , Humanos , Animais , Transplante Homólogo , Leucócitos Mononucleares/metabolismo , Transplante de Células-Tronco Hematopoéticas/métodos , Linfócitos T , Proteínas Recombinantes/metabolismo , Efeito Enxerto vs Leucemia , Calgranulina B
13.
Biomater Adv ; 145: 213268, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36580769

RESUMO

The potential therapeutic implications of nitric oxide (NO) have drawn a great deal of interest for reversing multidrug resistance (MDR) in cancer; however, previous strategies utilized unstable or toxic NO donors often oxidized by the excessive addition of reactive oxygen species, leading to unexpected side effects. Therefore, this study proposed a metal-organic framework (MOF), Porous coordination network (PCN)-223-Fe, to be loaded with a biocompatible NO donor, L-arginine (L-arg; i.e., PCN-223-Fe/L-arg). This specific MOF possesses a ligand of Fe-porphyrin, a biomimetic catalyst. Thus, with PCN-223-Fe/L-arg, L-arg was released in a sustained manner, which generated NO by a catalytic reaction between L-arg and Fe-porphyrin in PCN-223-Fe. Through this biomimetic process, PCN-223-Fe/L-arg could generate sufficient NO to reverse MDR at the expense of hydrogen peroxide already present and highly expressed in cancer environments. For treatment of MDR cancer, this study also proposed PCN-223-Fe loaded with an anticancer drug, irinotecan (CPT-11; i.e., PCN-223-Fe/CPT-11), to be formulated together with PCN-223-Fe/L-arg. Owing to the synergistic effect of reversed MDR by NO generation and sustained release of CPT-11, this combined formulation exhibited a higher anticancer effect on MDR cancer cells (MCF-7/ADR). When intratumorally injected in vivo, coadministration of PCN-223-Fe/L-arg and PCN-223-Fe/CPT-11 greatly suppressed tumor growth in nude mice bearing MDR tumors.


Assuntos
Antineoplásicos , Estruturas Metalorgânicas , Neoplasias , Animais , Camundongos , Estruturas Metalorgânicas/uso terapêutico , Óxido Nítrico/uso terapêutico , Irinotecano/uso terapêutico , Camundongos Nus , Biomimética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Doadores de Óxido Nítrico/uso terapêutico
14.
Plast Reconstr Surg ; 151(2): 355-364, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36355029

RESUMO

BACKGROUND: The relationship between autophagy and diabetic peripheral neuropathy (DPN) has been highlighted in few reports. Using an animal model, the authors investigated the relationship between autophagy and DPN, focused particularly on changes in autophagy in Schwann cells. METHODS: The ultrastructural features of DPN mice were evaluated in vivo using transmission electron microscopy. Dysfunction of autophagy in DPN was evaluated using immunofluorescence microscopy and Western blot analysis of proteins related to autophagy, including Beclin1, LC3, and p62. Reactive oxygen species levels were measured in vitro in glucose-treated Schwann cells. Dysfunction of autophagy in glucose-treated Schwann cells was examined by immunofluorescence microscopy and Western blot analysis. RESULTS: Reduced myelin thickness and axonal shrinkage were observed in the sciatic nerves of DPN mice. Reactive oxygen species levels were increased in Schwann cells treated with high glucose ( P < 0.05). The expression of Beclin1 was increased in DPN mice and Schwann cells treated with high glucose ( P < 0.05), whereas the expression of LC3-II/LC3-I ratio and p62 were decreased in DPN mice and Schwann cells treated with high glucose ( P < 0.05). CONCLUSIONS: These results suggest that increased levels of reactive oxygen species induced by high glucose may contribute to autophagy dysfunction in Schwann cells. Autophagy dysfunction especially in Schwann cells may be an underlying cause of DPN. CLINICAL RELEVANCE STATEMENT: This study presents the pathological mechanism of diabetic peripheral neuropathy.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Camundongos , Animais , Neuropatias Diabéticas/etiologia , Espécies Reativas de Oxigênio/metabolismo , Proteína Beclina-1/metabolismo , Células de Schwann/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Glucose/uso terapêutico , Autofagia/fisiologia
16.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36293494

RESUMO

Patients with high-risk non-metastatic renal cell carcinoma (RCC) are at risk of metastatic relapse following nephrectomy. Cabozantinib (CZ), a potent multitarget tyrosine kinase inhibitor, interferes with angiogenesis and immunosuppression associated with surgery-induced metastasis. Here, we explored the therapeutic potential of CZ-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (CZ-PLGA-NPs) as an adjuvant strategy for targeting post-nephrectomy metastasis. A clinically relevant subline recapitulating post-nephrectomy lung metastasis of high-risk human RCC, namely Renca-SRLu5-Luc, was established through in vivo serial selection of luciferase-expressing murine RCC Renca-Luc cells. CZ was encapsulated into PLGA-NPs via the conventional single emulsion technique. The multifaceted preclinical antimetastatic efficacy of CZ-PLGA-NPs was assessed in Renca-SRLu5-Luc cells. CZ-PLGA-NPs with a smooth surface displayed desirable physicochemical properties, good CZ encapsulation efficiency, as well as controlled and sustained CZ release. CZ-PLGA-NPs exhibited remarkable dose-dependent toxicity against Renca-SRLu5-Luc cells by inducing G2/M cell cycle arrest and apoptosis. CZ-PLGA-NPs attenuated in vitro colony formation, migration, and invasion by abrogating AKT and ERK1/2 activation. An intravenous injection of CZ-PLGA-NPs markedly reduced lung metastatic burden and prolonged lifespan with favorable safety in the Renca-SRLu5-Luc experimental lung metastasis model. The novel CZ-PLGA-NPs system with multifaceted antimetastatic effects and alleviating off-target toxicity potential is a promising adjunctive agent for patients with surgically resected high-risk RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Neoplasias Pulmonares , Nanopartículas , Humanos , Camundongos , Animais , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Láctico/química , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/cirurgia , Portadores de Fármacos/química , Emulsões , Proteínas Proto-Oncogênicas c-akt , Nanopartículas/química , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/cirurgia , Inibidores de Proteínas Quinases , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/cirurgia , Tamanho da Partícula
17.
Biomaterials ; 289: 121762, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36058029

RESUMO

Cancer immunotherapy is a next-generation treatment strategy; however, its side effects limit its clinical translation. Here, a novel combination of a multi-functional nano-adjuvant (M-NA) prepared with an iron oxide/gold core and a cationic polymer shell via multilayer synthesis with CpG oligodeoxynucleotide (CpG-ODN) electrostatically complexed on its surface, and irreversible electroporation (IRE) technique was developed for effective image-guided in situ cancer vaccination. The M-NA can be retained long-term in the dense tumoral extracellular matrix after intratumoral injection and internalized by antigen-presenting cells (APCs). The IRE can induce immunogenic cell death. Indeed, in a mouse tumor model, the M-NA showed longer tumor retention time than free CpG-ODN. Compared with other treatments, the combined treatment significantly inhibited tumor growth with 100% survival rate for ∼60 days. The therapy induced the activation of cytotoxic lymphocytes and the maturation of APCs in vivo. This treatment could be effective in image-guided local cancer immunotherapy.


Assuntos
Neoplasias , Oligodesoxirribonucleotídeos , Adjuvantes Imunológicos , Animais , Eletroporação/métodos , Ouro , Camundongos , Neoplasias/terapia , Polímeros , Vacinação
19.
Biomater Res ; 25(1): 44, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930494

RESUMO

Immune cells are attractive targets for therapy as they are direct participants in a variety of diseases. Delivering a therapeutic agent only to cells that act on a disease by distinguishing them from other cells has the advantage of concentrating the therapeutic effect and lowering systemic side effects. Distinguishing each immune cell from other immune cells to deliver substances, including drugs and genes, can be achieved using nanotechnology. And also nanoparticles can ensure in vivo stability and sustained drug release. In addition, there is an ease of surface modification, which is an important characteristic that can be utilized in targeted drug delivery systems. This characteristic allows us to utilize various properties that are specifically expressed in each immune cell. A number of studies have delivered various substances specifically to immune cells through surface engineering with active target ligands that can target each immune cell and enzyme-responsive coating, and demonstrated high therapeutic effects compared to conventional treatments. Progress in research on target delivery has been suggested to be a breakthrough for the treatments of various diseases, including cancer treatment.

20.
J Clin Invest ; 131(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34730109

RESUMO

Despite the curative potential of hematopoietic stem cell transplantation (HSCT), conditioning-associated toxicities preclude broader clinical application. Antibody-drug conjugates (ADCs) provide an attractive approach to HSCT conditioning that minimizes toxicity while retaining efficacy. Initial studies of ADC conditioning have largely focused on syngeneic HSCT. However, to treat acute leukemias or induce tolerance for solid organ transplantation, this approach must be expanded to allogeneic HSCT (allo-HSCT). Using murine allo-HSCT models, we show that pharmacologic Janus kinase 1/2 (JAK1/2) inhibition combined with CD45- or cKit-targeted ADCs enables robust multilineage alloengraftment. Strikingly, myeloid lineage donor chimerism exceeding 99% was achievable in fully MHC-mismatched HSCT using this approach. Mechanistic studies using the JAK1/2 inhibitor baricitinib revealed marked impairment of T and NK cell survival, proliferation, and effector function. NK cells were exquisitely sensitive to JAK1/2 inhibition due to interference with IL-15 signaling. Unlike irradiated mice, ADC-conditioned mice did not develop pathogenic graft-versus-host alloreactivity when challenged with mismatched T cells. Finally, the combination of ADCs and baricitinib balanced graft-versus-host disease and graft-versus-leukemia responses in delayed donor lymphocyte infusion models. Our allo-HSCT conditioning strategy exemplifies the promise of immunotherapy to improve the safety of HSCT for treating hematologic diseases.


Assuntos
Azetidinas/farmacologia , Transplante de Células-Tronco Hematopoéticas , Imunoconjugados/farmacologia , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 2/antagonistas & inibidores , Inibidores de Janus Quinases/farmacologia , Purinas/farmacologia , Pirazóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Aloenxertos , Animais , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/prevenção & controle , Efeito Enxerto vs Leucemia/efeitos dos fármacos , Efeito Enxerto vs Leucemia/genética , Efeito Enxerto vs Leucemia/imunologia , Interleucina-15/genética , Interleucina-15/imunologia , Janus Quinase 1/genética , Janus Quinase 1/imunologia , Janus Quinase 2/genética , Janus Quinase 2/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Transdução de Sinais/genética , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA