Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nutr ; 151(4): 902-910, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33561256

RESUMO

BACKGROUND: Epidemiologic studies suggest that fruit and vegetable (F&V) consumption is inversely associated with incidence of cardiovascular disease (CVD). However, evidence for causality is lacking, and the underlying mechanisms are not well understood. OBJECTIVES: We aimed to determine whether there is a causal relation between consuming high levels of F&V and prevention of atherosclerosis, the hallmark of CVD pathogenesis. Furthermore, the underlying mechanisms were determined. METHODS: Six-week-old male LDL receptor-knockout mice were randomly assigned to 3 diet groups (12 mice/group) for 20 wk: control (CON, 10% kcal fat, 0.20 g/kg cholesterol), atherogenic (Ath, 27% kcal fat, 0.55 g/kg cholesterol), and Ath supplemented with 15% F&V (Ath + FV) (equivalent to 8-9 servings/d in humans). F&V was added as a freeze-dried powder that was prepared from the 24 most commonly consumed F&Vs in the United States. Body weight, aortic atherosclerotic lesion area, hepatic steatosis area, serum lipid profile and proinflammatory cytokine TNF-α concentrations, gut microbiota, and liver TNF-α and fatty acid synthase (Fasn) mRNA concentrations were assessed. RESULTS: F&V supplementation did not affect weight gain. Mice fed the Ath + FV diet had a smaller aortic atherosclerotic lesion area (71.7% less) and hepatic steatosis area (80.7% less) than those fed the Ath diet (both P < 0.001) independent of impact on weight, whereas no difference was found between Ath + FV and CON groups in these 2 pathologic markers. Furthermore, F&V supplementation prevented Ath diet-induced dyslipidemia (high concentrations of serum TG and VLDL cholesterol and lower concentrations of HDL cholesterol), reduced serum TNF-α concentration (by 21.5%), suppressed mRNA expression of liver TNF-α and Fasn, and ameliorated Ath-induced gut microbiota dysbiosis. CONCLUSIONS: Our results indicate that consuming a large quantity and variety of F&Vs causally attenuates diet-induced atherosclerosis and hepatic steatosis in mice. These effects of F&Vs are associated with, and may be mediated through, improved atherogenic dyslipidemia, alleviated gut dysbiosis, and suppressed inflammation.


Assuntos
Aterosclerose/dietoterapia , Aterosclerose/prevenção & controle , Frutas , Receptores de LDL/deficiência , Verduras , Animais , Aterosclerose/etiologia , Dieta Aterogênica/efeitos adversos , Suplementos Nutricionais , Microbioma Gastrointestinal , Teste de Tolerância a Glucose , Fatores de Risco de Doenças Cardíacas , Lipídeos/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Receptores de LDL/genética , Fator de Necrose Tumoral alfa/sangue , Aumento de Peso
2.
Cell Rep ; 31(2): 107500, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32294436

RESUMO

Diffusely infiltrating gliomas are known to cause alterations in cortical function, vascular disruption, and seizures. These neurological complications present major clinical challenges, yet their underlying mechanisms and causal relationships to disease progression are poorly characterized. Here, we follow glioma progression in awake Thy1-GCaMP6f mice using in vivo wide-field optical mapping to monitor alterations in both neuronal activity and functional hemodynamics. The bilateral synchrony of spontaneous neuronal activity gradually decreases in glioma-infiltrated cortical regions, while neurovascular coupling becomes progressively disrupted compared to uninvolved cortex. Over time, mice develop diverse patterns of high amplitude discharges and eventually generalized seizures that appear to originate at the tumors' infiltrative margins. Interictal and seizure events exhibit positive neurovascular coupling in uninfiltrated cortex; however, glioma-infiltrated regions exhibit disrupted hemodynamic responses driving seizure-evoked hypoxia. These results reveal a landscape of complex physiological interactions occurring during glioma progression and present new opportunities for exploring novel biomarkers and therapeutic targets.


Assuntos
Glioma/fisiopatologia , Acoplamento Neurovascular/fisiologia , Animais , Encéfalo/fisiopatologia , Córtex Cerebral/metabolismo , Progressão da Doença , Hemodinâmica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/fisiopatologia , Neurônios/metabolismo , Convulsões/fisiopatologia
3.
Cell ; 177(6): 1507-1521.e16, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31031004

RESUMO

Friedreich's ataxia (FRDA) is a devastating, multisystemic disorder caused by recessive mutations in the mitochondrial protein frataxin (FXN). FXN participates in the biosynthesis of Fe-S clusters and is considered to be essential for viability. Here we report that when grown in 1% ambient O2, FXN null yeast, human cells, and nematodes are fully viable. In human cells, hypoxia restores steady-state levels of Fe-S clusters and normalizes ATF4, NRF2, and IRP2 signaling events associated with FRDA. Cellular studies and in vitro reconstitution indicate that hypoxia acts through HIF-independent mechanisms that increase bioavailable iron as well as directly activate Fe-S synthesis. In a mouse model of FRDA, breathing 11% O2 attenuates the progression of ataxia, whereas breathing 55% O2 hastens it. Our work identifies oxygen as a key environmental variable in the pathogenesis associated with FXN depletion, with important mechanistic and therapeutic implications.


Assuntos
Hipóxia/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Feminino , Ataxia de Friedreich/metabolismo , Células HEK293 , Humanos , Hipóxia/fisiopatologia , Ferro/metabolismo , Proteína 2 Reguladora do Ferro/metabolismo , Proteínas de Ligação ao Ferro/fisiologia , Proteínas Ferro-Enxofre/fisiologia , Células K562 , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Saccharomyces cerevisiae/metabolismo , Enxofre/metabolismo , Frataxina
4.
Br J Nutr ; 112(1): 8-14, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24725345

RESUMO

We have previously shown that curcumin (CUR) may increase lipid accumulation in cultured human acute monocytic leukaemia cell line THP-1 monocytes/macrophages, but that tetrahydrocurcumin (THC), an in vivo metabolite of CUR, has no such effect. In the present study, we hypothesised that the different cellular uptake and/or metabolism of CUR and THC might be a possible explanation for the previously observed differences in their effects on lipid accumulation in THP-1 monocytes/macrophages. Chromatography with tandem MS revealed that CUR was readily taken up by THP-1 monocytes/macrophages and slowly metabolised to hexahydrocurcumin sulphate. By contrast, the uptake of THC was low. In parallel with CUR uptake, increased lipid uptake was observed in THP-1 macrophages but not with the uptake of THC or another CUR metabolite and structurally related compounds. From these results, it is possible to deduce that CUR and THC are taken up and metabolised differently in THP-1 cells, which determine their biological activity. The remarkable differential cellular uptake of CUR, relative to THC and other similar molecules, may imply that the CUR uptake into cells may occur via a transporter.


Assuntos
Curcumina/análogos & derivados , Curcumina/metabolismo , Glucuronídeos/metabolismo , Metabolismo dos Lipídeos , Macrófagos/metabolismo , Monócitos/metabolismo , Transporte Biológico , Carcinógenos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Curcumina/química , Diarileptanoides , Glucuronídeos/química , Humanos , Cinética , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Monócitos/citologia , Monócitos/efeitos dos fármacos , Sulfatos/química , Sulfatos/metabolismo , Espectrometria de Massas em Tandem , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA