Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Microbiol Biotechnol ; 34(6): 1206-1213, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38693048

RESUMO

Citrus fruits offer a range of health benefits due to their rich nutritional profile, including vitamin C, flavonoids, carotenoids, and fiber. It is known that unripe citrus has higher levels of vitamin C, dietary fiber, polyphenols, and flavonoids compared to mature fruits. In this study, we assessed the nutritional components of unripe citrus peel and pressed juices, as well as their anti-obesity potential through the modulation of adipocyte differentiation and the expression of adipogenesis-related genes, specifically PPARγ and C/EBPα, in 3T3-L1 preadipocytes. Our analysis revealed that unripe citrus peel exhibited elevated levels of fiber and protein compared to pressed juice, with markedly low levels of free sugar, particularly sucrose. The content of hesperidin, a representative flavonoid in citrus fruits, was 3,157.6 mg/kg in unripe citrus peel and 455.5 mg/kg in pressed juice, indicating that it was approximately seven times higher in unripe citrus peel compared to pressed juice. Moreover, we observed that the peel had a dose-dependently inhibitory effect on adipocyte differentiation, which was linked to a significant downregulation of adipogenesis-related gene expression. Thus, our findings suggest that unripe citrus possesses anti-obesity effects by impeding adipogenesis and adipocyte differentiation, with the peel demonstrating a more pronounced effect compared to pressed juice.


Assuntos
Células 3T3-L1 , Adipócitos , Adipogenia , Diferenciação Celular , Citrus , PPAR gama , Citrus/química , Adipogenia/efeitos dos fármacos , Animais , Camundongos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipócitos/citologia , Diferenciação Celular/efeitos dos fármacos , PPAR gama/metabolismo , PPAR gama/genética , Frutas/química , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Fibras na Dieta/análise , Flavonoides/farmacologia , Flavonoides/análise , Hesperidina/farmacologia , Fármacos Antiobesidade/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Sucos de Frutas e Vegetais/análise , Ácido Ascórbico/farmacologia
2.
Food Funct ; 14(10): 4777-4791, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37128780

RESUMO

Inflammatory bowel disease (IBD) is continuously increasing globally and caused by intestinal barrier dysfunction. Although protocatechuic acid (PCA) has a protective effect on colitis, the molecular mechanisms underlying its contribution to intestinal barrier function remain unknown. Transepithelial electrical resistance (TEER) and FITC-dextran permeability measurements reveled that PCA suppresses lipopolysaccharide (LPS) and tumor necrosis factor (TNF)-α-induced increase in intestinal permeability; zonula occludens (ZO)-1 and claudin-2 redistribution was also suppressed in the epithelial cell membranes of differentiated Caco-2 cells. PCA was found to directly bind Rho-associated coiled-coil containing protein kinase (ROCK), subsequently suppressing myosin light chain (MLC) phosphorylation. Notably, PCA binds ROCK to a similar degree as Y27632, a selective ROCK inhibitor. Orally administering PCA (5 or 25 mg per kg per day) to C57BL/6 mice alleviated the 3% dextran sulfate sodium (DSS)-induced colitis symptoms including reduced colon length, disrupted intestinal barrier structure, and increased proinflammatory cytokines expressions, such as interleukin (IL)-1ß, TNF-α, and IL-6. Furthermore, orally administering PCA suppressed DSS-induced ZO-1 and claudin-2/4 redistribution in mice colon membrane fractions. Therefore, PCA may serve as a promising nutraceutical to improve gut health and alleviate IBD by maintaining intestinal barrier function in vitro and in vivo.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Animais , Células CACO-2 , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/farmacologia , Proteínas de Junções Íntimas/metabolismo , Claudina-2/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Junções Íntimas , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Mucosa Intestinal/metabolismo , Sulfato de Dextrana/efeitos adversos
3.
J Control Release ; 331: 7-18, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33450317

RESUMO

Tumor-specific apoptosis-inducing ligands have attracted considerable attention in cancer therapy. But, the evasion of apoptosis by tumors can cause acquired resistance to the therapy. TNF-related apoptosis-inducing ligand (TRAIL) has been investigated as an ideal antitumor agent owing to its inherent tumor cell-specific apoptotic activity. However, there are several barriers to its wider application, including the inability for stable formation of the trimeric structure, poor stability and pharmacokinetics, and differences in the sensitivity of different tumor types. Especially, almost 70% of tumor cells have acquired resistance to TRAIL, leading to failure of TRAIL-based therapeutics in clinical trials. To overcome therapeutic efficiency limitations against TRAIL-resistant tumors, we exploited the characteristic of a naturally derived nanocage that not only delivers TRAIL in its native-like trimeric structure, but also delivers a drug (doxorubicin [DOX]) that re-sensitizes TRAIL-resistant tumor cells. These TRAIL-presenting nanocages (TTPNs) showed high loading efficiency, pH-dependent release profiles, and effective intracellular delivery of the re-sensitizing agent DOX. As a result, DOX-TTPNs efficiently re-sensitized TRAIL-resistant tumor cells to TRAIL-mediated apoptosis in vitro by regulating levels of the TRAIL receptor, DR5, and anti- and pro-apoptotic proteins involved in extrinsic and intrinsic apoptosis pathways. We further demonstrated the antitumor efficacy of DOX-TTPNs in vivo, showing that even at a very low dose, the incorporated DOX successfully re-sensitized tumors to the apoptotic effects of TRAIL, underscoring the potential of this platform as an antitumor agent. Given that other homotrimeric TNF superfamily ligands and immunotherapeutic agents can be substituted for TRAIL ligand and re-sensitizing drugs on the surface and in the inner cavity of the nanocage, respectively, this platform is potentially suitable for development of a broad range of anticancer or immunotherapeutic combinations.


Assuntos
Neoplasias , Ligante Indutor de Apoptose Relacionado a TNF , Apoptose , Linhagem Celular Tumoral , Doxorrubicina , Humanos , Neoplasias/tratamento farmacológico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF
4.
J Mater Chem B ; 9(8): 1919-1940, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33475659

RESUMO

Proteins are fundamentally the most important macromolecules for biochemical, mechanical, and structural functions in living organisms. Therefore, they provide us with diverse structural building blocks for constructing various types of biomaterials, including an important class of such materials, hydrogels. Since natural peptides and proteins are biocompatible and biodegradable, they have features advantageous for their use as the building blocks of hydrogels for biomedical applications. They display constitutional and mechanical similarities with the native extracellular matrix (ECM), and can be easily bio-functionalized via genetic and chemical engineering with features such as bio-recognition, specific stimulus-reactivity, and controlled degradation. This review aims to give an overview of hydrogels made up of recombinant proteins or synthetic peptides as the structural elements building the polymer network. A wide variety of hydrogels composed of protein or peptide building blocks with different origins and compositions - including ß-hairpin peptides, α-helical coiled coil peptides, elastin-like peptides, silk fibroin, and resilin - have been designed to date. In this review, the structures and characteristics of these natural proteins and peptides, with each of their gelation mechanisms, and the physical, chemical, and mechanical properties as well as biocompatibility of the resulting hydrogels are described. In addition, this review discusses the potential of using protein- or peptide-based hydrogels in the field of biomedical sciences, especially tissue engineering.


Assuntos
Materiais Biocompatíveis/química , Desenho de Fármacos , Hidrogéis/química , Peptídeos/química , Proteínas/química , Animais , Materiais Biocompatíveis/farmacologia , Humanos , Hidrogéis/farmacologia
5.
ACS Chem Biol ; 16(1): 136-149, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33378170

RESUMO

The emergence of multidrug-resistant Staphylococcus aureus strains has become a serious clinical problem. Iron is absolutely required for the bacterial growth, virulence associated with colonization, and survival from the host immune system. The FeoB protein is a major iron permease in bacterial ferrous iron transport systems (Feo) that has been shown to play a crucial role in virulence of some pathogenic bacteria. However, FeoB is still uncharacterized in Gram-positive pathogens, and its effects on S. aureus pathogenesis are unknown. In this study, we identified a novel inhibitor, GW3965·HCl, that targets FeoB in S. aureus. The molecule effectively inhibited FeoB in vitro enzyme activity, bacterial growth, and virulence factor expression. Genome-editing and metabolomic analyses revealed that GW3965·HCl inhibited FeoB function and affected the associated mechanisms with reduced iron availability in S. aureus. Gentamicin resistance and Caenorhabditis elegans infection assays further demonstrated the power of GW3965·HCl as a safe and efficient antibacterial agent. In addition to S. aureus, GW3965·HCl also presented its effectiveness on inhibition of the FeoB activity and growth of Gram-positive bacteria. This novel inhibitor will provide new insight for developing a next-generation antibacterial therapy.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/efeitos dos fármacos , Benzoatos/farmacologia , Benzilaminas/farmacologia , Compostos Ferrosos/metabolismo , Bactérias Gram-Positivas/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/química , Proteínas de Bactérias/química , Transporte Biológico , Caenorhabditis elegans/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Gentamicinas/farmacologia , Bactérias Gram-Positivas/crescimento & desenvolvimento
6.
Metab Eng ; 40: 176-185, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28216106

RESUMO

Many desired phenotypes for producing cellulosic biofuels are often observed in industrial Saccharomyces cerevisiae strains. However, many industrial yeast strains are polyploid and have low spore viability, making it difficult to use these strains for metabolic engineering applications. We selected the polyploid industrial strain S. cerevisiae ATCC 4124 exhibiting rapid glucose fermentation capability, high ethanol productivity, strong heat and inhibitor tolerance in order to construct an optimal yeast strain for producing cellulosic ethanol. Here, we focused on developing a general approach and high-throughput screening method to isolate stable haploid segregants derived from a polyploid parent, such as triploid ATCC 4124 with a poor spore viability. Specifically, we deleted the HO genes, performed random sporulation, and screened the resulting segregants based on growth rate, mating type, and ploidy. Only one stable haploid derivative (4124-S60) was isolated, while 14 other segregants with a stable mating type were aneuploid. The 4124-S60 strain inherited only a subset of desirable traits present in the parent strain, same as other aneuploids, suggesting that glucose fermentation and specific ethanol productivity are likely to be genetically complex traits and/or they might depend on ploidy. Nonetheless, the 4124-60 strain did inherit the ability to tolerate fermentation inhibitors. When additional genetic perturbations known to improve xylose fermentation were introduced into the 4124-60 strain, the resulting engineered strain (IIK1) was able to ferment a Miscanthus hydrolysate better than a previously engineered laboratory strain (SR8), built by making the same genetic changes. However, the IIK1 strain showed higher glycerol and xylitol yields than the SR8 strain. In order to decrease glycerol and xylitol production, an NADH-dependent acetate reduction pathway was introduced into the IIK1 strain. By consuming 2.4g/L of acetate, the resulting strain (IIK1A) exhibited a 14% higher ethanol yield and 46% lower byproduct yield than the IIK1 strain from anaerobic fermentation of the Miscanthus hydrolysate. Our results demonstrate that industrial yeast strains can be engineered via haploid isolation. The isolated haploid strain (4124-S60) can be used for metabolic engineering to produce fuels and chemicals.


Assuntos
Celulose/metabolismo , Etanol/metabolismo , Melhoramento Genético/métodos , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/fisiologia , Acetatos/metabolismo , Vias Biossintéticas/genética , Etanol/isolamento & purificação , Haploidia , Redes e Vias Metabólicas/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA