Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med Image Anal ; 95: 103156, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38603844

RESUMO

The state-of-the-art multi-organ CT segmentation relies on deep learning models, which only generalize when trained on large samples of carefully curated data. However, it is challenging to train a single model that can segment all organs and types of tumors since most large datasets are partially labeled or are acquired across multiple institutes that may differ in their acquisitions. A possible solution is Federated learning, which is often used to train models on multi-institutional datasets where the data is not shared across sites. However, predictions of federated learning can be unreliable after the model is locally updated at sites due to 'catastrophic forgetting'. Here, we address this issue by using knowledge distillation (KD) so that the local training is regularized with the knowledge of a global model and pre-trained organ-specific segmentation models. We implement the models in a multi-head U-Net architecture that learns a shared embedding space for different organ segmentation, thereby obtaining multi-organ predictions without repeated processes. We evaluate the proposed method using 8 publicly available abdominal CT datasets of 7 different organs. Of those datasets, 889 CTs were used for training, 233 for internal testing, and 30 volumes for external testing. Experimental results verified that our proposed method substantially outperforms other state-of-the-art methods in terms of accuracy, inference time, and the number of parameters.


Assuntos
Aprendizado Profundo , Tomografia Computadorizada por Raios X , Humanos , Conjuntos de Dados como Assunto , Bases de Dados Factuais
2.
Brain Tumor Res Treat ; 8(1): 36-42, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32390352

RESUMO

BACKGROUND: To compare the diagnostic performance of two-dimensional (2D) and three-dimensional (3D) fractal dimension (FD) and lacunarity features from MRI for predicting the meningioma grade. METHODS: This retrospective study included 123 meningioma patients [90 World Health Organization (WHO) grade I, 33 WHO grade II/III] with preoperative MRI including post-contrast T1-weighted imaging. The 2D and 3D FD and lacunarity parameters from the contrast-enhancing portion of the tumor were calculated. Reproducibility was assessed with the intraclass correlation coefficient. Multivariable logistic regression analysis using 2D or 3D fractal features was performed to predict the meningioma grade. The diagnostic ability of the 2D and 3D fractal models were compared. RESULTS: The reproducibility between observers was excellent, with intraclass correlation coefficients of 0.97, 0.95, 0.98, and 0.96 for 2D FD, 2D lacunarity, 3D FD, and 3D lacunarity, respectively. WHO grade II/III meningiomas had a higher 2D and 3D FD (p=0.003 and p<0.001, respectively) and higher 2D and 3D lacunarity (p=0.002 and p=0.006, respectively) than WHO grade I meningiomas. The 2D fractal model showed an area under the curve (AUC), accuracy, sensitivity, and specificity of 0.690 [95% confidence interval (CI) 0.581-0.799], 72.4%, 75.8%, and 64.4%, respectively. The 3D fractal model showed an AUC, accuracy, sensitivity, and specificity of 0.813 (95% CI 0.733-0.878), 82.9%, 81.8%, and 70.0%, respectively. The 3D fractal model exhibited significantly better diagnostic performance than the 2D fractal model (p<0.001). CONCLUSION: The 3D fractal analysis proved superiority in diagnostic performance to 2D fractal analysis in grading meningioma.

3.
Eur Radiol ; 30(8): 4615-4622, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32274524

RESUMO

OBJECTIVE: To assess whether 3-dimensional (3D) fractal dimension (FD) and lacunarity features from MRI can predict the meningioma grade. METHODS: This retrospective study included 131 patients with meningiomas (98 low-grade, 33 high-grade) who underwent preoperative MRI with post-contrast T1-weighted imaging. The 3D FD and lacunarity parameters from the enhancing portion of the tumor were extracted by box-counting algorithms. Inter-rater reliability was assessed with the intraclass correlation coefficient (ICC). Additionally, conventional imaging features such as location, heterogeneous enhancement, capsular enhancement, and necrosis were assessed. Independent clinical and imaging risk factors for meningioma grade were investigated using multivariable logistic regression. The discriminative value of the prediction model with and without fractal features was evaluated. The relationship of fractal parameters with the mitosis count and Ki-67 labeling index was also assessed. RESULTS: The inter-reader reliability was excellent, with ICCs of 0.99 for FD and 0.97 for lacunarity. High-grade meningiomas had higher FD (p < 0.001) and higher lacunarity (p = 0.007) than low-grade meningiomas. In the multivariable logistic regression, the diagnostic performance of the model with clinical and conventional imaging features increased with 3D fractal features for predicting the meningioma grade, with AUCs of 0.78 and 0.84, respectively. The 3D FD showed significant correlations with both mitosis count and Ki-67 labeling index, and lacunarity showed a significant correlation with the Ki-67 labeling index (all p values < 0.05). CONCLUSION: The 3D FD and lacunarity are higher in high-grade meningiomas and fractal analysis may be a useful imaging biomarker for predicting the meningioma grade. KEY POINTS: • Fractal dimension (FD) and lacunarity are the two parameters used in fractal analysis to describe the complexity of a subject and may aid in predicting meningioma grade. • High-grade meningiomas had a higher fractal dimension and higher lacunarity than low-grade meningiomas, suggesting higher complexity and higher rotational variance. • The discriminative value of the predictive model using clinical and conventional imaging features improved when combined with 3D fractal features for predicting the meningioma grade.


Assuntos
Algoritmos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias Meníngeas/diagnóstico , Meningioma/diagnóstico , Feminino , Fractais , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA