Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Hazard Mater ; 464: 132966, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-37976851

RESUMO

Exposure to ambient ultrafine particulate matter (UPM) causes respiratory disorders; however, the underlying molecular mechanisms remain unclear. In this study, we synthesized simulated UPM (sUPM) with controlled physicochemical properties using the spark-discharge method. Subsequently, we investigated the biological effects of sUPM using BEAS-2B human bronchial epithelial cells (HBECs) and a mouse intratracheal instillation model. High throughput RNA-sequencing and bioinformatics analyses revealed that dysregulation of the glycolytic metabolism is involved in the inhibited proliferation and survival of HBECs by sUPM treatment. Furthermore, signaling pathway and enzymatic analyses showed that the treatment of BEAS-2B cells with sUPM induces the inactivation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB, also known as AKT), resulting in the downregulation of phosphofructokinase 2 (PFK2) S483 phosphorylation, PFK enzyme activity, and aerobic glycolysis in HBECs in an oxidative stress-independent manner. Additionally, intratracheal instillation of sUPM reduced the phosphorylation of ERK, AKT, and PFK2, decreased proliferation, and increased the apoptosis of bronchial epithelial cells in mice. The findings of this study imply that UPM induces pulmonary toxicity by disrupting aerobic glycolytic metabolism in lung epithelial cells, which can provide novel insights into the toxicity mechanisms of UPM and strategies to prevent their toxic effects.


Assuntos
Poluentes Atmosféricos , Material Particulado , Humanos , Animais , Camundongos , Material Particulado/análise , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosforilação , Células Epiteliais , Glicólise , Fosfofrutoquinases/análise , Fosfofrutoquinases/metabolismo , Poluentes Atmosféricos/análise
2.
J Proteomics ; 287: 104970, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37467888

RESUMO

Magnaporthe oryzae snodprot1 homologous protein (MSP1) is known to function as a pathogen-associated molecular pattern (PAMP) and trigger PAMP-triggered immunity (PTI) in rice including induction of programmed cell death and expression of defense-related genes. The involvement of several post-translational modifications (PTMs) in the regulation of plant immune response, especially PTI, is well established, however, the information on the regulatory roles of these PTMs in response to MSP1-induced signaling is currently elusive. Here, we report the phosphoproteome, ubiquitinome, and acetylproteome to investigate the MSP1-induced PTMs alterations in MSP1 overexpressed and wild-type rice. Our analysis identified a total of 4666 PTMs-modified sites in rice leaves including 4292 phosphosites, 189 ubiquitin sites, and 185 acetylation sites. Among these, the PTM status of 437 phosphorylated, 53 ubiquitinated, and 68 acetylated peptides was significantly changed by MSP1. Functional annotation of MSP1 modulated peptides by MapMan analysis revealed that these were majorly associated with cellular immune responses including signaling, transcription factors, DNA and RNA regulation, and protein metabolism, among others. Taken together, our study provides novel insights into post-translational mediated regulation of rice proteins in response to M. oryzae secreted PAMP which help in understanding the molecular mechanism of MSP1-induced signaling in rice in greater detail. SIGNIFICANCE: The research investigates the effect of overexpression of MSP1 protein in rice leaves on the phosphoproteome, acetylome, and ubiquitinome. The study found that MSP1 is involved in rice protein phosphorylation, particularly in signaling pathways, and identified a key component, PTAC16, in MSP1-induced signaling. The analysis also revealed MSP1's role in protein degradation and modification by inducing ubiquitination of the target rice proteins. The research identified potential kinases involved in the phosphorylation of rice proteins, including casein kinase II, 14-3-3 domain binding motif, ß-adrenergic receptor kinase, ERK1,2 kinase substrate motif, and casein kinase I motifs. Overall, the findings provide insights into the molecular mechanisms underlying of MSP1 induced signaling in rice which may have implications for improving crop yield and quality.


Assuntos
Magnaporthe , Oryza , Oryza/metabolismo , Proteína 1 de Superfície de Merozoito/genética , Proteína 1 de Superfície de Merozoito/metabolismo , Processamento de Proteína Pós-Traducional , Proteólise , Peptídeos/metabolismo , Proteoma/metabolismo , Doenças das Plantas , Proteínas de Plantas/metabolismo , Magnaporthe/metabolismo
3.
J Integr Plant Biol ; 65(9): 2218-2236, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37195059

RESUMO

Pollen tube growth is essential for successful double fertilization, which is critical for grain yield in crop plants. Rapid alkalinization factors (RALFs) function as ligands for signal transduction during fertilization. However, functional studies on RALF in monocot plants are lacking. Herein, we functionally characterized two pollen-specific RALFs in rice (Oryza sativa) using multiple clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9-induced loss-of-function mutants, peptide treatment, expression analyses, and tag reporter lines. Among the 41 RALF members in rice, OsRALF17 was specifically expressed at the highest level in pollen and pollen tubes. Exogenously applied OsRALF17 or OsRALF19 peptide inhibited pollen tube germination and elongation at high concentrations but enhanced tube elongation at low concentrations, indicating growth regulation. Double mutants of OsRALF17 and OsRALF19 (ralf17/19) exhibited almost full male sterility with defects in pollen hydration, germination, and tube elongation, which was partially recovered by exogenous treatment with OsRALF17 peptide. This study revealed that two partially functionally redundant OsRALF17 and OsRALF19 bind to Oryza sativa male-gene transfer defective 2 (OsMTD2) and transmit reactive oxygen species signals for pollen tube germination and integrity maintenance in rice. Transcriptomic analysis confirmed their common downstream genes, in osmtd2 and ralf17/19. This study provides new insights into the role of RALF, expanding our knowledge of the biological role of RALF in regulating rice fertilization.


Assuntos
Oryza , Tubo Polínico , Tubo Polínico/genética , Pólen/genética , Transdução de Sinais , Peptídeos
4.
Plant Commun ; 4(5): 100606, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37087572

RESUMO

Pathogen effectors target diverse subcellular organelles to manipulate the plant immune system. Although the nucleolus has emerged as a stress marker and several effectors are localized in the nucleolus, the roles of nucleolar-targeted effectors remain elusive. In this study, we showed that Phytophthora infestans infection of Nicotiana benthamiana results in nucleolar inflation during the transition from the biotrophic to the necrotrophic phase. Multiple P. infestans effectors were localized in the nucleolus: Pi23226 induced cell death in N. benthamiana and nucleolar inflation similar to that observed in the necrotrophic stage of infection, whereas its homolog Pi23015 and a deletion mutant (Pi23226ΔC) did not induce cell death or affect nucleolar size. RNA immunoprecipitation and individual-nucleotide-resolution UV crosslinking and immunoprecipitation sequencing analysis indicated that Pi23226 bound to the 3' end of 25S rRNA precursors, resulting in accumulation of unprocessed 27S pre-rRNAs. The nucleolar stress marker NAC082 was strongly upregulated under Pi23226-expressing conditions. Pi23226 subsequently inhibited global protein translation in host cells by interacting with ribosomes. Pi23226 enhanced P. infestans pathogenicity, indicating that Pi23226-induced ribosome malfunction and cell death were beneficial for pathogenesis in the host. Our results provide evidence for the molecular mechanism underlying RNA-binding effector activity in host ribosome biogenesis and lead to new insights into the nucleolar action of effectors in pathogenesis.


Assuntos
Nucléolo Celular , Phytophthora infestans , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Morte Celular , Ribossomos , Nicotiana/genética , Nicotiana/metabolismo
5.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835581

RESUMO

The study aimed to understand mechanism/s of neuronal outgrowth in the rat adrenal-derived pheochromocytoma cell line (PC12) under pituitary adenylate cyclase-activating polypeptide (PACAP) treatment. Neurite projection elongation was suggested to be mediated via Pac1 receptor-mediated dephosphorylation of CRMP2, where GSK-3ß, CDK5, and Rho/ROCK dephosphorylated CRMP2 within 3 h after addition of PACAP, but the dephosphorylation of CRMP2 by PACAP remained unclear. Thus, we attempted to identify the early factors in PACAP-induced neurite projection elongation via omics-based transcriptomic (whole genome DNA microarray) and proteomic (TMT-labeled liquid chromatography-tandem mass spectrometry) analyses of gene and protein expression profiles from 5-120 min after PACAP addition. The results revealed a number of key regulators involved in neurite outgrowth, including known ones, called 'Initial Early Factors', e.g., genes Inhba, Fst, Nr4a1,2,3, FAT4, Axin2, and proteins Mis12, Cdk13, Bcl91, CDC42, including categories of 'serotonergic synapse, neuropeptide and neurogenesis, and axon guidance'. cAMP signaling and PI3K-Akt signaling pathways and a calcium signaling pathway might be involved in CRMP2 dephosphorylation. Cross-referencing previous research, we tried to map these molecular components onto potential pathways, and we may provide important new information on molecular mechanisms of neuronal differentiation induced by PACAP. Gene and protein expression data are publicly available at NCBI GSE223333 and ProteomeXchange, identifier PXD039992.


Assuntos
Fosfatidilinositol 3-Quinases , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Ratos , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Células PC12 , Glicogênio Sintase Quinase 3 beta/genética , Fosfatidilinositol 3-Quinases/genética , Proteômica , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Crescimento Neuronal
6.
Plant Physiol ; 190(1): 562-575, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35736513

RESUMO

Pollen tube (PT) elongation is important for double fertilization in angiosperms and affects the seed-setting rate and, therefore, crop productivity. Compared to Arabidopsis (Arabidopsis thaliana L.), information on PT elongation in rice (Oryza sativa L.) is limited by the difficulty in obtaining homozygous mutants. In a screen of T-DNA insertional mutants, we identified a mutant in the Tethering protein of actomyosin transport in pollen tube elongation (TAPE) gene with an unusual segregation ratio by genotyping analysis. A CRISPR/Cas9 knockout mutant of TAPE that produced a short PT was sterile, and TAPE was expressed specifically in pollen grains. TAPE is a homolog of a myosin XI adaptor in Arabidopsis with three tetratricopeptide repeat and Phox and Bem1 protein domains. TAPE showed latrunculin B-sensitive, actin-dependent localization to the endoplasmic reticulum. Yeast two-hybrid screening and transcriptome analysis revealed that TAPE interacted with pollen-specific LIM protein 2b and elongation factor 1-alpha. Loss of TAPE affected transcription of 1,259 genes, especially genes related to cell organization, which were downregulated. In summary, TAPE encodes a myosin XI adaptor essential for rice PT elongation.


Assuntos
Arabidopsis , Oryza , Arabidopsis/genética , Miosinas/genética , Miosinas/metabolismo , Oryza/genética , Pólen/genética , Pólen/metabolismo , Tubo Polínico/genética , Tubo Polínico/metabolismo
7.
Front Plant Sci ; 12: 661352, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113363

RESUMO

Root hairs are tip-growing cells that emerge from the root epidermis and play a role in water and nutrient uptake. One of the key signaling steps for polar cell elongation is the formation of Rho-GTP by accelerating the intrinsic exchange activity of the Rho-of-plant (ROP) or the Rac GTPase protein; this step is activated through the interaction with the plant Rho guanine nucleotide exchange factor (RopGEFs). The molecular players involved in root hair growth in rice are largely unknown. Here, we performed the functional analysis of OsRopGEF3, which is highly expressed in the root hair tissues among the OsRopGEF family genes in rice. To reveal the role of OsRopGEF3, we analyzed the phenotype of loss-of-function mutants of OsRopGEF3, which were generated using the CRISPR-Cas9 system. The mutants had reduced root hair length and increased root hair width. In addition, we confirmed that reactive oxygen species (ROS) were highly reduced in the root hairs of the osropgef3 mutant. The pairwise yeast two-hybrid experiments between OsRopGEF3 and OsROP/Rac proteins in rice revealed that the OsRopGEF3 protein interacts with OsRac3. This interaction and colocalization at the same subcellular organelles were again verified in tobacco leaf cells and rice root protoplasts via bimolecular functional complementation (BiFC) assay. Furthermore, among the three respiratory burst oxidase homolog (OsRBOH) genes that are highly expressed in rice root hair cells, we found that OsRBOH5 can interact with OsRac3. Our results demonstrate an interaction network model wherein OsRopGEF3 converts the GDP of OsRac3 into GTP, and OsRac3-GTP then interacts with the N-terminal of OsRBOH5 to produce ROS, thereby suggesting OsRopGEF3 as a key regulating factor in rice root hair growth.

8.
Biomolecules ; 10(6)2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630474

RESUMO

Salinity stress is one of the major threats to agricultural productivity across the globe. Research in the past three decades, therefore, has focused on analyzing the effects of salinity stress on the plants. Evidence gathered over the years supports the role of ethylene as a key regulator of salinity stress tolerance in plants. This gaseous plant hormone regulates many vital cellular processes starting from seed germination to photosynthesis for maintaining the plants' growth and yield under salinity stress. Ethylene modulates salinity stress responses largely via maintaining the homeostasis of Na+/K+, nutrients, and reactive oxygen species (ROS) by inducing antioxidant defense in addition to elevating the assimilation of nitrates and sulfates. Moreover, a cross-talk of ethylene signaling with other phytohormones has also been observed, which collectively regulate the salinity stress responses in plants. The present review provides a comprehensive update on the prospects of ethylene signaling and its cross-talk with other phytohormones to regulate salinity stress tolerance in plants.


Assuntos
Etilenos/metabolismo , Plantas/metabolismo , Tolerância ao Sal , Estresse Fisiológico
9.
J Ginseng Res ; 43(1): 143-153, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30662303

RESUMO

BACKGROUND: Ginseng is one of the well-known medicinal plants, exhibiting diverse medicinal effects. Its roots possess anticancer and antiaging properties and are being used in the medical systems of East Asian countries. It is grown in low-light and low-temperature conditions, and its growth is strongly inhibited at temperatures above 25°C. However, the molecular responses of ginseng to heat stress are currently poorly understood, especially at the protein level. METHODS: We used a shotgun proteomics approach to investigate the effect of heat stress on ginseng leaves. We monitored their photosynthetic efficiency to confirm physiological responses to a high-temperature stress. RESULTS: The results showed a reduction in photosynthetic efficiency on heat treatment (35°C) starting at 48 h. Label-free quantitative proteome analysis led to the identification of 3,332 proteins, of which 847 were differentially modulated in response to heat stress. The MapMan analysis showed that the proteins with increased abundance were mainly associated with antioxidant and translation-regulating activities, whereas the proteins related to the receptor and structural-binding activities exhibited decreased abundance. Several other proteins including chaperones, G-proteins, calcium-signaling proteins, transcription factors, and transfer/carrier proteins were specifically downregulated. CONCLUSION: These results increase our understanding of heat stress responses in the leaves of ginseng at the protein level, for the first time providing a resource for the scientific community.

10.
Data Brief ; 20: 516-520, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30191164

RESUMO

The data reported here are associated with the article "Comparative phosphoproteome analysis upon ethylene and abscisic acid treatment in Glycine max leaves" [1]. Phosphorylation plays a critical role in the regulation of the biological activities of proteins. However, phosphorylation-mediated regulation of proteins and pathways involved in ethylene (ET) and abscisic acid (ABA) signaling is currently poorly understood. Therefore, we used a shotgun proteomics approach to identify the phosphopeptides and phosphoproteins in response to ET, ABA and combined ET+ABA treatments. Here, we present the Mass spectrometry, protein-protein interaction, Gene ontology and KEGG data associated with the ET and ABA signaling in soybean leaves [1].

11.
Plant Physiol Biochem ; 130: 173-180, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29990770

RESUMO

Abscisic acid (ABA) and ethylene play key roles in growth and development of plants. Several attempts have been made to investigate the ABA and ethylene-induced signaling in plants, however, the involvement of phosphorylation and dephosphorylation in fine-tuning of the induced response has not been investigated much. Here, a phosphoproteomic analysis was carried out to identify the phosphoproteins in response to ABA, ethylene (ET) and combined ABA + ET treatments in soybean leaves. Phosphoproteome analysis led to the identification of 802 phosphopeptides, representing 422 unique protein groups. A comparative analysis led to the identification of 40 phosphosites that significantly changed in response to given hormone treatments. Functional annotation of the identified phosphoproteins showed that these were majorly involved in nucleic acid binding, signaling, transport and stress response. Localization prediction showed that 67% of the identified phosphoproteins were nuclear, indicating their potential involvement in gene regulation. Taken together, these results provide an overview of the ABA, ET and combined ABA + ET signaling in soybean leaves at phosphoproteome level.


Assuntos
Etilenos/farmacologia , Glycine max/efeitos dos fármacos , Fosfoproteínas/metabolismo , Folhas de Planta/efeitos dos fármacos , Ácido Abscísico , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteoma , Glycine max/fisiologia
12.
Genes Genomics ; 40(2): 129-136, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29892922

RESUMO

In this study, the effects of the plant growth-promoting rhizobacterium (PGPR), Bacillus sp. JS on the growth of tobacco (Nicotiana tabacum 'Xanthi') and lettuce (Lactuca sativa 'Crispa'), were evaluated by comparing various growth parameters between plants treated with the bacterium and those exposed to water or nutrient broth as control. In both tobacco and lettuce, fresh weight and length of shoots were increased upon exposure to Bacillus sp. JS. To explain the overall de novo expression of plant proteins by bacterial volatiles, two-dimensional gel electrophoresis was performed on samples from PGPR-treated tobacco plants. Our results showed that chlorophyll a/b binding proteins were significantly up-regulated, and total chlorophyll content was also increased. Our findings indicate the potential benefits of using Bacillus sp. JS as a growth-promoting factor in agricultural practice, and highlight the need for further research to explore these benefits.


Assuntos
Bacillus/fisiologia , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Lactuca/crescimento & desenvolvimento , Nicotiana/crescimento & desenvolvimento , Proteínas de Plantas/genética , Agricultura , Lactuca/metabolismo , Lactuca/fisiologia , Proteínas de Plantas/metabolismo , Proteômica , Microbiologia do Solo , Nicotiana/metabolismo , Nicotiana/fisiologia
13.
Proteomics ; 18(7): e1700366, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29457974

RESUMO

Phytohormones are central to plant growth and development. Despite the advancement in our knowledge of hormone signaling, downstream targets, and their interactions upon hormones action remain largely fragmented, especially at the protein and metabolite levels. With an aim to get new insight into the effects of two hormones, ethylene (ET) and abscisic acid (ABA), this study utilizes an integrated proteomics and metabolomics approach to investigate their individual and combined (ABA+ET) signaling in soybean leaves. Targeting low-abundance proteins, our previously established protamine sulfate precipitation method was applied, followed by label-free quantification of identified proteins. A total of 4129 unique protein groups including 1083 differentially modulated in one (individual) or other (combined) treatments were discerned. Functional annotation of the identified proteins showed an increased abundance of proteins related to the flavonoid and isoflavonoid biosynthesis and MAPK signaling pathway in response to ET treatment. HPLC analysis showed an accumulation of isoflavones (genistin, daidzein, and genistein) upon ET treatment, in agreement with the proteomics results. A metabolome analysis assigned 79 metabolites and further confirmed the accumulation of flavonoids and isoflavonoids in response to ET. A potential cross-talk between ET and MAPK signaling, leading to the accumulation of flavonoids and isoflavonoids in soybean leaves is suggested.


Assuntos
Flavonoides/metabolismo , Glycine max/metabolismo , Isoflavonas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Etilenos/metabolismo , Etilenos/farmacologia , Flavonoides/análise , Regulação da Expressão Gênica de Plantas , Sistema de Sinalização das MAP Quinases , Redes e Vias Metabólicas , Metabolômica , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteômica , Glycine max/efeitos dos fármacos
14.
J Hered ; 109(2): 206-211, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28992201

RESUMO

Here, we present an update on the next level of experiments studying the impact of the gamma radiation environment, created post-March, 2011 nuclear accident at Fukushima Daiichi nuclear power plant, on rice plant and its next generation-the seed. Japonica-type rice (Oryza sativa L. cv. Koshihikari) plant was exposed to low-level gamma radiation (~4 µSv/h) in the contaminated Iitate Farm field in Iitate village (Fukushima). Seeds were harvested from these plants at maturity, and serve as the treated group. For control group, seeds (cv. Koshihikari) were harvested from rice grown in clean soil in Soma city, adjacent to Iitate village, in Fukushima. Focusing on the multi-omics approach, we have investigated the dry mature rice seed transcriptome, proteome, and metabolome following cultivation of rice in the radionuclide contaminated soil and compared it with the control group seed (non-radioactive field-soil environment). This update article presents an overview of both the multi-omics approach/technologies and the first findings on how rice seed has changed or adapted its biology to the low-level radioactive environment.


Assuntos
Acidente Nuclear de Fukushima , Raios gama/efeitos adversos , Oryza/efeitos da radiação , Poluentes Radioativos/toxicidade , Adaptação Biológica , Sementes/efeitos da radiação
15.
J Proteomics ; 169: 41-57, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28528990

RESUMO

Solanaceae is one of the major economically important families of higher plants and has played a central role in human nutrition since the dawn of human civilization. Therefore, researchers have always been interested in understanding the complex behavior of Solanaceae members to identify key transcripts, proteins or metabolites, which are potentially associated with major traits. Proteomics studies have contributed significantly to understanding the physiology of Solanaceae members. A compilation of all the published reports showed that both gel-based (75%) and gel-free (25%) proteomic technologies have been utilized to establish the proteomes of different tissues, organs, and organelles under normal and adverse environmental conditions. Among the Solanaceae members, most of the research has been focused on tomato (42%) followed by potato (28%) and tobacco (20%), owing to their economic importance. This review comprehensively covers the progress made so far in the field of Solanaceae proteomics including novel methods developed to isolate the proteins from different tissues. Moreover, key proteins presented in this review can serve as a resource to select potential targets for crop improvement. We envisage that information presented in this review would enable us to design the stress tolerant plants with enhanced yields.


Assuntos
Proteômica/métodos , Solanaceae/química , Adaptação Fisiológica , Solanum lycopersicum/química , Proteínas de Plantas/análise , Proteômica/tendências , Solanum tuberosum/química , Nicotiana/química
16.
J Proteomics ; 169: 202-214, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28232208

RESUMO

Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most devastating diseases resulting in a huge loss of the total rice productivity. The initial interaction between rice and Xoo takes place in the host apoplast and is mediated primarily by secretion of various proteins from both partners. Yet, such secretory proteins remain to be largely identified and characterized. This study employed a label-free quantitative proteomics approach and identified 404 and 323 Xoo-secreted proteins from in vitro suspension-cultured cells and in planta systems, respectively. Gene Ontology analysis showed their involvement primarily in catalytic, transporter, and ATPase activities. Of a particular interest was a Xoo cysteine protease (XoCP), which showed dramatic increase in its protein abundance in planta upon Xoo interaction with a susceptible rice cultivar. Knock-out mutants of XoCP showed reduced pathogenicity on rice, highlighting its potential involvement in Xoo virulence. Besides, a parallel analysis of in planta rice-secreted proteins resulted in identification of 186 secretory proteins mainly associated with the catalytic, antioxidant, and electron carrier activities. Identified secretory proteins were exploited to shed light on their possible role in the rice-Xoo interaction, and that further deepen our understanding of such interaction. BIOLOGICAL SIGNIFICANCE: Xanthomonas oryzae pv. oryzae (Xoo), causative agent of bacterial blight disease, results in a huge loss of the total rice productivity. Using a label-free quantitative proteomics approach, we identified 727 Xoo- and 186 rice-secreted proteins. Functional annotation showed Xoo secreted proteins were mainly associated with the catalytic, transporter, and ATPase activities while the rice secreted proteins were mainly associated with the catalytic, antioxidant, and electron carrier activities. A novel Xoo cysteine protease (XoCP) was identified, showing dramatic increase in its protein abundance in planta upon Xoo interaction with a susceptible rice cultivar. Knock-out mutants of XoCP showed reduced pathogenicity on rice, highlighting its potential involvement in Xoo virulence.


Assuntos
Cisteína Proteases/fisiologia , Oryza/microbiologia , Xanthomonas/metabolismo , Proteínas de Bactérias/análise , Proteínas de Bactérias/metabolismo , Cisteína Proteases/toxicidade , Doenças das Plantas/microbiologia , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Proteômica/métodos , Virulência , Xanthomonas/enzimologia , Xanthomonas/patogenicidade
17.
Mol Plant Microbe Interact ; 29(4): 299-312, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26780420

RESUMO

The Magnaporthe oryzae snodprot1 homolog (MSP1), secreted by M. oryzae, is a cerato-platanin family protein. msp1-knockout mutants have reduced virulence on barley leaves, indicating that MSP1 is required for the pathogenicity of rice blast fungus. To investigate the functional roles of MSP1 and its downstream signaling in rice, recombinant MSP1 was produced in Escherichia coli and was assayed for its functionality. Application of MSP1 triggered cell death and elicited defense responses in rice. MSP1 also induced H2O2 production and autophagic cell death in both suspension-cultured cells and rice leaves. One or more protein kinases triggered cell death, jasmonic acid and abscisic acid enhanced cell death, while salicylic acid suppressed it. We demonstrated that the secretion of MSP1 into the apoplast is a prerequisite for triggering cell death and activating defense-related gene expression. Furthermore, pretreatment of rice with a sublethal MSP1 concentration potentiated resistance to the pathogen. Taken together, our results showed that MSP1 induces a high degree of cell death in plants, which might be essential for its virulence. Moreover, rice can recognize MSP1, resulting in the induction of pathogen-associated molecular pattern-triggered immunity.


Assuntos
Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica de Plantas , Magnaporthe/fisiologia , Oryza/microbiologia , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/farmacologia , Arabidopsis/imunologia , Arabidopsis/microbiologia , Arabidopsis/fisiologia , Arabidopsis/ultraestrutura , Autofagia/efeitos dos fármacos , Ciclopentanos/farmacologia , Proteínas Fúngicas/genética , Peróxido de Hidrogênio/metabolismo , Magnaporthe/patogenicidade , Modelos Biológicos , Oryza/imunologia , Oryza/fisiologia , Oryza/ultraestrutura , Oxilipinas/farmacologia , Moléculas com Motivos Associados a Patógenos/imunologia , Doenças das Plantas/imunologia , Imunidade Vegetal , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Folhas de Planta/ultraestrutura , Plantas Geneticamente Modificadas , Proteínas Recombinantes , Ácido Salicílico/farmacologia , Nicotiana/imunologia , Nicotiana/microbiologia , Nicotiana/fisiologia , Nicotiana/ultraestrutura
18.
J Agric Food Chem ; 63(32): 7134-42, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26237057

RESUMO

This study develops differential protein profiles of soybean (Glycine max) seeds (cv. Saedanbaek and Daewon) varying in protein (47.9 and 39.2%) and oil (16.3 and 19.7%) content using protamine sulfate (PS) precipitation method coupled with a 2D gel electrophoresis (2DGE) approach. Of 71 detected differential spots between Daewon and Saedanbaek, 48 were successfully identified by MALDI-TOF/TOF. Gene ontology analysis revealed that up-regulated proteins in Saedanbaek were largely associated with nutrient reservoir activity (42.6%), which included mainly seed-storage proteins (SSPs; subunits of glycinin and ß-conglycinin). Similar results were also obtained in two cultivars of wild soybean (G. soja cv. WS22 and WS15) differing in protein content. Western blots confirmed higher accumulation of SSPs in protein-rich Saedanbaek. Findings presented and discussed in this study highlight a possible involvement of the urea cycle for increased accumulation of SSPs and hence the higher protein content in soybean seeds.


Assuntos
Glycine max/química , Óleos de Plantas/química , Proteínas de Plantas/química , Sementes/química , Eletroforese em Gel de Poliacrilamida , Espectrometria de Massas , Filogenia , Óleos de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteômica , Sementes/classificação , Sementes/genética , Sementes/metabolismo , Glycine max/classificação , Glycine max/genética , Glycine max/metabolismo
19.
J Chromatogr A ; 1314: 306-12, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24063984

RESUMO

Solution styrene-butadiene rubber (SSBR) is mainly constituted of a random copolymer of styrene and butadiene. SSBR usually contains microgels, having ultrahigh molecular weight (M>10(7)g/mol), affecting rheological properties of the rubber. Thus, determinations of M and size distribution of these microgels are critical in performance evaluation and control for SSBR. We employ thermal field-flow fractionation (ThFFF), combined with online multi-angle light scattering (MALS), as most suited for characterization of solutions containing the microgels since they can be characterized in toto without removing the microgels from the solution. ThFFF-MALS was applied for characterization of linear and branched SBR materials from various commercial sources, and the results were compared to those from size-exclusion chromatography (SEC). ThFFF provides higher resolution than SEC for high molecular fractions and allowed gel content to be measured. The gel content was determined by subtracting the amount of sol from total injection mass, and was measured to be 10-15%. We infer from the characterization results that the microgel content may not be correlated to the microstructure, the styrene and vinyl content of butadiene but to the fraction of high molecular weight in SSBR. Finally, the macromolecular structure and the content of microgel (larger than about 100nm) were found to significantly affect various rheological parameters such as viscosity, mechanical and dynamic properties.


Assuntos
Butadienos/química , Espalhamento de Radiação , Estireno/química , Cromatografia em Gel , Luz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA